search for supersymmetry with jets, missing transverse...

92
Search for Supersymmetry with Jets, Missing Transverse Momentum, and a Single Tau Friederike Nowak Institut f¨ ur Experimentalphysik, Universit¨ at Hamburg Thesis Defense 14. May 2012 F. Nowak (Hamburg) Search for SUSY with a Single Tau 1 / 34

Upload: others

Post on 15-Oct-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Search for Supersymmetry with Jets,Missing Transverse Momentum,

and a Single Tau

Friederike Nowak

Institut fur Experimentalphysik, Universitat Hamburg

Thesis Defense14. May 2012

F. Nowak (Hamburg) Search for SUSY with a Single Tau 1 / 34

Overview

1 IntroductionStandard ModelSupersymmetryTaus as a Signal

2 Performing the SearchThe ExperimentTau ReconstructionSelectionBackground Estimate: Real TausBackground Estimate: Fake Taus

3 ResultsLimits in the cMSSMComparison to Other Limits

4 Summary and Outlook

F. Nowak (Hamburg) Search for SUSY with a Single Tau 2 / 34

Introduction

Overview

1 IntroductionStandard ModelSupersymmetryTaus as a Signal

2 Performing the SearchThe ExperimentTau ReconstructionSelectionBackground Estimate: Real TausBackground Estimate: Fake Taus

3 ResultsLimits in the cMSSMComparison to Other Limits

4 Summary and Outlook

F. Nowak (Hamburg) Search for SUSY with a Single Tau 3 / 34

Introduction Standard Model

The Standard Model

Matter ParticlesFirst Quark Model: 1964Charm quark and third generation:1970’s

Electroweak UnificationGlashow, Salam, Weinberg: 1967

Quantum Chromo DynamicsProposal of SU(3) gauge group:1965

Higgs MechanismFirst relativistic formulation: 1964

F. Nowak (Hamburg) Search for SUSY with a Single Tau 4 / 34

Introduction Standard Model

The Standard Model

Matter ParticlesFirst Quark Model: 1964Charm quark and third generation:1970’s

Electroweak UnificationGlashow, Salam, Weinberg: 1967

Quantum Chromo DynamicsProposal of SU(3) gauge group:1965

Higgs MechanismFirst relativistic formulation: 1964

1974

1995

1977

2000

1975

F. Nowak (Hamburg) Search for SUSY with a Single Tau 4 / 34

Introduction Standard Model

The Standard Model

Matter ParticlesFirst Quark Model: 1964Charm quark and third generation:1970’s

Electroweak UnificationGlashow, Salam, Weinberg: 1967

Quantum Chromo DynamicsProposal of SU(3) gauge group:1965

Higgs MechanismFirst relativistic formulation: 1964

1974

1995

1977

2000

19751973

F. Nowak (Hamburg) Search for SUSY with a Single Tau 4 / 34

Introduction Standard Model

The Standard Model

Matter ParticlesFirst Quark Model: 1964Charm quark and third generation:1970’s

Electroweak UnificationGlashow, Salam, Weinberg: 1967

Quantum Chromo DynamicsProposal of SU(3) gauge group:1965

Higgs MechanismFirst relativistic formulation: 1964

1974

1995

1977

2000

1975

1979

1973

F. Nowak (Hamburg) Search for SUSY with a Single Tau 4 / 34

Introduction Standard Model

The Standard Model

Matter ParticlesFirst Quark Model: 1964Charm quark and third generation:1970’s

Electroweak UnificationGlashow, Salam, Weinberg: 1967

Quantum Chromo DynamicsProposal of SU(3) gauge group:1965

Higgs MechanismFirst relativistic formulation: 1964

1974

1995

1977

2000

1975

1979

1973

?

Higgs boson mass (GeV)110 115 120 125 130 135 140 145

SM

σ/σ95

% C

L lim

it on

-110

1

10 Observed

Expected (68%)

Expected (95%)

Observed

Expected (68%)

Expected (95%)

CMS Preliminary

= 7 TeVs-1L = 4.6-4.8 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 4 / 34

Introduction Standard Model

Are We Finished?

What is Dark Matter?Cosmology =⇒0.101 < ΩDMh2 < 0.123Dark Matter (DM) has to interactonly by weak forceOnly candidate in the SM: Neutrinos=⇒ too light (Hot Dark Matter)Missing candidate for Cold DarkMatter

Where is Gravity?

Higgs bare-mass gets hugecorrections!

Unification of gauge couplings?

F. Nowak (Hamburg) Search for SUSY with a Single Tau 5 / 34

Introduction Supersymmetry

Supersymmetry

Proton decay: introduce R-Parity R = (−1)3(B−L)+2s

=⇒ Lightest SUSY particle (LSP) is Dark Matter candidate

Potential extension of SUSY leads to Supergravity

Reduces quadratic Higgs-mass corrections to logarithmic dependence

Can lead to unified couplings at GUT scale

Sparticles not found =⇒ broken symmetry

F. Nowak (Hamburg) Search for SUSY with a Single Tau 6 / 34

Introduction Supersymmetry

Supersymmetry

g

χ01χ

02χ

03χ

04

χ−1χ−2χ−3

Proton decay: introduce R-Parity R = (−1)3(B−L)+2s

=⇒ Lightest SUSY particle (LSP) is Dark Matter candidate

Potential extension of SUSY leads to Supergravity

Reduces quadratic Higgs-mass corrections to logarithmic dependence

Can lead to unified couplings at GUT scale

Sparticles not found =⇒ broken symmetry

F. Nowak (Hamburg) Search for SUSY with a Single Tau 6 / 34

Introduction Supersymmetry

SUSY Breaking and Masses

“Soft” SUSY breaking: introduction of new terms in the Lagrangian =⇒SUSY particles heavier than their SM partners

