scipp detector development for proton computed …scipp.ucsc.edu › pct › public_results ›...

21
Hartmut F.-W. Sadrozinski: pCT IEEE 2011 1 Detector Development for Proton Computed Tomography (pCT) Hartmut F.-W. Sadrozinski SCIPP, UC Santa Cruz, CA 95064 USA representing the pCT Collaboration Update on my 2002 IEEE NSS-MIC talk: “Toward Proton CT” SCIPP

Upload: others

Post on 05-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 1

    Detector Development for Proton Computed Tomography (pCT)

    Hartmut F.-W. Sadrozinski

    SCIPP, UC Santa Cruz, CA 95064 USArepresenting the pCT Collaboration

    Update on my 2002 IEEE NSS-MIC talk: “Toward Proton CT”

    SCIPPSCIPP

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 2

    Alderson Head Phantom

    Range Uncertainties(measured with PTR)

    > 5 mm> 10 mm> 15 mm

    Schneider U. (1994), “Proton radiography as a tool for quality control in proton therapy,” Med Phys. 22, 353.

    RSP

    H

    Proton CT BasicsProton therapy and treatment planning requires the knowledge of the stopping power in the patient, so that the Bragg peak can be located within the tumor.

    X-ray CT has been shown to give insufficiently accurate stopping power (S.P.) maps in complicated phantoms or from uncertainty in converting Hounsfield values to S.P.

    The goal of Proton CT is to reconstruct a 3D map of the stopping power within the patient with as fine a voxel size as practical at a minimum dose, using protons (instead of x-rays) in transmission.

    In a rotational scan the integrated stopping power is determined for every view by a measurement of the energy loss.

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 3

    pCT Challenge #1: Multiple Coulomb Scattering

    “The most likely path of an energetic charged particle through a uniform medium”D C Williams Phys. Med. Biol. 49 (2004) 2899–2911

    The proton path inside the patient/phantom is not straight the path of every proton before and after the phantom

    has to be measured and its path inside the patient reconstructed.

    -0.5-0.4-0.3-0.2-0.1

    00.10.20.30.40.5

    0 2 4 6 8 10 12 14 16 18 20Depth inside Absorber [cm]

    Disp

    lacem

    ent [

    cm]

    R M S = 4 9 0 u m

    M L P w id th = 3 8 0 u m

    -0.5-0.4-0.3-0.2-0.1

    00.10.20.30.40.5

    0 2 4 6 8 10 12 14 16 18 20Depth inside Absorber [cm]

    Disp

    lacem

    ent [

    cm]

    R M S = 4 9 0 u m

    M L P w id th = 3 8 0 u m

    M. Bruzzi et al IEEE Trans. Nucl. Sci.,54, 140 (2007)

    From deflection and displacement, calculate the “Most Likely Path MLP”

    Beam test with sub-divided phantom:MLP can be predicted with sub-mm precisionusing tracking detectors with ~ 80μm resolution

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 4

    Tracking and measuring the residual energy of every proton requires fast sensors and fast data acquisition (DAQ).

    Data Flow math:Assuming 100 protons / 1mm voxel and 180 views requires ~ 7*108 protons.With 10 kHz data rate, one pCT scan will take 20 hrs (requiring a very patient patient!).A scan with a proton rate of 2 MHz takes 6 min. N.B. such a scan will deliver a dose of 1.5 mGy.

    Image ReconstructionTo reconstruct images with > 107 voxels using ~109 protons is NOT trivial. Our reconstruction code is already running on GPU’s in anticipation of the much higher data rates of the future.

    pCT Challenge #1a: Proton Data rate

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 5

    The proton energy loss is not fixed, but is a stochastic process. The straggling error is a function of depth, irreducible when energy is not measured.

    the straggling within the phantom limits the precision of the energy loss measurement.

