<script language='javascript'><!--var bluecoat_allow_popup = false;var...

70
02/10/10 ELF 1 Eugene L. Fleeman Senior Technical Advisor Georgia Institute of Techno Maximizing Missile Flight Performance

Upload: scribdsal

Post on 30-May-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 1/70

02/10/10 ELF 1

Eugene L. FleemanSenior Technical AdvisorGeorgia Institute of Techno

Maximizing Missile Flight Performance

Page 2: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 2/70

02/10/10 ELF 2

OutlineOutline

Parameters and Technologies That Drive MissileFlight Performance

Missile Flight Performance Prediction

Examples of Maximizing Missile Flight Performance

( Workshop ) Summary

Page 3: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 3/70

02/10/10 ELF 3

Parameters That Drive MissileFlight Performance

Parameters That Drive MissileFlight Performance

Nose FinenessDiameter

Propellant / Fuel

Wing Geometry/ Size

StabilizerGeometry /Size

Flight

ControlGeometry /Size

Lengt

h

Thrust

Profil

e

Flight Conditions( α , M, h )

Page 4: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 4/70

02/10/10 ELF  4

 Low Drag

 Low Drag

10

100

1000

10000

100000

4 8 12 16 20

d, Diameter, inches

   D   /   C   D ,

   D  r  a  g

   /   D  r  a  g   C  o  e   f   f   i  c   i  e  n   t ,   l

Dynamic Pressure =1,000 psf 

Dynamic Pressure =5,000 psf 

Dynamic Pressure =10,000 psf 

Example for Rocket Baseline:

d = 8 inches = 0.667 ft

Mach 2, h = 20K ft, ( CD0)Powered = 0.95

q = 1/2 ρ V2 = 1/2 ρ ( M a )2 

= 1/2 ( 0.001267 ) [( 2 ) ( 1037 )]2 = 2,

D0 / CD0= 0.785 ( 2725 ) ( 0.667 )2 = 95

D0 = 0.95 ( 952 ) = 900 lb

D = CD q SRef  = 0.785 CD q d2

Note: D = drag in lb, CD = drag coefficient, q =

dynamic pressure in psf, d = diameter( reference length ) in ft

i hil S b i

Page 5: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 5/70

02/10/10 ELF 5

Nose Fineness While SubsonicDrag is Driven by Skin FrictionNose F neness W e u son cDrag is Driven by Skin Friction

0.01

0.1

1

10

0 1 2 3 4 5

M, Mach Number

(CD0)Body,Wave;lN / d =0.5

(CD0)Body,Wave;lN / d =1

(CD0)Body,Wave;lN / d =2

(CD0)Body,Wave;lN / d =5

(CD)Base,Coast

Example for Rocket Baseline:

( CD0)Body, Wave ( CD0

)Body, Friction  

( CD )Base

lN / d = 2.4, Ae = 11.22 in2, SRef   = 50.26 in2, M = 2, h = 20K ft,q = 2725 psf, l / d = 18, l = 12ft

( CD0)Body, Wave = 0.14

( CD )Base  Coast = 0.25 / 2 = 0.13

( CD )BasePowered = ( 1 - 0.223 )( 0.25 / 2 ) = 0.10

( CD0)Body, Friction = 0.053 ( 18 )

{ ( 2 ) / [( 2725 ) ( 12 ) ]}0.2 =0.14

( CD0)Body, Coast = 0.14 + 0.13 +

0.14 = 0.41

( CD0)Body, Wave = ( 1.59 + 1.83 / M2 ) { tan-1 [ 0.5 / ( lN / d )]}1.69 , for M > 1.

Based on Bonney reference, tan-1 in rad. 

( CD0)Base,Coast = 0.25 / M, if M > 1 and (C

D0)

Base,Coast= ( 0.12 + 0.13 M2 ), if M < 1

( CD0 )Base,Powered = ( 1 – Ae / SRef  ) ( 0.25 / M ), if M > 1 and ( CD0 )Base,Powered = ( 1 –Ae / SRef  ) ( 0.12 + 0.13 M2 ), if M < 1

(CD0 

)Body,Friction = 0.053 ( l / d ) [ M / ( q l )]0.2 . Based on Jerger reference,

turbulent boundary layer, q in psf, l in ft.

( CD0)Body = ( CD0

)Body, Wave + ( CD0)Base + (C

D0 )Body,Friction

Note: ( CD0 )Body,Wave = body zero-lift wave drag coefficient, ( CD0 )Base = body base dragcoefficient, ( CD0

)Body, Friction = body skin friction drag coefficient, ( CD0)Body = body zero-lift

drag coefficient, lN = nose length, d = missile diameter, l = missile body length, Ae =nozzle exit area, SRef  = reference area, q = dynamic pressure, tan-1 [ 0.5 / ( lN / d )] in rad

Page 6: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 6/70

N l F dN l F d

Page 7: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 7/7002/10/10 ELF 7

Normal Force and Maneuverability 

Normal Force and Maneuverability 

3

3.5

M <1.35, based on slen

M =2, based on linear

M =5, based on linearN

Wing

REF

W,

Wing

NormalF

orc

e

Coeffi c

ientf

or

Rocke

tBase l

ine

α ’ = α W = α + δ , Wing Effective Angle of Attack, Deg

( CN )Wing  = [ 4sin α ’ cos α ’ / ( M2 – 1 )1/2 + 2 sin2α ’ ] ( SW / SRef  ), if M >

{ 1 + [ 8 / ( π A )]2 }1/2

 ( CN )Wing  = [ ( π A / 2) sin α ’ cos α ’+ 2 sin2α ’ ] ( SW / SRef  ), if M < { 1

+ [ 8 / ( π A )]2 }1/2

Note: Linear wing theory applicable if M > { 1 + [ 8 / ( π A )]2 }1/2 , slender wingtheory applicable if M < { 1 + [ 8 / ( π A )]2 }1/2 , A = Aspect Ratio, SW = Wing

Planform Area, SRef  = Reference Area

Example for RocketBaseline

AW = 2.82

SW = 2.55 ft2

SRef  = 0.349 ft2

δ = 13 deg, α = 9deg

M = 2

{ 1 +[ 8 / ( π A )]2 }1/2  = 1.35

Since M > 1.35, uselinear wing theory +

Newtonian theoryα ’ = α W = α + δ =

22°( CN )Wing SRef  / SW = [ 4

sin 22° cos 22° / ( 22 –1 )1/2 + 2 sin2 22°] =1.083

( CN )Wing = 1.08( 2.55 ) / 0.349 = 7.91

Th Sh k W D f ThiTh Sh k W D f Thi

Page 8: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 8/7002/10/10 ELF 8

Than Shock Wave Drag for a ThinWing

Than Shock Wave Drag for a ThinWing

0

0.005

0.01

0.015

0.02

100 1000 10000

q, Dynamic Pressure, psf 

M/ cmac =0.01 / ft M/ cmac =0.1 / ft

M/ cmac =1 / ft M/ cmac =10 / ft

( CD0)Wing,Friction = nW { 0.0133 [ M / ( q cmac )]0.2 } ( 2 SW / SRef  ), based on

 Jerger, turbulent, q in psf, cmac in ft

( CDO)Wing,Wave = nW [ 2 / ( γ MΛ LE

2 )]{{[( γ + 1 ) MΛ LE

2 ] / 2 }γ / ( γ  - 1) {( γ + 1

) / [ 2 γ MΛ LE2 – ( γ - 1 )]}1/ ( γ - 1) – 1 } sin2 δ LE cos Λ LE tmac b / SRef  , based

on Newtonian impact theory( CDO

)Wing = ( CDO)Wing,Wave + ( CDO

)Wing,Friction  

nW = number of wings ( cruciform

= 2 )

q = dynamic pressure in psf 

cmac = length of mean aero chord

in ft

γ  = Specific heat ratio = 1.4

MΛ LE= M cos Λ LE = Mach number ⊥  

leading edge

δ LE = leading edge section total

angle

Λ LE = leading edge sweep angle

tmac = max thickness of mac

b = span

Example for Rocket Baseline Wing:

nW = 2, h = 20K ft ( q = 2,725 psf ),cmac = 1.108 ft, SRef  = 50.26 in2, SW =367 in2, δ LE = 10.01 deg, Λ LE = 45deg, tmac = 0.585 in, b = 32.2 in, M =2 ( MΛ LE