In addition, superpartner of left- and right-handed SM particles τL, τR mix tomass eigenstates τ1, τ2

Mass mixing matrix Mτ for taus:

Mτ =

(mτL mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) mτR

)Splitting depends on mass of the SM particle =⇒ strongest for 3rd generation

τ1 can become next-to-lightest sparticle (NLSP)

Many SUSY breaking scenarios: concentrating on the cMSSM with 5 freeparameters

m0,m1/2, tanβ,A0, sign(µ)

Still many different signal topologies possible!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 7 / 34

Introduction Supersymmetry

SUSY and the Relic Density

At small age: thermal equilibrium

Annihilation cross-section starts to dominatewith cooling

Freeze out: No more interactions

Supersymmetric possibilities for LSP(co-)annihilation cross section σan:

+ + . . .+

F. Nowak (Hamburg) Search for SUSY with a Single Tau 8 / 34

Introduction Supersymmetry

SUSY and the Relic Density

At small age: thermal equilibrium

Annihilation cross-section starts to dominatewith cooling

Freeze out: No more interactions

Supersymmetric possibilities for LSP(co-)annihilation cross section σan:

+ + . . .+

F. Nowak (Hamburg) Search for SUSY with a Single Tau 8 / 34

Introduction Taus as a Signal

Motivating SUSY Searches with Taus

Combine cMSSM with measurements:

No em-charged LSP

Direct searches (LEP)

Rare B-decays, e.g.

Br(b→ sγ)

Cosmology: relic density imposes

constraints on LSP σan

Stau-LSP co-annihilation region is one ofthe favoured regions!

τ1 LSP→ τ γ

Lahanas,Nanopoulos,Spanos,2002

F. Nowak (Hamburg) Search for SUSY with a Single Tau 9 / 34

Introduction Taus as a Signal

Stau-LSP Co-annihilation Region at Colliders

At LHC, production of colored sparticles

These decay via cascade to the LSP=⇒ Predominant presence of the next-to-lightest particle (= τ1) in the decay=⇒ Enhanced tau production!

Small mass difference between LSP and τ1 can lead to taus with lowmomentum

Jets are produced: hadronic activity

Decay via a stau: tau production

LSP undetectable: missing transverse momentum

F. Nowak (Hamburg) Search for SUSY with a Single Tau 10 / 34

Introduction Taus as a Signal

Stau-LSP Co-annihilation Region at Colliders

At LHC, production of colored sparticles

These decay via cascade to the LSP=⇒ Predominant presence of the next-to-lightest particle (= τ1) in the decay=⇒ Enhanced tau production!

Small mass difference between LSP and τ1 can lead to taus with lowmomentum

Jets are produced: hadronic activity

Decay via a stau: tau production

LSP undetectable: missing transverse momentum

F. Nowak (Hamburg) Search for SUSY with a Single Tau 10 / 34

Introduction Taus as a Signal

Stau-LSP Co-annihilation Region at Colliders

At LHC, production of colored sparticles

These decay via cascade to the LSP=⇒ Predominant presence of the next-to-lightest particle (= τ1) in the decay=⇒ Enhanced tau production!

Small mass difference between LSP and τ1 can lead to taus with lowmomentum

Jets are produced: hadronic activity

Decay via a stau: tau production

LSP undetectable: missing transverse momentum

F. Nowak (Hamburg) Search for SUSY with a Single Tau 10 / 34

Introduction Taus as a Signal

Stau-LSP Co-annihilation Region at Colliders

At LHC, production of colored sparticles

These decay via cascade to the LSP=⇒ Predominant presence of the next-to-lightest particle (= τ1) in the decay=⇒ Enhanced tau production!

Small mass difference between LSP and τ1 can lead to taus with lowmomentum

Jets are produced: hadronic activity

Decay via a stau: tau production

LSP undetectable: missing transverse momentum

F. Nowak (Hamburg) Search for SUSY with a Single Tau 10 / 34

Performing the Search

Overview

1 IntroductionStandard ModelSupersymmetryTaus as a Signal

2 Performing the SearchThe ExperimentTau ReconstructionSelectionBackground Estimate: Real TausBackground Estimate: Fake Taus

3 ResultsLimits in the cMSSMComparison to Other Limits

4 Summary and Outlook

F. Nowak (Hamburg) Search for SUSY with a Single Tau 11 / 34

Performing the Search The Experiment

LHC

pp collisions with√s = 7 TeV

In 2011, 5 fb−1 of data were taken

Large background production!