    Challenge #2 to pCT: Range / Energy Straggling

    WEPL Resolution vs. WEPL for different Plate Thickness' (200 MeV Protons)

    3

    3.2

    3.4

    3.6

    3.8

    4

    4.2

    4.4

    4.6

    4.8

    5

    0 50 100 150 200 250

    WEPL [mm]

    WEP

    L R

    MS

    [mm

    ]

    1 mm 3 mm 4 mm 6 mm5 mm proj.6 mm proj.8 mm proj.10 mm proj

    Range straggling ~ 1% of range~ 1mm for 100 MeV, ~ 3mm for 200 MeV

    Range counter always encounters the maximum range straggling: the error is independent of the WEPL of phantom (depends on proton energy)

    WEPL = Water equivalent Path Length (of proton in phantom)

    Geant4 Study:

    Range Straggling vs. Energy

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 50 100 150 200 250 300Proton Energy [MeV]

    Sigm

    a (R

    ) [g/

    cm2 ]

    0.0%

    0.5%

    1.0%

    1.5%

    2.0%

    Sigm

    a(R

    )/R

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 6

    Instrument Solutions to the pCT Challenge:

    under constructionRange (>3mm) + direct SiPM orPolystyrene Calorimeter + PMT

    Si SSD“Slim edges”

    LLU /UCSC

    under constructionRange (3mm) + WLSF + SiPM

    SciFi + SiPMNIU / FNAL

    100 - 200CsI + P.D.Si SSDLLU / UCSC / NIU

    68Fast crystal calorimeter + P.D.

    SI SSDFirenze / LNS(V. Sipala et al., MIC15.S-305)

    100under construction

    Range (3mm) + WLSF + SiPM

    GEMTERA / CERN+ upgrade

    Proton Energy [MeV]

    Energy DetectorTrackerGroup

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 7

    Proton Range Radiography

    PRR10 Prototype

    • 10x10cm active area• GEM detectors for tracking• about 10kHz aquisition speed• 30 3mm thick plastic scintillator for range

    “Construction, test and operation of a proton range radiography system”U. Amaldi et al., NIMA, 629 (2011) pp 337‐344

    1x1mm SiPM

    1mm WLS fiber

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 8

    Proton Range Radiography

    New 30x30cm active area prototype is currently being developed. Along with being large enough to perform a full head‐sized proton radiography, an entirely new readout front‐end electronics is being developed which can achieve rates of 1MHz / channel. Expected completion, early 2012.  

    Images made with 100MeV protons and custom phantom.  Smallest hole size is 1mm diameter.

    PSI beam test (June 2010)

    CNAO beam test (Aug 2011)

    Imaging tissue equivalent cylinders.

    Lung (.20)

    Trabecular bone (1.16)

    Breast 50/50 (.99)

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 9

    Fiber tracker + Range detectorFiber tracker + Range detectorFPGA based DAQ, 20 MHz acquisition rate, 100 MHz clockSiPM for both subsystem, 100 ns pulse separation (10 MHz seems possible), impressive vendor listArea 18 X 36 cm2, no overlap, total number of channels: Tracker ~ 2160, Range Detector ~ 100

    SFT TRACKER + SC RANGE DETECTOR

    100 plates, 3 mm, Polystyrene Scintillator

    ““FiberFiber”” scanner, NIU scanner, NIU -- FNALFNALG. Blazey G. G. CoutrakonCoutrakonaa, B. , B. ErdelyiErdelyiaa, A. , A. DyshkantDyshkantaa, E. , E. JohnsonJohnsonaa N. N. KaronisKaronisaa, , PenfoldPenfolddd, , VV. . RykalinRykalinaa, ,

    P. P. RubinovRubinovee , G. , G. SilbergSilberg, V. , V. ZutshiZutshiaa , P. , P. WilsonWilsonee

    a a Northern Illinois University, Northern Illinois University, dd University of Wollongong, University of Wollongong, e e FERMILABFERMILAB

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 10

    Total number of channels ~ 120One plate dimensions 27 X 36 X 0.3 cm3 Digital or analog readout ?SiPM readout through 1.2 mm WLS fiberSiPM is of 1.3 mm diam.