= 1.41 )

( CDO)Wing,Friction SRef  / [ nW SW ] = 2

{( 0.0133 ) { 2 / [( 2725 )

( 1.108 )]}0.2

} = 0.00615( CD0

)Wing,Friction = 0.00615 ( 2 ) ( 367 )

(C

D0

) Wing,Friction

S

Ref

/

(n

W

SW

)

Hi h T i A l f A k dHi h T i A l f Att k d

Page 9: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 9/7002/10/10 ELF 9

Higher Trim Angle of Attack and Higher Normal Force

Higher Trim Angle of Attack and Higher Normal Force

CN, Trim , TrimmedNormal ForceCoefficient of RocketBaseline

0 4 8 12 16 20 24

16

12

8

4

0

 

α Trim , Trim Angle of Attack,

Deg

Note: Rocket Baseline

XCG = 75.7 in.Mach 2

( α + δ )Max = 21.8 Deg, ( CNTrim)Max

α / δ = 0.75, ( Static Margin = 0.88 Diam )

α / δ = 1.5, ( SM = 0.43 Diam )

α / δ = ∞ , ( SM = 0 )

Hi h Th t d R d F lHi h Th t d R d F l

Page 10: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 10/7002/10/10 ELF 10

Scramjet

Higher Thrust and Reduces Fuel Consumption

Higher Thrust and Reduces Fuel Consumption

Turbojet

Ramjet

SolidRocket

4,000

3,000

2,000

1,000

0Thrus

t/(FuelFlow

Rate),Spec if

ic

Impuls

e,I SP,

Secon

ds

0 2 4 6 8 10 12

Mach Number

DuctedRocket

Page 11: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 11/7002/10/10 ELF 11

  Acceleration Capability 

  Acceleration Capability 

1,000

100

10

10 1 2 3 4 5

RamjetTMax = (π / 4 ) d2 ρ ∞  V∞

[( Ve / V∞ ) - 1 ]

Solid RocketTMax = 2 PC At = m

.Ve

M, Mach Number

(T

/W

) Max

,(Thrust/W

eight ) M

ax,

Note:

PC = Chamber pressure, At = Nozzle throat area, m.= Mass flow rate

d = Diameter, ρ ∞ = Free stream density, V∞ = Free stream velocity,Ve = Nozzle exit velocity ( Turbojet: Ve ~ 2,000 ft / sec, Ramjet: Ve ~ 4,500

TurbojetTMax = (π / 4 ) d2 ρ ∞  V∞

[( Ve / V∞ ) - 1 ]

f M h 3 t 5 ith Hi hM t 5 t H

Page 12: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 12/7002/10/10 ELF 12

from Mach 3 to 5 with HighCombustion Temperaturerom Mac to 5 w t H gCombustion Temperature

0

5

10

15

20

25

0 1 2 3 4 5

M, Mach Number

   T   /   [   P   H   I   (  p   0   )   (   A   3   )   ] ,   N  o  n   d   i  m

   i  m  e  n  s   i  o  n  a   l   T   h  r  u  s   t   i   f   S  p  e  c   i   f   i

   H  e  a   t   R  a   t   i  o  =   1 .   2   9

T4 / T0 =3 T4 / T0 =5 T4 / T0 =10 T4/ T0 =15

T / ( φ p0 A3 ) = γ M02 {{[ T4 / T0 ] / { 1 + [( γ - 1 ) / 2 ]

M02 }}1/2 - 1 }

Note: Ideal ramjet, isentropic flow, exit pressure = free streampressure, φ  ≤ 1, T in °R

Example for Ramjet Baseline:

M = 3.5, h = 60 Kft, T4 = 4,000deg R, ( f / a ) = 0.06, φ =0.900, T0 = 392 Rankine, p0 =1.047 psi, A3 = 287.1 in2, γ =1.29

T / ( φ p0 A3 ) = 1.29 ( 3.5 )2 {{[4000 / 392 ] / { 1 + [( 1.29 –1 ) / 2 ] ( 3.5 )2 }}1/2 – 1 } =14.49

T = 14.49 ( 0.900 ) ( 1.047 )( 287.1 ) = 3920 lb

Note:

T = Thrust

p0 = Free stream static

pressure

A3 = Combustor flameholderentrance area

γ = Specific heat ratio

M0 = Free stream Mach number

T4 = Combustor exit

temperature

T0 = Free stream temperature

Th t f R k t O t Hi hTh t f R k t O t Hi h

Page 13: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 13/7002/10/10 ELF 13

Thrust of Rocket Occur at HighChamber Pressure and AltitudeThrust of Rocket Occur at HighChamber Pressure and Altitude

220

240

260

280

0 5 10 15 20

Nozzle Expansion Ratio

   I  s  p ,   S  p  e  c   i   f   i  c   I  m  p  u   l  s  e  o

   f   R  o  c   k  e   t   B  a  s  e   l   i  n  e

h =SL, pc =300 psi h =SL, pc =1000 psi

h =SL, pc =3000 psi h =100K ft, pc >300 psi

ISP = cd {{[ 2 γ 2 / ( γ - 1)] [ 2 / ( γ + 1)] ( γ - 1) / ( γ +1) [ 1 – ( pe / pc ) ( γ - 1) /

γ  ]}1/2 + ( pe / pc ) ε - ( p0 / pc ) ε } c* / gc

T = ( gc / c* ) pc At ISP

ε = {[ 2 / ( γ + 1)1/ ( γ - 1) ][( γ -1) / ( γ + 1 )]1/2 ]} / {( pe / pc )1/ γ  [ 1 -( pe / pc ) ( γ - 1) /  γ  ]1/2 }

Note:ε = nozzle expansion ratiope = exit pressure

pc = chamber pressure

p0 = atmospheric pressure

At = nozzle throat area

γ = specific heat ratio = 1.18 infigurecd = discharge coefficient = 0.96 in

figurec* = characteristic velocity =5,200 ft / sec in figure

Example for Rocket Baseline:

ε = Ae / At = 6.2, At = 1.81 in2

h = 20 Kft, p0 = 6.48 psi

( pc )boost = 1769 psi, ( ISP )boost = 257sec

( T )boost = ( 32.2 / 5200 ) ( 1769 )(1.81 )( 257 ) = 5096 lb

( pc )sustain = 301 psi, ( ISP )sustain = 239sec

( T )boost

= ( 32.2 / 5200 ) ( 301 )(1.81 )( 239 ) = 807 lb

V l it d P ll t F lV l it d P ll t F l

Page 14: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 14/7002/10/10 ELF 14

Velocity, and Propellant or Fuel Weight Fraction

Velocity, and Propellant or Fuel Weight Fraction

Typical Value for 2,000 lb Precision Strike Missil

Note: Ramjet and Scramjet missiles booster propellant for Mach 2.5 to 4 take-over speed not included in WP

for cruise. Rockets require thrust magnitude control ( e.g., pintle, pulse,

or gel motor ) for effective cruise. Max range for a rocket is usually asemi-ballistic flight profile, instead of cruise flight.

R = ( L / D ) Isp V In [ WL / ( WL – WP )] , Breguet Range Equation

Parame

ter

L / D, Lift / Drag

Isp , Specific Impulse

VAVG , Average Velocity

WP / WL, Cruise

Propellant or FuelWeight / LaunchWeightR, Cruise Range

10

3,000sec

1,000ft / sec

0.3

1,800

nm

5

1,300sec

3,500ft / sec

0.2

830 nm

3

1,000sec

6,000ft / sec

0.1

310 nm

5

250 sec

3,000

ft / sec0.4

250 nm

Solid RocketHydrocarbon FuelScramjet Missile

Liquid FuelRamjet Missile

Subsonic TurbojetMissile

P k i P id E t d dP P E t

Page 15: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 15/7002/10/10 ELF 15

Packaging Provide Extended Range Ramjet 

Pac ag ng Prov e Exten eRange Ramjet 

Propulsion / Configuration Fuel Type / VolumetricPerformance (BTU / in3) /

Density (lb / in3)

Fuel Volume (in3) /Fuel Weight (lb)

ISP (sec) / CruiseRange at Mach 3.5,

60K ft (nm)Liquid Fuel Ramjet 

RJ-5 / 581 / 0.040 11900 / 476 1120 / 390

Ducted Rocket ( Low Smoke ) 

Solid Hydrocarbon / 1132 /0.075

7922 / 594 677 / 294

Ducted Rocket ( HighPerformance ) 