SUSY cross-section is of O(1pb)

F. Nowak (Hamburg) Search for SUSY with a Single Tau 12 / 34

Performing the Search The Experiment

Compact Muon Solenoid

Multi-purpose detector

Total weight: 12500 t

Length: 21.5 m and diameter: 15 m

Magnetic field of 3.8 T

Solenoid encloses calorimetry

F. Nowak (Hamburg) Search for SUSY with a Single Tau 13 / 34

Performing the Search The Experiment

Particle-Flow Event Reconstruction with CMS

Step 1: Iterative Tracking =⇒ tracks with PT > 150 MeV

Step 2: Calometry Clustering =⇒ e, γ, h

Step 3: Linking =⇒ e.g. link a track with muon-chamber entries

Step 4: Particle Identification =⇒ start with µ, then move to e, h−, γ, h0

Jets are clustered with particles from this list

F. Nowak (Hamburg) Search for SUSY with a Single Tau 14 / 34

Performing the Search The Experiment

Particle-Flow Event Reconstruction with CMS

Step 1: Iterative Tracking =⇒ tracks with PT > 150 MeV

Step 2: Calometry Clustering =⇒ e, γ, h

Step 3: Linking =⇒ e.g. link a track with muon-chamber entries

Step 4: Particle Identification =⇒ start with µ, then move to e, h−, γ, h0

Jets are clustered with particles from this list

F. Nowak (Hamburg) Search for SUSY with a Single Tau 14 / 34

Performing the Search The Experiment

Particle-Flow Event Reconstruction with CMS

Step 1: Iterative Tracking =⇒ tracks with PT > 150 MeV

Step 2: Calometry Clustering =⇒ e, γ, h

Step 3: Linking =⇒ e.g. link a track with muon-chamber entries

Step 4: Particle Identification =⇒ start with µ, then move to e, h−, γ, h0

Jets are clustered with particles from this list

F. Nowak (Hamburg) Search for SUSY with a Single Tau 14 / 34

Performing the Search The Experiment

Particle-Flow Event Reconstruction with CMS

Step 1: Iterative Tracking =⇒ tracks with PT > 150 MeV

Step 2: Calometry Clustering =⇒ e, γ, h

Step 3: Linking =⇒ e.g. link a track with muon-chamber entries

Step 4: Particle Identification =⇒ start with µ, then move to e, h−, γ, h0

Jets are clustered with particles from this list

F. Nowak (Hamburg) Search for SUSY with a Single Tau 14 / 34

Performing the Search The Experiment

Particle-Flow Event Reconstruction with CMS

Step 1: Iterative Tracking =⇒ tracks with PT > 150 MeV

Step 2: Calometry Clustering =⇒ e, γ, h

Step 3: Linking =⇒ e.g. link a track with muon-chamber entries

Step 4: Particle Identification =⇒ start with µ, then move to e, h−, γ, h0

Jets are clustered with particles from this list

F. Nowak (Hamburg) Search for SUSY with a Single Tau 14 / 34

Performing the Search The Experiment

Particle-Flow Event Reconstruction with CMS

Step 1: Iterative Tracking =⇒ tracks with PT > 150 MeV

Step 2: Calometry Clustering =⇒ e, γ, h

Step 3: Linking =⇒ e.g. link a track with muon-chamber entries

Step 4: Particle Identification =⇒ start with µ, then move to e, h−, γ, h0

Jets are clustered with particles from this list

F. Nowak (Hamburg) Search for SUSY with a Single Tau 14 / 34

Performing the Search Tau Reconstruction

The Tau Lepton

The tau is the heaviest lepton: mτ = 1.777 GeV

Lifetime : 2.91× 10−13 s

τ → ντW∗ → ντ (eνe or µνµ or ud)

≈ 65% are hadronic decays, mainly with one charged hadron (“one-prong”)

Decay mode Branching Fractionτ− → h−ντ 11.6%τ− → h−π0ντ 26.0%τ− → h−π0π0ντ 10.8%τ− → h−h+h−ντ 9.8%τ− → h−h+h−π0ντ 4.8%

Other 1.7%

Total ≈ 65%

F. Nowak (Hamburg) Search for SUSY with a Single Tau 15 / 34

Performing the Search Tau Reconstruction

Tau Identification

Tau reconstruction starts from areconstructed jet

Find either one or three chargedhadrons h close to the jet axis

π0 reconstruction:

Find photon pair with π0 massFor converted photons, use stripin (η, φ)Remaining single photons as π0

candidate

Combine signal particles

Veto taus with non-signal particles(i.e. charged hadrons and photon)above PT threshold within isolationcone

F. Nowak (Hamburg) Search for SUSY with a Single Tau 16 / 34

Performing the Search Tau Reconstruction

Tau Identification

Tau reconstruction starts from areconstructed jet

Find either one or three chargedhadrons h close to the jet axis

π0 reconstruction:

Find photon pair with π0 massFor converted photons, use stripin (η, φ)Remaining single photons as π0

candidate

Combine signal particles

Veto taus with non-signal particles(i.e. charged hadrons and photon)above PT threshold within isolationcone

F. Nowak (Hamburg) Search for SUSY with a Single Tau 16 / 34

Performing the Search Tau Reconstruction

Tau Identification

Tau reconstruction starts from areconstructed jet

Find either one or three chargedhadrons h close to the jet axis

π0 reconstruction:

Find photon pair with π0 mass

For converted photons, use stripin (η, φ)Remaining single photons as π0

candidate

Combine signal particles

Veto taus with non-signal particles(i.e. charged hadrons and photon)above PT threshold within isolationcone

F. Nowak (Hamburg) Search for SUSY with a Single Tau 16 / 34

Performing the Search Tau Reconstruction

Tau Identification

Tau reconstruction starts from areconstructed jet

Find either one or three chargedhadrons h close to the jet axis

π0 reconstruction:

Find photon pair with π0 massFor converted photons, use stripin (η, φ)Remaining single photons as π0

candidate

Combine signal particles

Veto taus with non-signal particles(i.e. charged hadrons and photon)above PT threshold within isolationcone

F. Nowak (Hamburg) Search for SUSY with a Single Tau 16 / 34

Performing the Search Tau Reconstruction

Tau Identification

Tau reconstruction starts from areconstructed jet

Find either one or three chargedhadrons h close to the jet axis

π0 reconstruction:

Find photon pair with π0 massFor converted photons, use stripin (η, φ)Remaining single photons as π0

candidate

Combine signal particles

Veto taus with non-signal particles(i.e. charged hadrons and photon)above PT threshold within isolationcone

F. Nowak (Hamburg) Search for SUSY with a Single Tau 16 / 34

Performing the Search Tau Reconstruction

Tau IdentificationTau reconstruction starts from areconstructed jet

Find either one or three chargedhadrons h close to the jet axis

π0 reconstruction:

Find photon pair with π0 massFor converted photons, use stripin (η, φ)Remaining single photons as π0

candidate

Combine signal particles

Veto taus with non-signal particles(i.e. charged hadrons and photon)above PT threshold within isolationcone

Reconstruction efficiency for Z → ττ events O(40%)

Single tau channel not negligible!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 16 / 34

Performing the Search Selection

TriggerCo-annihilation region: small tau momentum possible =⇒cannot use tau trigger

Expect HT/ due to LSP presence =⇒ use HT/ trigger

Plateau reached at HT/ > 250 GeV, efficiency at 98.9% ±2.5%

HT/ = | −∑

~P jetT |

SUS-12-004

F. Nowak (Hamburg) Search for SUSY with a Single Tau 17 / 34

Performing the Search Selection

Selection

Number of taus == 1

Use HT/ as indicator for LSP presence

Use HT as a measure of hadronic activity

Lepton (e, µ) veto

HT =∑

P jetT

HT/ = | −∑

~P jetT |

Base-Line FullHT/ > 250 GeV HT/ > 400 GeVHT> 350 GeV HT> 600 GeV

Main background:

Real taus from W -bosons

Important contributions from

tt (real taus) and QCD (fakes)

Searching in the tails

Use background prediction from data!

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 18 / 34

Performing the Search Selection

Selection

Number of taus == 1

Use HT/ as indicator for LSP presence

Use HT as a measure of hadronic activity

Lepton (e, µ) veto

HT =∑

P jetT

HT/ = | −∑

~P jetT |

Base-Line FullHT/ > 250 GeV HT/ > 400 GeVHT> 350 GeV HT> 600 GeV

Main background:

Real taus from W -bosons

Important contributions from

tt (real taus) and QCD (fakes)

Searching in the tails

Use background prediction from data!

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 18 / 34

Performing the Search Selection

Selection

Number of taus == 1

Use HT/ as indicator for LSP presence

Use HT as a measure of hadronic activity

Lepton (e, µ) veto

HT =∑

P jetT

HT/ = | −∑

~P jetT |

Base-Line FullHT/ > 250 GeV HT/ > 400 GeVHT> 350 GeV HT> 600 GeV

Main background:

Real taus from W -bosons

Important contributions from

tt (real taus) and QCD (fakes)

Searching in the tails

Use background prediction from data!

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 18 / 34

Performing the Search Selection

Selection

Number of taus == 1

Use HT/ as indicator for LSP presence

Use HT as a measure of hadronic activity

Lepton (e, µ) veto

HT =∑

P jetT

HT/ = | −∑

~P jetT |

Base-Line FullHT/ > 250 GeV HT/ > 400 GeVHT> 350 GeV HT> 600 GeV

Main background:

Real taus from W -bosons

Important contributions from

tt (real taus) and QCD (fakes)

Searching in the tails

Use background prediction from data! [GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 18 / 34

Performing the Search Background Estimate: Real Taus

Background Estimate: Real Taus I

Use lepton universality:

Select events with exactly oneisolated muon in data

Manipulate muon PT with randomnumber from tau response template

Compute HT and HT/ from jets andmanipulated muon

Use corresponding selection cuts

Base-Line FullHT/ > 250 GeV HT/ > 400 GeVHT> 350 GeV HT> 600 GeV , genτ

T/P, recoτTP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.01

0.02

0.03

0.04

0.05

W+Jets Simulation only

nV < 6

nV < 10

nV >= 10

<30 GeV, genτT15<P

W+Jets Simulation only

F. Nowak (Hamburg) Search for SUSY with a Single Tau 19 / 34

Performing the Search Background Estimate: Real Taus

Background Estimate: Real Taus II

Weight events with:

Muon reconstruction and isolation efficiency(by Jan Thomsen)

Hadronic branching-fraction of tau decay(65%)