    ~ 22 PEP, 200 MeV

    1 PE ~ 50 ADC counts

    Prototype, 18 X 36 cmPrototype, 18 X 36 cm22 Sc plate with Sc plate with grooved WLS fiber grooved WLS fiber

    Large signal dispersion: # of p.e.from width of curve: 13

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 11

    Position Resolution:Position Resolution:~ 4 ~ 4 –– 6 x that of 6 x that of SiSi SSDSSD

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 12

    ~ 33 PE,p, 200 MeV

    11 PE ~ 21 ADC counts

    ~ 33 PE, 36 cm Scint. Fiber , trigger fiber covers 5 cm from the far end. SF, Green, Polystyrene,

    KURARAY, 1 mm, 2 clad., 3HF, Al spattering .

    Scintillating Fiber (Scintillating Fiber (““SciFiSciFi””) Tracker ) Tracker with with SiPMSiPM ReadoutReadout

    Large signal dispersion:# of p.e from width of curve: 9

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 13

    LLU-UCSC-NIU CollaborationB. Colby, D. Fusi, R. Johnson, S. Kashiguine, F. Martinez-McKinney, J. Missaghian,

    H. F.-W. Sadrozinski, M. ScaringellaSCIPP, UC Santa Cruz, CA 95064 USA

    V. Bashkirov, F. Hurley, S. Penfold, R. Schulte Loma Linda University Medical Center, CA 92354 USA

    G. Coutrakon, B. Erdelyi, V. RykalinNorthern Illinois University

    S. McAllister, K. SchubertCSU San Bernardino

    SCIPPSCIPP

    2003 2010

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 14

    The LLU-UCSC-NIU Prototype Scanner

    Optical Interface Photodiode

    R. W. Schulte, et al.,,

    IEEE Trans. Nucl. Sci., 51,, pp 866, 2004.

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 15

    CT Image Reconstruction1.1. WEPL calibration and cutWEPL calibration and cut2.2. Correction for overlaps in Correction for overlaps in SiSi

    trackertracker3.3. Correction matrix with Correction matrix with

    Calorimeter responseCalorimeter response4.4. Angular and Angular and spatial spatial binningbinning5.5. Filtered Back Projection and Filtered Back Projection and

    Iterative Algebraic Iterative Algebraic reconstructionreconstruction6.6. MLP formalism for final MLP formalism for final

    reconstructionreconstruction2.5 mm slice0.65 mm voxels

    Reality Check:We accumulated data for this reconstructed image during 4 hours at 20 kHz trigger rate. This is not acceptable for clinical applications ! Next development step: 50x faster pCT scanner

    15

    0.050.004Air

    1.191.20Lucite

    1.681.70Bone

    1.0351.037Polystyrene

    RSP reconstructed from Measurement

    Predicted RSPMaterial

    air

    bone

    lucite

    polyst.

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 16

    WEPL Calibration Response of CsI Calorimeter to different Degrader Depth

    0

    5000

    10000

    15000

    20000

    0 500 1000 1500 2000 2500

    ADC

    # pe

    r 10

    AdC

    0 mm 52.9 mm132.3 mm 185.2 mm211.59 mm 224.9 mm243.16 mm

    CsI Calorimeter Response

    y = 10.574x

    0

    500

    1000

    1500

    2000

    2500

    0 50 100 150 200

    Simulated Energy [MeV]

    ADC

    [a.u

    .]

    Errors vs. WEPL

    0

    2

    4

    6

    8

    10

    0 50 100 150 200 250

    WEPL [mm]

    WEP

    L R

    MS

    [mm

    ]

    0

    2

    4

    6

    8

    10

    Ener

    gy R

    MS

    [MeV

    ]

    WEPL Error Energy Error

    WEPL vs. CsI Calorimeter Response

    0

    50

    100

    150

    200

    250

    300

    0 500 1000 1500 2000 2500Calorimeter Response [a.u.]