Boron / 2040 / 0.082 7922 / 649 769 / 366

Solid Fuel Ramjet 

Boron / 2040 / 0.082 7056 / 579 1170 / 496

Slurry Fuel Ramjet 40% JP-10, 60% boroncarbide / 1191 / 0.050

11900 / 595 1835 / 770

 Note: Flow Path Available Fuel Rcruise = V ISP ( L / D ) ln [ WBC / ( WBC - Wf )]

Page 16: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 16/7002/10/10 ELF 16

 Extended Range

 Extended Range

Altitude

Range RMAX

Apogee or Cruise

Glid

e

Climb

Rapid Pitch Up

Line-Of-Sight Trajectory

RMAX

Design Guidelines for Horizontal Launch:– High thrust-to-weight ≈ 10 for safe separation– Rapid pitch up minimizes time / propellant to reach efficient

altitude– Climb at a ≈ 0 deg with thrust-to-weight ≈ 2 and q ≈ 700 psf 

minimizes drag / propellant to reach efficient cruise altitude for

( L / D )MAX

– High altitude cruise at ( L / D )MAX and q ≈ 700 psf maximizes

r en rope an e gr en rope an e g

Page 17: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 17/7002/10/10 ELF 17

r ven y  SP  , rope an e g ,Drag, and Static Margin

r ven y  SP  , rope an e g ,Drag, and Static Margin

-1

-0.5

0

0.5

1

1.5

Isp Prop.

Weight

CD0 Drag-

Due-to-

Lift

Static

Margin

Thrust Inert

Weight

Parameter

Nondimensional

RangeSensitivity to

Parameter

Note: Rocket baseline:

hL = 20k ft, ML = 0.7, MEC = 1.5

R@ML=0.7, hL=20Kft = 9.5 nm

Example: 10% increase inpropellant weight ⇒ 8.8%increase in flight range

y ue e g rus any u u

Page 18: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 18/7002/10/10 ELF 18

y  SP  , ue e g , rus , an Zero-Lift Drag Coefficient 

y  SP  , u , u , Zero-Lift Drag Coefficient 

-1

-0.5

0

0.5

1

1.5

Inert

Weight

Fuel

Weight

CD0, Zero-

Lift Drag

Coefficient

CLA, Lift-

Curve-

Slope

Coefficient

Thrust ISP

Parameter

   N  o  n   d   i  m  e  n  s   i  o  n  a   l   R  a  n  g  e   S  e  n  s   i   t   i  v   i   t  y

   t  o   P

  a  r  a  m  e   t  e  r

Sea Level Flyout at Mach 2.3 20 Kft Flyout at Mach 2.5

40 Kft Flyout at Mach 2.8 60 Kft Flyout at Mach 3.0

Example: At Mach 3.0 /60K ft altitude cruise,10% increase in fuelweight ⇒ 9.6% increase inflight range

Page 19: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 19/7002/10/10 ELF 19

 Uncertainty Is +/- 7%, 1 σ  Uncertainty Is +/- 7%, 1 σ  

Parameter Baseline Value at Mach3.0 / 60k ft

Uncertainty in Parameter ∆R / R due to Uncertainty

1. Inert Weight 1205 lb +/- 2%, 1σ +/- 0.8%, 1σ 

2. Ramjet Fuel Weight 476 lb +/- 1%, 1σ +/- 0.9%, 1σ 

3. Zero-Lift Drag Coefficient 0.17 +/- 5%, 1σ +/- 4%, 1σ 

4. Lift Curve Slope Coefficient 0.13 / deg +/- 3%, 1σ +/- 1%, 1σ 

5. Cruise Thrust (φ=0.39 ) 458 lb +/- 5%, 1σ +/- 2%, 1σ 

6. Specific Impulse 1040 sec +/- 5%, 1σ +/- 5%, 1σ 

aturity of Ramjet Baseline Based on Flight Demo of Prototype and Subsystem

unnel tests

connect, freejet, and booster firing propulsion tests

ure test

are-in-loop simulation

ht Range Uncertainty at Mach 3.0 / 60K ft Flyout

= [ (∆ R / R )1

2

+ (∆ R / R )2

2

+ (∆ R / R )3

2

+ (∆ R / R )4

2

+ (∆ R / R )5

2

+ (∆ R / R )6

2

]1/2

= +/- 6.5 nm +/- 31 nm, 1σ

Programs Provide EnhancedPrograms Provide Enhanced

Page 20: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 20/7002/10/10 ELF 20

Programs Provide Enhanced Performance

Programs Provide Enhanced Performance

 Year Entering EMD

AIM-9X ( maneuverability ),

1996 - HughesAIM-120 ( speed, range ), 1981- Hughes

Long Range ATS, AGM-86,1973 - Boeing

AGM-129 ( RCS ), 1983 -General Dynamics

PAC-3 (accuracy), 1992 -Lockheed MartinLong Range STA, MIM-104,1966 - Raytheon

1950 1965 1970 1975 1980 1985 1990 1995 >2000

AGM-88 ( speed, range ),1983 - TI

Man-portable STS, M-47, 1970 -McDonnell Douglas

Anti-radar ATS, AGM-45, 1961 - TI

Short Range ATA, AIM-9,

1949 - Raytheon

 Javelin ( gunnersurvivability,lethality, weight ),1989 - TI

Medium Range ATA, AIM-7,1951 - Raytheon

Medium Range ATS, AGM-130,1983 - Rockwell

 JASSM ( range,observables ), 1999 -Lockheed Martin

HypersonicMissile, ~2005

HypersonicMissile ~2005

Long Range STS, BGM-109, 1972 -General Dynamics

HypersonicMissile ~2005

f th A t Ad t Mi ilf th A t Ad t Mi il

Page 21: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 21/7002/10/10 ELF 21

of-the-Art Advancement: MissileManeuverability 

of-the-Art Advancement: MissileManeuverability 

0

10

20

30

40

50

60

1950 1960 1970 1980 1990 2000 2010

 Year IOC

   O  p  e  r  a   t   i  o  n  a   l   A  n  g   l  e  o   f   A   t   t  a  c   k ,   D  e  g  r  e  e

AIM-7A

AM-9BR530

AA-8

AIM-54

R550

Skyflash

Python 3

AA-10

Aspide

Super 530D

AA-11

AIM-120

Python 4

AA-12

MICA

AIM-132AIM-9X

ControlsAugmentedwithPropulsionDevices ( TVC,Reaction Jet )

f th A t Ad t S iof the Art Ad ancement S personic

Page 22: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 22/70

02/10/10 ELF 22

of-the-Art Advancement: Supersonic Air Breathing Missiles

of-the-Art Advancement: Supersonic Air Breathing Missiles

0

1

2

3

4

5

6

7

1950 1960 1970 1980 1990 2000 2010

 Year Flight Demonstration

   M  c  r  u   i  s  e ,   C  r  u   i  s  e   M  a  c   h   N  u  m   b  e

Cobra

Vandal / TalosRARE

Bloodhound

BOMARC

Typhon

CROW

SA-6

Sea DartLASRM

ALVRJ

3M80

ASALM

Kh-31

ASMP

ANS

Kh-41

SLAT

HyFly

Scram jet

Ramjet

New Tec no og es T at En anceew ec no og es at n ance

Page 23: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 23/70

02/10/10 ELF 23

New Tec no og es T at En anceTactical Missile Performanceew ec no og es at n anceTactical Missile Performance

me

aceted / Windowulti-lens

Seeker

StrapdownHigh Gimbal

G & C

GPS / INSIn-flightOptimizeα , β  Feedback 

PropulsionLiquid / Solid FuelRamjetVariable FlowDucted Rocket

ScramjetHigh TemperatureCombustorHigh Density Fuel /PropellantHigh Throttle FuelControl