Probability of muon being not from taudecay

[GeV]µTP

0 50 100 150 200 250 300 350 400

W µp

0.0

0.2

0.4

0.6

0.8

1.0

No Selection

MHT>50 GeV

MHT>100 GeV

MHT>150 GeV

MHT>200 GeV

MHT>250 GeV

W+Jets Simulation only

C + NGN

0 5 10 15 20

τreco

-310

-210

-110

1 W+Jets

tt

<60 GeV, visτT40<P

>300 GeVT

Simulation only, H

Tau reconstruction efficiency

More event activity: less isolation=⇒ Efficiency different for W+jets and ttevents=⇒ Parametrize in number of photons NG

and charged hadrons NC within isolationcone

f correvent =pWµ × εIDτ × f

bf (hadr)τ

εrecoµ × εisoµ

F. Nowak (Hamburg) Search for SUSY with a Single Tau 20 / 34

Performing the Search Background Estimate: Real Taus

Background Estimate: Real Taus III

Base-Line, Simulation only

[GeV]TM

0 50 100 150 200 250 300 350 400 450 500

Even

ts/1

0 G

eV

-210

-110

1

10

=7 TeVs, -1L = 1.0 fb

tt

WW + Jets

Z->ll +Jets

W + Jets

QCD

LM13

LM2

MT =√

2 ·HrealT/ · PµT · (1− cos ∆Φ)

Muons can also be produced in SUSY events=⇒ Contamination of control sample

W -events: MT ≤ m(W )

Detector resolution=⇒ MT ≤ 100 GeV

Loosing 3% of SM events=⇒ Correction

F. Nowak (Hamburg) Search for SUSY with a Single Tau 21 / 34

Performing the Search Background Estimate: Real Taus

Background Estimate: Real Taus Consistency Checkselected = selected + match to gen tau

L=1 fb−1 Base-Line FullSelected Predicted Selected Predicted

Z → ll 2.2± 0.4 1.7± 0.3 0.2± 0.1 0.1± 0.1WW → lνlν 3.0± 0.3 2.2± 0.2 0.1± 0.1 0.2± 0.1

tt 12.1± 0.7 12.3± 0.4 0.3± 0.1 0.6± 0.1W → lν 90.5± 5.9 87.8± 4.1 5.8± 1.5 6.6± 1.1

Sum 107.8± 6.0 103.9± 4.2 6.4± 1.5 7.4± 1.1

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

[GeV]TH

500 1000 1500 2000 2500 3000 3500 4000

Even

ts/1

60 G

eV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 22 / 34

Performing the Search Background Estimate: Real Taus

Background Estimate: Real Taus Consistency Checkselected = selected + match to gen tau

L=1 fb−1 Base-Line FullSelected Predicted Selected Predicted

Z → ll 2.2± 0.4 1.7± 0.3 0.2± 0.1 0.1± 0.1WW → lνlν 3.0± 0.3 2.2± 0.2 0.1± 0.1 0.2± 0.1

tt 12.1± 0.7 12.3± 0.4 0.3± 0.1 0.6± 0.1W → lν 90.5± 5.9 87.8± 4.1 5.8± 1.5 6.6± 1.1

Sum 107.8± 6.0 103.9± 4.2 6.4± 1.5 7.4± 1.1

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

C + NGN

0 5 10 15 20

τreco

-310

-210

-110

1 W+Jets

tt

<60 GeV, visτT40<P

>300 GeVT

Simulation only, H

F. Nowak (Hamburg) Search for SUSY with a Single Tau 22 / 34

Performing the Search Background Estimate: Fake Taus

Background Estimate: Fake Taus

Measure fake rate per jet(PT , η) in data:HT > 350 GeV, 40 < HT/ < 60 GeV

Region is QCD dominated: no real tau inevent!

Fakes mainly from low-PT jets

[GeV]jetTP

210 310

fake

rate

-410

-310

-210

-110

1 Simulation

Data

<60 GeVTH>350 GeV, 40<TH

Control sample: events passing all selection cuts but the tau requirement =⇒veto taus

For each jet i of n jets in the event, apply fake probability p(i)

p = 1−n∏

i=0

(1− p(i))

F. Nowak (Hamburg) Search for SUSY with a Single Tau 23 / 34

Performing the Search Background Estimate: Fake Taus

Background Estimate: Fake Taus Consistency Checkselected = selected + no match to gen tau

L=1 fb−1 Base-Line FullSelected Predicted Selected Predicted

Z → νν 3.5± 0.2 2.98± 0.03 0.25± 0.05 0.21± 0.01QCD 11.9± 2.6 9.6± 0.5 1.91± 1.13 0.79± 0.07tt 2.2± 0.3 2.1± 0.1 0.04± 0.04 0.12± 0.02

W → lν 4.2± 1.3 5.4± 0.3 0.38± 0.38 0.34± 0.08

Sum 22.0± 2.9 20.3± 0.6 2.59± 1.2 1.47± 0.1

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

[GeV]TH

500 1000 1500 2000 2500 3000 3500 4000

Even

ts/1

60 G

eV

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 24 / 34

Performing the Search Background Estimate: Fake Taus

Background Estimate: Fake Taus II

HT/ [GeV]HT > 350 GeV 60-80 80-100 > 250QCD fraction 97% 93% 6%

selected/predicted (sim) 0.98± 0.06 0.96± 0.07 1.24± 0.28selected/predicted (data) 1.01± 0.08 0.88± 0.13 −

HT > 600 GeV > 400QCD fraction 96% 93% 17%

selected/predicted (sim) 0.94± 0.09 0.85± 0.09 2.43± 1.45selected/predicted (data) 1.14± 0.26 0.97± 0.37 −

Define control regions in data: HT > 350 (600) GeV , 60 < HT/ < 80 GeVand 80 < HT/ < 100 GeV.