    WEP

    L [m

    m]

    F. Hurley et al., subm. to MEDICAL PHYSICS

    CsI spectra for various degrader depth Linearity of CsI calorimeter

    E(proton) = 200 MeVPolystyrene degraders

    Degrader WEPL vs. Calorimeter Response WEPL & Energy RMS vs. Degrader WEPL

    Goal:Direct determination of WEPL

    from calorimeter response, without converting to MeV

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 17

    WEPL Resolution: CsI vs. Range CounterGeant4 Simulation for 200 MeV Protons, w/o detector threshold effects

    Plate thickness resolution < WEPL RMSThicker plates viable for 200 MeV?

    WEPL RMS is constant as expected, range counter measures straggling in phantom/degrader + range counter!

    CsI and Range Counter have similar relative WEPL resolution,at small WEPL (high proton energy)

    Range Counter superiorat large WEPL (low proton energy)

    CsI superior, reaches 1%!

    (4mm Polystyrene)WEPL Error vs. Degrader Thickness

    0

    1

    2

    3

    4

    5

    6

    0 50 100 150 200 250

    WEPL [mm]

    WEP

    L R

    MS

    [mm

    ]

    4 mm Plate Resolution

    Range Counter with Straggling

    WEPL Error vs. Degrader Thickness

    1%

    10%

    100%

    0 50 100 150 200 250WEPL [mm]

    Rea

    ltive

    WEP

    L R

    MS

    [%] CsI Calorimeter

    4 mm Range Counter

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 18

    Increase Size 2x : 40 cm x 10 cmImprove data throughput 50x:

    2MHz sustained proton rate with minimal pile-upSi sensors are intrinsically fast, built faster readout ASIC and distributed DAQData stream uses local FPGA for data collection, formatting and transmission

    Improve speed of energy detector:CsI calorimeter replaced with faster plastic scintillatorBoth range counter and calorimeter under testPolystyrene Range Counter with direct SiPM readout looks very promising

    (~3x p.e. wrt to WLSF readout?)Geant4 results on Range Counter with thicker tiles is intriguing

    Improve tiling of Si sensors:Si SSD are attractive since they have low noise at good efficiency,

    an important factor in a sparse system (no redundant space points)“slim edges” allow tiling without overlap

    LLU-UCSC-CSUSB Head Scanner

    R. Johnson, H. F.-W. Sadrozinski, D. Steinberg, A. Zatserklanyi,

    V. Bashkirov, F. Hurley, S. Penfold, R. Schulte, S. McAllister, K. Schubert

    NIH Grant 1R01EB013118-01SCIPPSCIPP

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 19

    Range Counter with Direct SiPM Readout4.2 mm Polystyrene

    1p.e. = 40

    Signal = 100 p.e. !!

    Width of signal distribution signal > 30 p.e.

    Very,

    very

    prelim

    inary

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 20

    Si Sensor Improvement: Slim Edges (with NRL)Si SSD with 900μm dead edge

    Slim edges:reduce dead edge from 1mm to < 200 μmExcellent breakdown behaviorCurrent at 150V:

    ~10 nA/cm with guard ring~100 nA/cm without guard ring

    Charge collection unchanged

    See V. Fadeyev’s talk N7-1

    Edge Treatment:

    Laser + XeF2 scribing

    Cleaving

    PECVD Passivation

    with guard ring

    Cut within 50 μm Of Guard Ring Guard Ring Cut (!)

  • Hartmut F.-W. Sadrozinski: pCT IEEE 2011 21

    ConclusionsProton CT has come a long way since my talk at the 2002 IEEE NSS-MIC Symposium in Norfolk, VA.We see very different approaches on instruments, motivated in part by a technology transfer from HEP. This has come with severe limitations (proton rate!).We are starting to reconstruct very clear and sophisticated radiographs AND CT images, and are actively improving reconstruction algorithms.We are now arriving at a new phase in pCT: we have dedicated detector development, with focus on speeding up the data taking to be useful in clinical applications.End-to-end simulation of the instrument has been essential for our understanding of the requirements and proper choice of the technical solution, yet many lessons were learned during operation of the scannersNext (big) step: clinical application.

    Ongoing and unwavering support by Prof. James M. Slater (LLUMC) made this project possible.

    We acknowledge support from the US National Institute of Health under the grant NIH Grant 1R01EB013118-01