Endothermic FuelComposite Case

InsulationHypersonicHigh Density

Flight Control

TVC /Reaction Jet

PowerMEMS

AirframeLifting BodyNeutral StaticMarginLattice Fins

Low Drag InletMixed Comp.InletCompositeTitanium AlloyMEMS DataCollection

Split CanardFree-to-roll

Page 24: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 24/70

02/10/10 ELF 24

OutlineOutline

Parameters and Technologies That Drive MissileFlight Performance

Missile Flight Performance Prediction

Examples of Maximizing Missile Flight Performance

( Workshop ) Summary

Max Range ma M n Range

Page 25: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 25/70

02/10/10 ELF 25

Max Range, ma M n Range,and Large Off Boresight 

Rear FlyoutRange•Max•Min

Forward FlyoutRange•Max•Min

Beam Off BoresightFlyout Range•Min•Max

Examples of Air Launched MissileExamples of Air Launched Missile

Page 26: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 26/70

02/10/10 ELF 26

Examples of Air Launched MissileFlight Performance

Examples of Air Launched MissileFlight Performance

Examples of Surface LaunchedExamples of Surface Launched

Page 27: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 27/70

02/10/10 ELF 27

Examples of Surface Launched Missile Flight Performance

Examples of Surface Launched Missile Flight Performance

Versus Preliminary DesignVersus Preliminary Design

Page 28: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 28/70

02/10/10 ELF 28

Versus Preliminary DesignModeling

Versus Preliminary DesignModeling

Conceptual Design Modeling

1 DOF [ Axial force ( CDO), thrust,

weight ]

2 DOF [ Normal force ( CN ), axial force,

thrust, weight ]

3 DOF point mass [ 3 forces ( normal,axial, side ), thrust, weight ]

3 DOF pitch [ 2 forces ( normal, axial ),

1 moment ( pitch ), thrust, weight ]

4 DOF [ 2 forces ( normal, axial ), 2moments ( pitch, roll ), thrust, weight ]

Preliminary Design Modeling

CDO

CN

CN

CN Cm

CA

CA

CA

CA

CA

Cl

Cl

CN Cm

CNCm

CnC Y 

C Y 

Motion Show Drivers forMotion Show Drivers for

Page 29: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 29/70

02/10/10 ELF 29

Motion Show Drivers for Configuration Sizing

Motion Show Drivers for Configuration Sizing

Configuration SizingImplication 

Ι y θ ..  ≈ q SRef  d Cmα α + q SRef  d Cmδ

 δ High Control

Effectiveness ⇒ Cmδ> Cmα

,

Iy small ( W small ), q large

( W / gc ) V γ . ≈ q SRef  CNα

 α + q SRef  CNδ δ - W cos γ Large

/ Fast Heading Change ⇒ CN 

+ Normal Force

α << 1 rad

γ

δ W

+ MomentV

+ Thrust

+ Axial Force

Note: Based onaerodynamic control

n ue or rope ann ue or rope an

Page 30: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 30/70

02/10/10 ELF 30

1.00E+07

1.00E+08

R

  a  n  g  e ,   f

  sp  , , n ue or rope anWeight Fraction

  sp  , , n ue or rope anWeight Fraction

Example: Ramjet Baseline at Mach3 / 60 Kft altR = 2901 ( 1040 ) ( 3.15 ) ln[ 1739 / ( 1739 - 476 )]= ( 9,503,676 ) ln [ 1 / ( 1 -0.2737 )] = 3,039,469 ft = 500 nm

R = ( V Isp ) ( L / D ) ln [ WBC / ( WBC - WP )] , Breguet Range Equ

Note: R = cruise range, V = cruise velocity, ISP = specificimpulse, L = lift, D = drag, WBC = weight at begin of 

cruise, WP = weight of propellant or fuel

 T y p ica l  Roc k 

e t T y p i c a l  R a m

 j e t  w i t h A x i

 s y m m e t r i c A

 i r f r a m e Ram je t

  w i t h  H ig h  L / 

 D A ir frame

Enhanced by High L / D and LightEnhanced by High L / D and Light

Page 31: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 31/70

02/10/10 ELF 31

Enhanced by High L / D and Light Weight 

Enhanced by High L / D and Light Weight 

teady Level Flight Steady Climb Steady Descent

T = DL = W

L

D T

W

γ C

SIN γ D = ( D – T ) /

W = VD / V∞

VD = ( D – T ) V∞/ W

RD = ∆ h / tan γ D =

∆ h ( L / D )

 T  –  DL

DT

W

V∞γ C VC

D  –  T L

D

TW

γ DVD

γ D

all Angle of Attack uilibrium Flight

= Velocity of Climb= Velocity of Descent

C = Flight Path Angle During Climb

D = Flight Path Angle During Descent

 = Total Velocity

h = Incremental Altitude

= Horizontal Range in Steady Climb= Horizontal Range in Steady Dive ( Glide )

Note:

Reference: Chin, S.S., “MissileConfiguration Design,” McGraw Hill

Book Company, New York, 1961

V∞T = W / ( L / D )

SIN γ c = ( T – D ) / W =

Vc / V∞

Vc = ( T – D ) V∞  / W

RC = ∆ h / tan γ C = ∆ h

( L / D )

Angle of Attack and Low AltitudeAngle of Attack and Low Altitude

Page 32: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 32/70

02/10/10 ELF 32

 Angle of Attack and Low AltitudeFlight 

 Angle of Attack and Low AltitudeFlight 

RT

,Exam

pleIns

tantan

eousTurn

Radius

,Feet

∆  α = Increment in Angle of Attack Required to Turn, Degrees

h = 100 K ft ( M(L/D) Max = 7.9 )

h = 80 K ft ( M(L/D) Max= 5.0 )

h = 60 K ft ( M(L/D) Max= 3.1 )

h = 40 K ft ( M(L/D) Max= 1.9 )

10,000,000

1,000,000

100,000

10,000

1,0000 5 10 15 20

• • • • 

• 

• 

• 

• 

• 

• 

• 

• 

Note for Example:W = Weight = 2,000 lba / b = 1 ( circular cross section ), No wingsC

N

= sin 2 α cos ( α / 2 ) + 2 ( l / d ) sin2

l / d = Length / Diameter = 10SRef  = 2 ft2

CDO= 0.2

( L / D )Max = 2.7, q( L/ D) Max= 1,000 psf 

α ( L/ D) Max= 15 degrees

T( L/ D) Max= 740 lb

Example:

∆   α = 10 degCN = 0.99

h = 40K ft ( ρ = 0.00039 slugs / ft3 )

RT = 2 ( 2,000 ) / [( 32.2 ) ( 0.99 ) ( 2 ) ( 0.00039 )] = 161,0

RT = V / γ . ≈ 2 W / ( gc CN SRef   ρ )

Turn Rate Performance RequiresTurn Rate Performance Requires

Page 33: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 33/70

02/10/10 ELF 33

Turn Rate Performance RequiresHigh Control Effectiveness

Turn Rate Performance RequiresHigh Control Effectiveness

γ .= gc n / V = [ q SRef  C

Nα  α + q SRef  C

Nδ  δ - W cos ( γ ) ] / [( W / gc ) V ]

Assume Rocket Baseline @ Mach 0.8 Launch, 20K ft Altitude

(C

mα)

xcg=84.6= (C

mα)

xcg=75.7+ C

Nα  ( 84.6 – 75.7 ) / d = - 0.40 + 0.68 ( 8.9 ) / 8 = 0.36 per deg

(C

mδ)

xcg=84.6= (C

mδ)

xcg=75.7+ C

Nδ  ( 84.6 – 75.7 ) / d = 0.60 + 0.27( 8.9 ) / 8 = 0.90 per deg

α / δ = - C

mδ  / C

mα= - 0.90 / 0.36 = - 2.5

α ’ = α + δ < 22 degrees, α max = 30 deg ⇒ α = 30 deg, δ = - 12 deg

γ .= [ 436 ( 0.349 )( 0.68 )( 30 ) + 436 ( 0.349 )( 0.27 )( - 12 ) – 500 ( 1 )] / [( 500 / 32.2 )( 830 )] = 0.164 rad / sec or 9.4 deg / sec

Assume Rocket Baseline @ Mach 2 Coast, 20K ft Altitude

α / δ = 0.75

α ’ = α + δ = 22 degrees ⇒ δ = 12.6 deg, α = 9.4 deg γ .