Check selection/prediction ≡ scaling factor

Combine high-HT side-bands for final test: selection/prediction = 1.07± 0.21=⇒ Compatible with unity!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 25 / 34

Performing the Search Background Estimate: Fake Taus

Systematic Uncertainties

Base-Line FullStatistical uncertainty on selection 5% 19%

Uncertainties in Real-Tau EstimateMT cut 3%Pile-Up 0%Tau Template statistics 0%Muon reconstruction efficiency < 1%Muon isolation efficiency < 1%Correction on muons from tau decay 1%Tau hadronic branching fraction < 1%Tau εrecoτ (data/sim) 7%Tau εrecoτ (stat. uncertainties) 2% 3%tt contribution 0% 4%Trigger inefficiency due to muon smearing 1% 0%Statistical uncertainty of muon sample 3% 10%

Uncertainties in Fake-Tau EstimatePile-Up 0%Method uncertainty 21%Z → νν + jets contribution 5%Tau fake rate (stat. uncertainties) 2% 3%Statistical uncertainty of control sample 2% 12%

Additional UncertaintiesTau fake rate (light leptons) 1%

Combined syst. uncertainty 8% 12%

F. Nowak (Hamburg) Search for SUSY with a Single Tau 26 / 34

Results

Overview

1 IntroductionStandard ModelSupersymmetryTaus as a Signal

2 Performing the SearchThe ExperimentTau ReconstructionSelectionBackground Estimate: Real TausBackground Estimate: Fake Taus

3 ResultsLimits in the cMSSMComparison to Other Limits

4 Summary and Outlook

F. Nowak (Hamburg) Search for SUSY with a Single Tau 27 / 34

Results

Results

[GeV]TH

400 600 800 1000 1200 1400 16001800 2000

Even

ts/1

60 G

eV

-110

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

[GeV]TH

400 600 800 1000 1200 1400 16001800 2000

Data

/Bkg

0.51.01.52.0

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-110

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

[GeV]T H

300 400 500 600 700 800 900 1000

Data

/Bkg

0.51.01.52.0

L=5 fb−1 Base-Line Full

Fake-Tau Est. 67± 2 (stat)± 15 (syst) 3.4± 0.4 (stat)± 0.7 (syst)Real-Tau Est. 346± 9 (stat)± 28 (syst) 25.2± 2.5 (stat)± 2.3 (syst)

Sum 413± 10 (stat)± 31 (syst) 28.5± 2.6 (stat)± 2.4 (syst)

Data 444 28

F. Nowak (Hamburg) Search for SUSY with a Single Tau 28 / 34

Results Limits in the cMSSM

cMSSM Limit at tanβ = 40

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fbLimits are set with the CLs methodat 95% confidence level

Up to 3% signal efficiency inco-annihilation region

Exclude m1/2 < 520 GeV =⇒corresponds to m(τ1) < 280 GeV

Drop at the region where m(τ1)becomes larger than m(χ0

2) andm(χ+

1 )

Drop at larger m0 due to large HT/requirement and small signalstatistic

F. Nowak (Hamburg) Search for SUSY with a Single Tau 29 / 34

Results Limits in the cMSSM

cMSSM Limit at tanβ = 40

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fbLimits are set with the CLs methodat 95% confidence level

Up to 3% signal efficiency inco-annihilation region

Exclude m1/2 < 520 GeV =⇒corresponds to m(τ1) < 280 GeV

Drop at the region where m(τ1)becomes larger than m(χ0

2) andm(χ+

1 )

Drop at larger m0 due to large HT/requirement and small signalstatistic

F. Nowak (Hamburg) Search for SUSY with a Single Tau 29 / 34

Results Limits in the cMSSM

cMSSM Limit at tanβ = 40

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fbLimits are set with the CLs methodat 95% confidence level

Up to 3% signal efficiency inco-annihilation region

Exclude m1/2 < 520 GeV =⇒corresponds to m(τ1) < 280 GeV

Drop at the region where m(τ1)becomes larger than m(χ0

2) andm(χ+

1 )

Drop at larger m0 due to large HT/requirement and small signalstatistic

F. Nowak (Hamburg) Search for SUSY with a Single Tau 29 / 34

Results Limits in the cMSSM

cMSSM Limit at tanβ = 40

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fbLimits are set with the CLs methodat 95% confidence level

Up to 3% signal efficiency inco-annihilation region

Exclude m1/2 < 520 GeV =⇒corresponds to m(τ1) < 280 GeV

Drop at the region where m(τ1)becomes larger than m(χ0

2) andm(χ+

1 )

Drop at larger m0 due to large HT/requirement and small signalstatistic

F. Nowak (Hamburg) Search for SUSY with a Single Tau 29 / 34

Results Limits in the cMSSM

cMSSM Limit at tanβ = 40

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fbLimits are set with the CLs methodat 95% confidence level

Up to 3% signal efficiency inco-annihilation region

Exclude m1/2 < 520 GeV =⇒corresponds to m(τ1) < 280 GeV

Drop at the region where m(τ1)becomes larger than m(χ0

2) andm(χ+

1 )

Drop at larger m0 due to large HT/requirement and small signalstatistic

F. Nowak (Hamburg) Search for SUSY with a Single Tau 29 / 34

Results Comparison to Other Limits

Limit Comparison: Single-Lepton Search

[GeV]0m200 400 600 800 1000 1200 1400 1600 1800 2000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

