scott prattmichigan state university femtoscopy: theory...

30
Scott Pratt Scott Pratt Michigan State University Michigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Upload: ralph-jordan

Post on 18-Jan-2018

223 views

Category:

Documents


0 download

DESCRIPTION

Scott PrattMichigan State University Deriving the Fundamental Formula Step 1: Define the source function

TRANSCRIPT

Page 1: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Femtoscopy: Theory____________________________________________________ Scott Pratt, Michigan State University

Page 2: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Deriving the Fundamental Formula

1)()(1),( 23 rrSrdqPC qP

2/)(

)()(),(),(

ba

ba

ba

ba

ppqppP

pNpNppNqPC

Page 3: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Deriving the Fundamental Formula

),(

)2/()2/(),(

)(

43

4

243

xpxsdpd

dN

xxTxxTxdxps

exTxdpd

dN

aaa

aa

xipaa

a

aa

Step 1: Define the source function

Page 4: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Deriving the Fundamental Formula

xqiqqq

baqbbaa

baqxxiP

baba

exxuxxuxdxqw

xxqwxqPsxqPsqd

xxuexTxTpdpd

dN ba

~*4

4

2)(

33

)2/()2/(),~(

),~(),~2/(),~2/(~

)()()(

Step 2: Write 2-particle probability

),~( xqwq = probability relative momentum q and separation x evolves to q asymptotically

Page 5: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Deriving… Identical particles

)~()~(),~(,2/)( 4 qeqqxqweexu xiqq

iqxiqxq

)(2cos),2/(),2/(),(),(

2121

222

41

433 xxqxPsxPs

xpsxpsxdxdpdpd

dN ba

ba

),2/),2/((),2/),2/((),(),(),2/(),2/(

21

2121xPPEsxPPEs

xpsxpsxPsxPs ba

Smoothness approximation

)2cos()(1),( 3 rqrSrdqPC P

)(),2/(),2/()( ''344 rxxxPsxPsxdxdrS babbaabaP

Page 6: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

With final-state interactions

)(),( xxtu qq

),2/),2/((),2/),2/((),~2/(),~2/( 2121 xPPEsxPPEsxqPsxqPs

Smoothness approximation

1)()(1),( 23 rrSrdqPC qP

Approximate (in frame of pair),

Page 7: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Deriving… Summary

1)()(1),( 23 rrSrdqPC qP

Assumptions

Identical Particles1. Symmetrize pairwise2. Independent emission3. Smoothness

Strong/Coulomb1. Independent

emission2. Ignore time

differencefor evolution

3. Smoothness

*

*

* Tested

*

Page 8: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Femtoscopy – Theory

•Measures phase space cloud for fixed velocity•Overall source can be larger•Inversion depends on |(q,r)|2

Page 9: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Hadronic Interferometry – Theory

Theories predict SP(r) C(P,q)

Correlations provide stringent test of space-time evolution

Page 10: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Using Identical Particles

•Examples: , KK, …•Easy to invert•3-dimensional information

• Rout, Rside, Rlong are functions of P

2

2

2

2

2

2

222exp~)(

long

long

side

side

out

out

Rr

Rr

Rrrs

rQrq cos1),(2

222222exp1)( longlongsidesideoutout RQRQRQQC

Page 11: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Identical Particles: Measuring Lifetime

•Has been studied for , KK, pp, nn•Source function S(p,r,t) is 7-dimensional – requires one dimension of common sense

2222)( sidewardoutwardsource RRvv

Page 12: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Strong Interactions

Peak height determined by scattering length or resonance width

•Examples: pp, p, nn, p, Kp, p, d, …

d Correlations

E (MeV)

G. Verde / MSU Miniball Group

Page 13: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Coulomb Interactions

•Can be calculated classically for larger fragmentsKim et al., PRC45 p. 387 (92)

Page 14: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Proton-protonCorrelations

Deconvoluting C(q) provides

detailed source shape

S.Panitkin and D.Brown, PRC61 021901 (2000)

Page 15: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Measuring shape without identical particles

Page 16: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Example: pK+ correlations

Gaussian Sources:Rx=Ry=4, Rz=8 fm

Page 17: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Detailed Shape Information

),()(4)(

)(cos1)cos,,(cos21),(

),()()(),(1)()(

)(1)cos,,(1)(

,2

,

2,,

,,

23

rqKrSdrrqC

PrqdrqK

YrSdrSYqCdqC

rSrqrdqC

mm

qrqrqr

rmrm

qmqm

qr

Standard formalism:

Defining,

Using identities for Ylms,

Simple correspondence! Danielewicz and Brown

Page 18: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Moments• L=0

• L=1, M=1

• L=2, M=0,2

• L=3, M=1,3

Angle-integrated shape

Lednicky offsets

Shape (Rout/Rside, Rlong/Rside)

Boomerang distortion

Page 19: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Blast Wave Model

• (z -z) CL+M=even(q) = 0

• (y -y) Imag CL,M = 0

S.P. and S.Petriconi, PRC 2003

Page 20: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Liquid-Gas Phase Transition

Definition of Gas:“Expands to fill

available volume”

Liquid = Evaporation Long lifetimes

Gas = Explosion Short lifetimes

Page 21: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Change to Explosive Behavior (GAS) at ~ 50 AMeV

Page 22: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Experimental Signatures

Dramatic change in nn correlations

~ 500 fm/c ~ 50 fm/c

Page 23: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Phase Transition at RHIC

• Transparency complicates the problem

• For complete stopping, times could be ~ 100 fm/c

• For Bjorken, strong first-order EOS leads to ~ 20 fm/c

Page 24: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Phase Transition at RHIC?

Stiffer EOS -> Smaller source sizesData demonstrate no latent heat or significant softness

Page 25: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

THE HBT PUZZLE AT RHIC

To fit data:

a) Stiff (but not too stiff) EOS

b) Reduce emissivity from surface

c) Not that much different than SPS

Page 26: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Phase space density

33

2/3

)2/(32/33

3

1)12(

)(

)2(1

)12()2(),(

22

invC

Rr

inv

RpddN

Jpf

eRpd

dNJ

rpf inv

Any method to extract Rinv is sufficient

Page 27: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Phase space

density

<f> rises until threshold of chemical equilibrium ~ 80 MeV at break-up

Page 28: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

HBT and Entropy

)1ln()1(ln)2( 3

33ffffrpddS

Entropy can be determined from averagePhase space density

<f> determined from:• correlations ()• coalescence (KK,ppd)• thermal models…

Page 29: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

Entropy for 130 GeV Au+Au at = 1 fm/c

S.Pal and S.P., PLB 2003

4500,1900 dy

dSdydS total

hydroBjorken

Page 30: Scott PrattMichigan State University Femtoscopy: Theory ____________________________________________________ Scott Pratt, Michigan State University

Scott PrattScott Pratt Michigan State UniversityMichigan State University

SummaryCorrelations CRUCIAL for determining

• Pressure

• Entropy

• Reaction Dynamics