= [ 2725 ( 0.349 )( 0.60 )( 9.4 ) +2725 ( 0.349 )( 0.19 )( 12.6 ) – 367 ( 1 )] / ( 367 / 32.2 )( 2074 ) = 0.31 rad / sec or 18 deg / sec

Note: High q, statically stable, forward wing control, lighter weight ⇒ higher climb capability

Note: Forward wing deflection to trim increases normal force

Page 34: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 34/70

For Long Range Ballistic FlightFor Long Range Ballistic Flight

Page 35: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 35/70

02/10/10 ELF 35

For Long Range Ballistic Flight,Maximize Initial Velocity 

For Long Range Ballistic Flight,Maximize Initial Velocity 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

t / [ 2 W / ( g ρS CD0Vi )], Non-

dimensional Time

Vx / ( Vi cos γ i ) = 1 / { 1 + t / { 2 WBO / [ gc ρAVG SRef   

( CD0)AVG Vi ]}}

( Vy + gc t ) / ( Vi sin γ i ) = 1 / { 1 + t / { 2 WBO / [ gc ρAVG  SRef  ( CD0)AVG Vi ]}

Assumptions: T = 0, α = 0 deg, D > W sin γ ,

flat earthNomenclature: V = velocity during ballistic

flight, Vi = initial velocity, Rx =

horizontal range, h = altitude, hi =

initial altitude, Vx = horizontal velocity,

Vy = vertical velocityExample for Rocket Baseline:

•WBO = 367 lb, SRef  = 0.349 ft2, Vi = VBO = 2,151 fps, γ i = 0 deg, ( CD0)AVG = 0.9, hi =

20,000 ft, ρAVG = 0.001755 slugs / ft3, t = 35 sec

•t / [ 2 WBO / ( gc ρ SRef  CD0Vi )] = 35 / { 2 ( 367 ) / [ 32.2 ( 0.001755 ) ( 0.349 ) ( 0.9 )

( 2151 ) ]} = 35 / 19.22 = 1.821

Vx / ( Vi cos γ i ) = 0.354 ⇒ Vx = 762 ft / sec, ( Vy + 32.2 t ) / ( Vi sin γ i ) = 0.354 ⇒ Vy =- 1127 ft / sec, Rx / [ 2 Wi cos γ i / ( gc ρ SRef  CD 0

)] = 1.037 ⇒ Rx = 42,900 ft or 7.06 nm,

Rx / { 2 WBO cos γ i / [ gc ρAVG SRef  (CD0 )AVG ]} = ln { 1 + t / { 2 WBO / [ gc ( ρ )AVG  

SRef  ( CD0)AVG Vi ]}}

( h – hi + gc t2 / 2 ) / { 2 WBO sin γ i / [ gc 

ρAVG SRef  (CD0)AVG ]} = ln { 1 + t / { 2 WBO  

/ [ gc ρAVG SRef  ( CD0 )AVG Vi ]}

Thrust Provide High BurnoutT rust Prov e H g Burnout

Page 36: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 36/70

02/10/10 ELF 36

Thrust Provide High Burnout Velocity 

T rust Prov e H g Burnout  Velocity 

0

0.1

0.2

0.3

0.4

0.5

0.60.7

0 0.1 0.2 0.3 0.4 0.5

Wp / Wi, Propellant Fraction

   D  e   l   t  a   V   /   (  g   I   S   P   ) ,   N  o  n   d   i  m  e  n  s   i  o  n  a   l

   I  n  c  r  e  m  e  n   t  a   l   V  e   l  o  c   i   t  y

DAVG / T =0 DAVG / T =0.5 DAVG / T =1.0

∆ V / ( gc ISP ) = - ( 1 - DAVG / T ) ln( 1 - Wp / Wi )

Example for Rocket Baseline

Wi = WL = 500 lb

For boost, WP = 84.8 lb

WP / WL = 0.1696

ISP = 250 sec

TB = 5750 lb

Mi

= ML

= 0.8, hi

= hL

= 20,0

DAVG = 635 lb

DAVG / T = 0.110

∆ V / [( 32.2 ) ( 250 )] = - ( 1

0.110 ) ln ( 1 - 0.1696 ) = 0.

 ∆ V = ( 0.1654 ) ( 32.2 ) ( 2

= 1331 ft / sec

Note: 1 DOF Equation of Motion with α  ≈ 0 deg, γ = constant, and T > W sinγ , Wi = initial weight, WP = propellant weight, ISP = specific impulse, T =thrust, Mi = initial Mach number, hi = initial altitude, DAVG = average drag,∆ V = incremental velocity, gc = gravitation constant, Vx = V cos γ , Vy = Vsin γ , R

x

= R cos γ , Ry

= R sin γ

Note: R = ( Vi + ∆ V / 2 ) tB, where R = boost range, Vi = initial velocity, tB =

Page 37: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 37/70

Conceptual Sizing Computeronceptua z ng omputer

Page 38: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 38/70

02/10/10 ELF 38

Conceptual Sizing Computer Code - TMD Spreadsheet onceptua z ng omputer Code - TMD Spreadsheet 

efine Mission Requirements [ Flight Performance ( RMax , RMin , VAVG ) , MOM, Constraints ]

Establish Baseline ( Rocket ,Ramjet )

Aerodynamics Input ( d, l, lN, A, c,

t, xcg ) Aerodynamics Output [ CD0,

CN, XAC , Cmδ, L / D, ST ]

Propulsion Input ( pc, ε , c*, Ab, At, A3, Hf , ϕ ,

T4, Inlet Type ) Propulsion Output [ Isp , Tcruise ,

pt2/ pt0

, w., Tboost , Tsustain , ∆ VBoost

]

Weight Input ( WL, WP, σ max )

Weight Output [ Q, dTskin / dt, Tskin , ρ skin , tskin , σ buckling , MB, ( Ft )Motor , W, xcg , Iy ]

Trajectory Input ( hi, Vi, Type ( cruise, boost, coast,

ballistic, turn, glide )

Trajectory Output ( R, V, and γ versus time )

MeetPerformance?

Measures of Merit and Constraints

No [ pBlast , PK ,

nHits , Vfragments ,

PKE , KEWarhead ,

τ Total , σ HE ,

σ MAN , Rdetect ,CWeight , Cunit x ]

No [ RMax , RMin , VAVG ]

 Yes

 Yes

Alt Missio

Alt Baselin

Resize / AltConfig /

Subsystems /Tech

Page 39: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 39/70

02/10/10 ELF 39

OutlineOutline

Examples of Parameters and TechnologiesThat Drive Missile Flight Performance

Missile Flight Performance Prediction

Examples of Maximizing Missile Flight

Performance ( Workshop ) Summary

C fi tiC fi ti

Page 40: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 40/70

02/10/10 ELF  40

 Configuration Configuration

STA 60.8

19.4

3.418.5

STA 125.4

LEMAC at STA 67.0BL 10.2

Λ = 45°

40.2

STA 0 19.2 46.1 62.6 84.5 138.6

Note: Dimensions in inches

Source: Bithell, R.A. and Stoner, R.C., “Rapid Approach for MissileSynthesis, Vol. 1, Rocket Synthesis Handbook,” AFWAL-TR-81-3022, Vol. 1,March 1982.

Nose Forebody PayloadBay

Midbody Aftbody Tailcone

Rocket Motor

Λ = 57°

12.0

LEMAC at

STA131.6BL 8.0

16.18.0 d

cgBO cgLaunch

143.9

Propellant Weight Is 27% of thePropellant Weight Is 27% of the

Page 41: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 41/70

02/10/10 ELF  41

Propellant Weight Is 27% of theLaunch Weight 

Propellant Weight Is 27% of theLaunch Weight 

1 Nose ( Radome ) 4.1 12.03 Forebody structure 12.4 30.5Guidance 46.6 32.6

2 Payload Bay Structure 7.6 54.3Warhead 77.7 54.3

4 Midbody Structure 10.2 73.5

Control Actuation System61.0 75.55 Aftbody Structure 0.0 –

Rocket Motor Case 47.3 107.5Insulation 23.0 117.2

6 Tailcone Structure 6.5 141.2Nozzle 5.8 141.2

Fixed Surfaces 26.2 137.8Movable Surfaces 38.6 75.5

Burnout Total 367.0 76.2Propellant 133.0 107.8

Launch Total 500.0 84.6

Component Weight, lbs. C.G. STA, In.