± l~ LEP2

± 1

χ∼ LEP2

= L

SP

τ∼

) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 2000g~m(

) = 1000q~m(

) = 1500q~m(

) = 2000

q~m

(

)=10βtan( = 0 GeV0A

> 0µ = 173.2 GeVtm

= 7 TeVs, -1 = 4.7 fbint

CMS Preliminary L

LS, HT>500(GeV), 95% C.L. Limits:Observed LimitMedian Expected

exprtσ 1 ±Expected theory σ 1 ±Observed theory σ 1 ±Expected

CMS SUS-12-010tanβ = 10

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fb

Single-lepton (e,µ) search independent from tanβMore stable at high m0

At low m0, Single-tau search provides competitive limit in the co-annihilationregion!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 30 / 34

Results Comparison to Other Limits

Limit Comparison: Hadronic Search

[GeV]0m500 1000 1500 2000 2500 3000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

± l~ LEP2

± 1

χ∼ LEP2 No EWSB

= L

SP

τ∼

Non-Convergent RGE's) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 2000g~m(

) = 1000

q~m(

) = 1500q~m(

) = 2000

q~m(

) = 2500

q~m

(

)=10βtan( = 0 GeV0A

> 0µ = 173.2 GeVtm = 7 TeVs, -1CMS preliminary, 4.98 fb

Obs. limit signal theoryσ1±Obs. limit exp.σ1±Exp. limit signal theoryσ1±Exp. limit

-1Observed 36 pb

LM5

CMS SUS-12-011tanβ = 10

)2 (GeV/c0m

400 600 800 1000

)2 (G

eV/c

1/2

m

100

200

300

400

500

600

700

(500)GeVg~

(1000)GeVg~(1000)GeV

q~

(1500)GeVg~

= L

SPτ∼

Obs LimitExp Limit

σ 1±Exp (theo.)σ 1±Exp (theo.)σ 1±Obs

± l~ LEP2 ± 1

χ∼ LEP2

< 0.1232hDMΩ0.101 <

=-500 GeV0

=40, Aβtan

=173.2 GeVt

>0, mµ

= 7 TeVs, -1L = 5.0 fb

Hadronic search independent from tanβ

Provides stronger limit in full m0-m1/2 plane

But: To increase sensitivity for discovery, combine as many searches aspossible!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 31 / 34

Summary and Outlook

Overview

1 IntroductionStandard ModelSupersymmetryTaus as a Signal

2 Performing the SearchThe ExperimentTau ReconstructionSelectionBackground Estimate: Real TausBackground Estimate: Fake Taus

3 ResultsLimits in the cMSSMComparison to Other Limits

4 Summary and Outlook

F. Nowak (Hamburg) Search for SUSY with a Single Tau 32 / 34

Summary and Outlook

Summary and Outlook

A search for Supersymmetry with jets, missing transverse momentum, and asingle tau has been performed

Within the LSP-stau co-annihilation region, the single-tau search iscompetitve with light-lepton analyses

In 2012, only a combination of different analyses might discover SUSY =⇒contribution from tau searches highly desirable

Ideas for improvements in 2012:

Use tau embedding instead of template methodAdd different search regions and look beyond cMSSMTry a shape analysisCombine with di-tau or tau-light-lepton searches

F. Nowak (Hamburg) Search for SUSY with a Single Tau 33 / 34

Summary and Outlook

2012 Outlook

Higgs! Is it realized at 125 GeV? Is it SM-like? What are its properties?What is the impact on new-physics models? Is there only one higgs, or arethere more?

Susy! LHC already provided impressive limits, but SUSY is still doing fine

LHC is mainly setting limits on gluinos and first- and second-generationsquarks, but for higgs-mass correction, only third-generation sparticles areneeded=⇒ Much weaker limits on third-generation sparticles

P1

P2

t∗

t

t

χ01

χ01

t

F. Nowak (Hamburg) Search for SUSY with a Single Tau 34 / 34

Summary and Outlook

2012 Outlook

Higgs! Is it realized at 125 GeV? Is it SM-like? What are its properties?What is the impact on new-physics models? Is there only one higgs, or arethere more?

Susy! LHC already provided impressive limits, but SUSY is still doing fine

LHC is mainly setting limits on gluinos and first- and second-generationsquarks, but for higgs-mass correction, only third-generation sparticles areneeded=⇒ Much weaker limits on third-generation sparticles

Awaiting Higgs discovery and getting closer to SUSY in 2012!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 34 / 34

Summary and Outlook

BACKUP

F. Nowak (Hamburg) Search for SUSY with a Single Tau 35 / 34

Summary and Outlook

Object Definition

Muons

Global Muon

Isolation in ∆R < 0.3

PT > 10 GeV and |η| < 2.4

Electrons

Isolation in ∆R < 0.3

PT > 10 GeV and |η| < 2.5

Transition region 1.444 < |η| < 1.566 notconsidered

HT

Scalar PT -sum of all jets*

*: jets used have PT > 50 GeV and|η| < 2.5

Taus

HPS decay mode finder

Loose Isolation + Delta Beta correction

Isolation Cone ∆R < 0.5No charged hadron with PT > 1GeVNo photon candidate with PT > 1.5GeV

AgainstLeptonTight discriminators

PT > 15 GeV and |η| < 2.1

Jets

AK5 jet algorithm

Charged Pile-Up Substracted

PT > 30 GeV and |η| < 5

L1 (fastjet), L2, L3, and, in case of data,L2L3 residual corrections

HT/

Negative vectorial sum of alljet*-momentum

*: jets used have PT > 30 GeV and|η| < 5.