Boost-Sustain Thrust - Timeoost- usta n rust - me

Page 42: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 42/70

02/10/10 ELF  42

Boost Sustain Thrust TimeHistory 

oost usta n rust meHistory 

Time – Seconds

0 4 8 12 160

2

4

6

8

hrust – 1,000 lbs

Note: Sea Level, 60°F

H g er Maneuvera ty at H gg er aneuvera y a g

Page 43: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 43/70

02/10/10 ELF  43

H g er Maneuvera ty at H g Angle of Attack 

g er aneuvera y a g Angle of Attack 

4

0

0 4 8 12 16

α , Angle of Attack – Degrees

12

8

20

CN

,N

orm

alForce

Co

efficient

20

16

24

1.2

0.6

M = 1.2

1.5

2.02.352.873.95

4.60

SRef  = 0.349 ft2, lRef  = d = 0.667 ft, C.G. at STA 75.7, δ = 0 deg

Effectiveness and Drag Areect veness an rag re

Page 44: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 44/70

02/10/10 ELF  44

Effectiveness and Drag AreDriven by Mach Number ect veness an rag re

Driven by Mach Number 

0.4

00 1 2 3 4

M, Mach Number

1.2

0.8

5

CAa

t

=0°

0.1

0

Power Off 

Power On

0.2

0.3

C

N

~Per

Degre

e

A l tiA l ti

Page 45: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 45/70

02/10/10 ELF  45

10

15

o  n ,  g

   Acceleration Acceleration

Note:tf = 24.4 sec

ML = 0.8

hL = 20,000 ft

TB = 5750 lb

tB = 3.26 sec

TS

= 1018 lb

tS = 10.86 sec

D = 99 lb at Mach 0.8D = 1020 lb at Mach 2.1

WL = 500 lb

WP = 133 LB

nX = ( T - D ) / W

Boost

Sustain

Coast

Nearly Constant Velocity DuringNear y onstant Ve oc ty Dur ng

Page 46: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 46/70

02/10/10 ELF  46

2000

3000

e  c

Nearly Constant Velocity DuringSustain

Near y onstant Ve oc ty Dur ngSustain

Boost

Sustain

Coast

∆ V / ( gc ISP ) = - ( 1 - DAVG / T ) ln ( 1 - Wp / Wi ),During Boost

V / VBO = 1 / { 1 + t / { 2 WBO / [ gc ρAVG SRef  ( CD0 )AVG  VBO ]}}, During Coast

Note:

ML = 0.8

hL = 20K feet

Range Is About Eight NauticalRange Is About Eight Nautical

Page 47: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 47/70

02/10/10 ELF  47

Range Is About Eight Nautical Miles

Range Is About Eight Nautical Miles

0

2

4

6

8

10

0 5 10 15 20 25

t, Time, sec

   R ,   F   l   i  g   h   t

   R  a  n  g  e ,  n

Boost

Sustain

Coast

R = ∆ Rboost + ∆ Rsustain + ∆ Rcoast

Note:

ML = 0.8hL = 20K feet

Rocket Baseline Missile HasRocket Baseline Missile Has

Page 48: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 48/70

02/10/10 ELF  48

Rocket Baseline Missile Has About 30 G Maneuverability Rocket Baseline Missile Has

 About 30 G Maneuverability ( nZ ) = ( nZ )Body + ( nZ )Wing + ( nZ )Taill

 Rocket Baseline @ •Mach 2•20,000 ft altitude•367 lb weight ( burnout )

Compute

α Wing = α ’Max = ( α + δ )Max = 22 deg for rocket baseline

α = 0.75δ , α Body = α Tail = 9.4 deg

( nZ )Body = q SRef  ( CN )Body / W = 2725 ( 0.35 ) ( 1.1 ) / 367 = 2.9 g

( from body )

( nZ )Wing = q SWing [( CN )Wing (SRef  / SWing )] / W = 2725 ( 2.55 ) ( 1.08 ) /367 = 20.4 g ( from wing )

( nZ )Tail = q STail [( CN )Tail ( SRef  / STail )] / W = 2725 ( 1.54 ) ( 0.50 ) / 367= 5.7 g ( from tail ) 

nZ = 2.9 + 20.4 + 5.7 = 29 g

Page 49: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 49/70

Example of Boost Climb -Examp e o Boost m -

Page 50: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 50/70

02/10/10 ELF 50

Example of Boost Climb Ballistic Trajectory ( cont )Examp e o Boost m

Ballistic Trajectory ( cont )

Velocity, Horizontal Range, and Altitude During Ballistic Flighthf = hi = 0 ft ⇒ tballistic = 59 sec )

Vx = Vi cos γ i / { 1 + t / { 2 WBO / [ gc ρAVG SRef  ( CD0 )AVG VBO ]}} = 1972 ( 0.707 ) / { 1 + 59 / { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 )( 0.95 ) ( 1972 )]}} = 395 ft / sec

Vy = Vi sin γ i / { 1 + t / { 2 WBO / [ gc ρAVG SRef  ( CD0)AVG VBO ]} – 32.2 t = 1972 ( 0.707 ) / { 1 + 59 / { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) (

0.95 ) ( 1972 )]}} – 32.2 ( 59 ) = - 1,505 ft / sec

Rx = { 2 WBO cos γ i / [ gc ρAVG SRef  (CD0)AVG ]} ln { 1 + t / { 2 WBO / [ gc ρAVG SRef  ( CD0

)AVG VBO ]}} = { 2 ( 367 ) ( 0.707 ) / [ 32.2 ( 0.001496 )

( 0.349 ) ( 0.95 )]} ln { 1 + 59 / { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 ) ( 1972 )]}} = 40,991 ft

h = hi + { 2 WBO sin γ i / [ gc ρAVG SRef  ( CD0)AVG ]} ln { 1 + t / { 2 WBO / [ gc ρAVG SRef  ( CD0

)AVG VBO ]} - 16.1 t2 = 14493 + { 2 ( 367 ) ( 0.707 ) / [

32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 )]} ln { 1 + 59 / { 2 ( 367 ) / [ 32.2 ( 0.001496 ) ( 0.349 ) ( 0.95 ) ( 1972 )]}} – 16.1 ( 59 ) 2 = 0 ft

Total Time of Flight and Horizontal Range

t = Σ ∆ t = ∆ tboost + ∆ tsustain + ∆ tballistic = 3.26 + 10.86 + 59 = 73 sec

Rx = Σ ∆ Rx = ∆ Rx,boost + ∆ Rx,sustain + ∆ Rx,ballistic = 1598 + 12895 + 40991 = 55,894 ft = 9.2 nm

Trajectory Provides ExtendedTrajectory Provides Extended

Page 51: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 51/70

02/10/10 ELF 51

Trajectory Provides Extended Range

Trajectory Provides Extended Range

Rocket Baseline @ γ i = 45 deg, hi = hf = 0 ft

From Previous Example, the Boost Climb – Ballistic Conditions at Apogee are:

t = 36 sec

γ = 0 deg

V = 702 ft / sec

h = 28,994 ft

∆ Rx = 36,786 ft

q = 227 psf 

M = 0.7

( L / D )max = 5.22

α (L/D) max

= 5.5 deg

Incremental Horizontal Range During the ( L / D )max Glide from Apogee to the Ground is given by

∆ Rx = ( L / D ) ∆ h = 5.22 ( 28994 ) = 151,349 ft

Total Horizontal Range for a Boost Climb – Ballistic – Glide Trajectory is

Rx = Σ ∆ Rx = ∆ Rx,BoostClimb-Ballistic + ∆ Rx,Glide = 36786 + 151349 = 188,135 ft = 31.0 nm

max 

E t d d Rmax 

E tended Range

Page 52: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 52/70

02/10/10 ELF 52

   Extended Range   Extended Range

0

10

20

30

0 10 20 30 40

R, Range, nm

   h ,   A   l   t   i   t  u   d  e ,   K   i   l  o   F  e  e   t

      S     u

    s      t

    a      i     n

     B    a     l     l     i    s

     t     i    c

Note: Rocket Baseline

End of boost, t = 3.26 sec, γ = 45deg, V = 1387 ft / sec

End of sustain, t = 14.12 sec, γ = 45deg, V = 1972 ft / sec

Apogee, t = 36 sec, γ = 0 deg, V = 702ft / sec

Ballistic impact, t = 73 sec, γ = - 65deg, V = 1556 ft / sec

Glide impact, t = 286 sec, γ = - 10.8deg, V = 500 ft / sec

B     a    l      

l      i      s    t     i      c    

G  l  i  d  e  a t   (   L   /   

D    )  m a x  

Page 53: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 53/70

Soda Straw Rocket ( cont )Soda Straw Rocket ( cont )

Page 54: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 54/70

02/10/10 ELF 54

Soda Straw Rocket ( cont )Soda Straw Rocket ( cont )

Design – Soda Straw Rocket

Compatible with Furnished Property Launch System

Launch tube outside diameter: ¼ in

Launch tube length: 6 in

Launch static gauge pressure: up to 30 psi

Design Body and Tails for

Maximum flight range

Accurate and stable flight

Calculate Aerodynamic Drag Coefficient

Skin friction drag

Base drag

Calculate Thrust and Thrust Duration

Measure Weight

± 0.1 gram accuracy

Predict Flight Range and Altitude for Proscribed

Launch pressure

Elevation angle

Soda Straw Rocket ( cont )Soda Straw Rocket ( cont )

Page 55: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 55/70

02/10/10 ELF 55

Soda Straw Rocket ( cont )Soda Straw Rocket ( cont )

Build - Soda Straw Rocket Using Either

Furnished Material Or Can Use Own Material

Fly - Soda Straw Rocket Proscribed Target Location, Launch Location, Launch Pressure, and Launch

Angle

Compare Flight Test Results for Alternative ConceptsHighest vertical location of impact

Smallest horizontal dispersal from impact aim pointDiscuss Reasons for Performance of Alternative Concepts

Example Baseline ConfigurationExamp e Base ne on gurat on

Page 56: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 56/70

02/10/10 ELF 56

a p e ase e Co gu a oGeometry, Weight, and Balance

a p e ase e o gu a oGeometry, Weight, and Balance

Example Baseline Configuration

Diameter = d = ¼ in = 0.0208 ft

Outside Length = l = 5 in = 0.417 ft

Inside Cavity Length Available for Launch Tube = lc = 4 in = 0.333 ft

Hemispherical Nose

Reference Area = SRef  = ( π / 4 ) d2 = 0.0491 in2 = 0.000341 ft2

4 Tail Panels ( Cruciform Tails, nT = 2 )

Each tail panel ½ in by 1 in

Mean aerodynamic chord = cmac = 1 in = 0.0833 ft

Exposed area of 2 tail panels = ST = 1 in2 = 0.00694 ft2

Exposed aspect ratio of 2 tail panels = A = b2 / ST = ( 1 )2 / ( 1 ) = 1.0

Example Baseline Weight and Balance

W = 1.9 gram = 0.0042 lb

Xcg / l = 0.55

llccll

 Performance Performance

Page 57: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 57/70

02/10/10 ELF 57

PerformancePerformance

During Boost, Thrust ( T ) Provided by Pressurized Launch Tube

T = ( p – p0 ) A = pgauge ( 1 – e –t / τ ) A

A = SRef  = 0.0491 in2

, τ = Rise Time to Open Valve

Assume pgauge = 20 psi, τ = 0.2 sec

T = 20 ( 1 - e –t / 0.2 ) ( 0.0491 ) = 0.982 ( 1 - e –5.00t )

Actual Thrust Lower ( Pressure Loss, Boundary Layer, Launch Tube Friction )

Acceleration ( a ), Velocity ( V ), and Distance ( s ) During Boost

a ≈ 32.2 T / W = 32.2 ( 0.982 ) ( 1 - e –5.00t ) / 0.0042 = 7528.667 ( 1 - e –5.00t )

V = 7528.667 t + 1505.733 e –5.00t – 1505.733

s = 3764.333 t2 – 301.147 e –5.00t – 1505.733 t + 301.147

End of Boost Conditions

s = lc = 0.333 ft ⇒ t = 0.0382 sec

V = 25.8 ft / sec

q = ½ ρ V2 = ½ ( 0.002378 ) ( 25.8 )2 = 0.791 psf 

M = V / c = 25.8 / 1116 = 0.0231

 Coefficient Coefficient

Page 58: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 58/70

02/10/10 ELF 58

Coefficient Coefficient 

Total Drag Coefficient CD0= (CD0

)Body + (CD0)Tail  

During Coast, CD0 = ( CD0 )Body,Friction + (CD0 )Base,Coast + ( CD0 )Tail,Friction = 0.053 ( l / d ) [ M / ( q l )]0.2 +0.12 + nT { 0.0133 [ M / ( q cmac )]0.2 } ( 2 ST / SRef  )

CD0= 0.053 ( 20 ){ 0.0231 / [( 0.791 ) ( 0. 417 )]}0.2 + 0.12 + 2 { 0.0133 { 0.0231 / [( 0.791 )

( 0.0833 )]}0.2 }[ 2 ( 0.00694 ) / 0.000341 )] = 0.62 + 0.12 + 0.88 = 1.62

Above Drag Coefficient Not Exact

Based on Assumption of Turbulent Boundary Layer

Soda Straw Rocket Is Small Size and Low Velocity ⇒ Laminar Boundary Layer

 Performance Performance

Page 59: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 59/70

02/10/10 ELF 59

PerformancePerformance

Horizontal Range Equation

Rx = { 2 W cos γ i / [ gc ρ SRef  CD0 ]} ln { 1 + t / { 2 W / [ gc ρ SRef  CD0 Vi ]} = { 2 ( 0.0042 ) cos γ i / [ 32.2( 0.002378 ) ( 0.000341 ) ( 1.62 )]} ln { 1 + t / { 2 ( 0.0042 ) / [ 32.2 ( 0.002378 ) ( 0.000341 )( 1.62 ) ( 25.8 )]} = 199 cos γ i ln ( 1 + 0.130 t )

Height Equation

h = { 2 W sin γ i / [ gc ρ SRef  CD0]} ln { 1 + t / { 2 W / [ gc ρ SRef  CD0

Vi ]} + hi - gc t2 / 2 = { 2 ( 0.0042 )

sin γ i / [ 32.2 ( 0.002378 ) ( 0.000341 ) ( 1.62 )} ln { 1 + t / { 2 ( 0.0042 ) / [ 32.2 ( 0.002378 )( 0.000341 ) ( 1.62 ) ( 25.8 )]} + h i – 32.2 t2 / 2 = 199 sin γ i ln ( 1 + 0.130 t ) + hi – 32.2 t2 / 2

Assume γ i = 45 deg, t = timpact = 0.9 sec

Rx = 199 ( 0.707 ) ln [ 1 + 0.130 ( 0.9 )] = 15.5 ft h = 199 ( 0.707 ) ln [ 1 + 0.130 ( 0.9 )] + h i – 32.2 ( 0.9 )2 / 2 = hi +2.5

Page 60: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 60/70

OutlineOutline

Page 61: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 61/70

02/10/10 ELF 61

OutlineOutline

Examples of Parameters and TechnologiesThat Drive Missile Flight Performance

Missile Flight Performance Prediction

Examples of Maximizing Missile Flight

Performance ( Workshop ) Summary

SummarySummary

Page 62: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 62/70

02/10/10 ELF 62

Summary Summary 

Flight Performance Analysis Activity in Missile Design and Analysis

Compute Range, Velocity, Time-to-Target, Off Boresight

Compare with Requirements and Data

Maximizing Flight Performance Strongly Impacted by Aerodynamics

Propulsion

Weight

Flight Trajectory

Lecture Topics

Aerodynamics Parameters, Prediction and Technologies

Drag Coefficient

Normal Force Coefficient

Propulsion Parameters, Prediction, and Technologies

Thrust

Specific Impulse

Summary ( cont )Summary ( cont )

Page 63: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 63/70

02/10/10 ELF 63

Summary ( cont )Summary ( cont )

Lecture Topics ( continued )

Flight Performance Parameters and Technologies

Cruise Range

High Density Fuel and Packaging

Flight Trajectory Shaping

Range Sensitivity to Driving Parameters

Missile Follow-on Programs

Examples of State-of-the-Art Advancements

Summary of New Technologies

Flight Performance Envelope

Videos of Flight Performance

Modeling of Degrees of Freedom

Equations of Motion and Flight Performance Drivers

Steady State Flight Relationships

Flight Performance Prediction

Steady Climb and Steady Dive Range Prediction

Cruise Prediction

Summary ( cont )Summary ( cont )

Page 64: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 64/70

02/10/10 ELF 64

Summary ( cont )Summary ( cont )

Lecture Topics ( continued )

Flight Performance Prediction ( continued )

Boost Prediction

Coast Prediction

Ballistic Flight Prediction

Turn Prediction

Target Lead for Proportional Homing Guidance

Tactical Missile Design Spreadsheet

Workshop Examples

Rocket Boost-Coast Range

Rocket Maneuverability

Rocket Ballistic Range

Rocket Trajectory Optimization

Soda Straw Rocket Design, Build, and Fly

Page 65: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 65/70

 Sites

 Sites

Page 66: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 66/70

02/10/10 ELF 66

SitesSites “Missile.index,” http://www.index.ne.jp/missile_e/  

AIAA Aerospace Design Engineers Guide, American Institute of Aeronautics and Astronautics, 1993.

Bonney, E.A., et al, Aerodynamics, Propulsion, Structures, and Design Practice, “ Principles of Guided Missile

Design”, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1956

Chin, S.S., Missile Configuration Design, McGraw-Hill Book Company, New York, 1961

Mason, L.A., Devan, L., and Moore, F.G., “Aerodynamic Design Manual for Tactical Weapons,” NSWCTR 81-156, 1981

Pitts, W.C., Nielsen, J.N., and Kaattari, G.E., “Lift and Center of Pressure of Wing-Body-Tail Combinations atSubsonic, Transonic, and Supersonic Speeds,” NACA Report 1307, 1957.

 Jorgensen, L.H., “Prediction of Static Aerodynamic Characteristics for Space-Shuttle-Like, and Other Bodies atAngles of Attack From 0° to 180°,” NASA TND 6996, January 1973

Hoak, D.E., et al., “USAF Stability and Control Datcom,” AFWAL TR-83-3048, Global Engineering Documents, Irvine,CA, 1978

“Nielsen Engineering & Research (NEAR) Aerodynamic Software Products,”http://www.nearinc.com/near/software.htm 

 Jerger, J.J., Systems Preliminary Design Principles of Guided Missile Design, “ Principles of Guided Missile Design”, D.Van Nostrand Company, Inc., Princeton, New Jersey, 1960

Schneider, S.H., Encyclopedia of Climate and Weather, Oxford University Press, 1996

Klein, L.A., Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Boston, 1997

US Army Ordnance Pamphlet ORDP-20-290-Warheads, 1980

Nicholas, T. and Rossi, R., “US Missile Data Book, 1996,” Data Search Associates, 1996

Bithell, R.A., and Stoner, R.C., “Rapid Approach for Missile Synthesis,” AFWAL TR 81-3022, Vol. I, March 1982

Fleeman, E.L. and Donatelli, G.A., “Conceptual Design Procedure Applied to a Typical Air-Launched Missile,” AIAA 81-1688, August 1981

Hindes, J.W., “Advanced Design of Aerodynamic Missiles ( ADAM ),” October 1993

 Sites ( cont )

 Sites ( cont )

Page 67: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 67/70

02/10/10 ELF 67

Sites ( cont )Sites ( cont )

Bruns, K.D., Moore, M.E., Stoy, S.L., Vukelich, S.R., and Blake, W.B., “Missile Datcom,”AFWAL-TR-91-3039, April 1991

Moore, F.G., et al, “Application of the 1998 Version of the Aeroprediction Code,” Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October 1999 Fleeman, E.L., “Tactical Missile Design,” American Institute of Aeronautics and Astronautics,

Reston, VA, 2001 Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, New York, 1974 “Missile System Flight Mechanics,” AGARD CP270, May 1979 Hogan, J.C., et al., “Missile Automated Design ( MAD ) Computer Program,” AFRPL TR 80-21,

March 1980 Rapp, G.H., “Performance Improvements With Sidewinder Missile Airframe,” AIAA Paper 79-

0091, January 1979 Nicolai, L.M., Fundamentals of Aircraft Design, METS, Inc., San Jose, CA, 1984 Lindsey, G.H. and Redman, D.R., “Tactical Missile Design,” Naval Postgraduate School, 1986 Lee, R. G., et al, Guided Weapons, Third Edition, Brassey’s, London, 1998 Giragosian, P.A., “Rapid Synthesis for Evaluating Missile Maneuverability Parameters,” 10th

AIAA Applied Aerodynamics Conference, June 1992 Fleeman, E.L. “Aeromechanics Technologies for Tactical and Strategic Guided Missiles,”

AGARD Paper presented at FMP Meeting in London, England, May 1979

Raymer, D.P., Aircraft Design, A Conceptual Approach, American Institute of Aeronautics andAstronautics, Reston, VA, 1989

Ball, R.E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, AmericanInstitute of Aeronautics and Astronautics, Reston, VA, 1985

Eichblatt, E.J., Test and Evaluation of the Tactical Missile, American Institute of Aeronauticsand Astronautics, Reston, VA, 1989

“DoD Index of Specifications and Standards,” http://stinet.dtic.mil/str/dodiss4_fields.html“ Periscope,” http://www.periscope.usni.com 

 Sites ( cont )

 Sites ( cont )

Page 68: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 68/70

02/10/10 ELF 68

Sites ( cont )Sites ( cont )

Defense Technical Information Center, http://www.dtic.mil/

“Aircraft Stores Interface Manual (ASIM),” http://www.asim.net

“Advanced Sidewinder Missile AIM-9X Cost Analysis Requirements Description (CARD),”http://web2.deskbook.osd.mil/valhtml/2/2B/2B4/2B4T01.htm

Briggs, M.M., Systematic Tactical Missile Design, Tactical Missile Aerodynamics: General Topics, “AIAAVol. 141 Progress in Astronautics and Aeronautics,” American Institute of Aeronautics, Reston, VA, 1992

Briggs, M.M., et al., “Aeromechanics Survey and Evaluation, Vol. 1-3,” NSWC/DL TR-3772, October 1977

“Missile Aerodynamics,” NATO AGARD LS-98, February 1979

“Missile Aerodynamics,” NATO AGARD CP-336, February 1983

“Missile Aerodynamics,” NATO AGARD CP-493, April 1990

“Missile Aerodynamics,” NATO RTO-MP-5, November 1998 Nielsen, J.N., Missile Aerodynamics, McGraw-Hill Book Company, New York, 1960

Mendenhall, M.R. et al, “Proceedings of NEAR Conference on Missile Aerodynamics,” NEAR, 1989 Nielsen, J.N., “Missile Aerodynamics – Past, Present, Future,” AIAA Paper 79-1818, 1979

Dillenius, M.F.E., et al, “Engineering-, Intermediate-, and High-Level Aerodynamic Prediction Methods andApplications,” Journal of Spacecraft and Rockets, Vol. 36, No. 5, September-October, 1999

Nielsen, J.N., and Pitts, W.C., “Wing-Body Interference at Supersonic Speeds with an Application toCombinations with Rectangular Wings,” NACA Tech. Note 2677, 1952

Burns, K. A., et al, “Viscous Effects on Complex Configurations,” WL-TR-95-3060, 1995

“A Digital Library for NACA,” http://naca.larc.gov  Spreiter, J.R., “The Aerodynamic Forces on Slender Plane-and Cruciform-Wing and Body Combinations”,

NACA Report 962, 1950

Simon, J. M., et al, “Missile DATCOM: High Angle of Attack Capabilities, AIAA-99-4258.

 Sites ( cont ) Sites ( cont )

Page 69: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 69/70

02/10/10 ELF 69

Sites ( cont )Sites ( cont )

Lesieutre, D., et al, “Recent Applications and Improvements to the Engineering-Level Aerodynamic Prediction Software MISL3,’’ AIAA-2002-0274Sutton, G.P., Rocket Propulsion Elements, John Wiley & Sons, New York, 1986“Tri-Service Rocket Motor Trade-off Study, Missile Designer’s Rocket Motorhandbook,” CPIA 322, May 1980Chemical Information Propulsion Agency, http://www.jhu.edu/~cpia/index.html 

Follow-up CommunicationFollow-up Communication

Page 70: <script language='javascript'><!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_gated_open(url,

8/14/2019 &lt;script language='javascript'&gt;&lt;!--var bluecoat_allow_popup = false;var bluecoat_original_open = window.open;window.open = bluecoat_gated_open;function bluecoat_…

http://slidepdf.com/reader/full/script-languagejavascript-var-bluecoatallowpopup 70/70

Follow-up CommunicationFollow-up Communication

I would appreciate receiving your comments and 

corrections on this text, as well as any data,examples, or references that you may offer.

Thank you,

Gene Fleeman

4472 Anne Arundel CourtLilburn, GA 30047

Telephone: +1 770-925-4635 ( home )+1 404-894-7777 ( work )

Fax: +1 404-894-6596E-mail: [email protected] ( home )

[email protected] ( work )