F. Nowak (Hamburg) Search for SUSY with a Single Tau 36 / 34

Summary and Outlook

N-1 Distributions

[GeV]TH

0 500 1000 1500 2000 2500

Even

ts/4

0 G

eV

-210

-110

1

10

210

310

=7 TeVs, -1Simulation only, 1 fb

ttWW + Jets

+JetsννZ->Z->ll +JetsW + JetsQCDLM13LM2

[GeV]TH

0 500 1000 1500 2000 2500

Even

ts/4

0 G

eV

-210

-110

1

10

=7 TeVs, -1Simulation only, 1 fb

ttWW + Jets

+JetsννZ->Z->ll +JetsW + JetsQCDLM13LM2

[GeV]T H

300 400 500 600 700 800 900 1000

Even

ts/2

0 G

eV

-210

-110

1

10

210=7 TeVs, -1Simulation only, 1 fb

ttWW + Jets

+JetsννZ->Z->ll +JetsW + JetsQCDLM13LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 37 / 34

Summary and Outlook

Distributions I

[GeV]jet1TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

1

10

210

310=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +JetsW + JetsQCD

LM13LM2

jet1η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

[GeV]jet2TP

0 200 400 600 800 1000 1200 1400 1600Ev

ents

/80

GeV

1

10

210

310=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

jet2η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

[GeV]jet3TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

1

10

210

310=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

jet3η

-5 -4 -3 -2 -1 0 1 2 3 4 5Ev

ents

1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 38 / 34

Summary and Outlook

Distributions II

(jet1,jet2)Φ ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210

310

410=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

(MHT,jet123)Φ ∆min

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210

310

410=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

(jet1,jet3)Φ ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ev

ents

-110

1

10

210

310

410=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

)τ (MHT,Φ ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210

310

410=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

(jet2,jet3)Φ ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210

310

410=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Datatt

WW + Jets +JetsννZ->

Z->ll +JetsW + JetsQCDLM13LM2

Number of jets

0 5 10 15 20Ev

ents

-110

1

10

210

310=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 39 / 34

Summary and Outlook

Distributions III

[GeV]τTP

0 100 200 300 400 500

Even

ts/4

0 G

eV

-110

1

10

210

310=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

τη

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310

=7 TeVs, -1Base-Line Selection, L = 5.0 fb

Data

ttWW + Jets

+JetsννZ->

Z->ll +Jets

W + Jets

QCD

LM13

LM2

F. Nowak (Hamburg) Search for SUSY with a Single Tau 40 / 34

Summary and Outlook

Tau Templates

, genτT/P, recoτ

TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.01

0.02

0.03

0.04

0.05

W+Jets Simulation only

nV < 6

nV < 10

nV >= 10

<15 GeV, genτT10<P

W+Jets Simulation only

, genτT/P, recoτ

TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.01

0.02

0.03

0.04

0.05

W+Jets Simulation only

nV < 6

nV < 10

nV >= 10

<100 GeV, genτT50<P

W+Jets Simulation only

, genτT/P, recoτ

TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.01

0.02

0.03

0.04

0.05

W+Jets Simulation only

nV < 6

nV < 10

nV >= 10

<30 GeV, genτT15<P

W+Jets Simulation only

, genτT/P, recoτ

TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.01

0.02

0.03

0.04

0.05

W+Jets Simulation only

nV < 6

nV < 10

nV >= 10

>100 GeV, genτTP

W+Jets Simulation only

, genτT/P, recoτ

TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.01

0.02

0.03

0.04

0.05

W+Jets Simulation only

nV < 6

nV < 10

nV >= 10

<50 GeV, genτT30<P

W+Jets Simulation only

, genτT/P, recoτ

TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0no

rmal

ized

0.01

0.02

0.03

0.04

0.05<15 GeV, genτ

T10 GeV<P<30 GeV, genτ

T15 GeV<P<50 GeV, genτ

T30 GeV<P<100 GeV, genτ

T50 GeV<P>100 GeV, genτ

TP

W+Jets Simulation only

F. Nowak (Hamburg) Search for SUSY with a Single Tau 41 / 34

Summary and Outlook

Real Tau Estimate: Event Weights

C + NGN

0 5 10 15 20

reco

τ∈

-210

-110

1

>300 GeVTW+Jets Simulation, H

<20 GeVτTP

>40 GeVτT20>P>60 GeVτ

T40>P>80 GeVτ

T60>P>100 GeVτ

T80>P>100 GeVτ

TP

Low efficiency at taus with PT < 20 GeV

Slight decrease in efficiency for taus with high PT

F. Nowak (Hamburg) Search for SUSY with a Single Tau 42 / 34

Summary and Outlook

∆Φ(HT/ , τ)

Shapes argeeacceptablewell forpredictionwith muonscomingdirectly fromW -decays

Predictionwith muonsfrom taudecays tendto smallerangles (moreneutrinosinvolved)

WJets (from W)

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40hτ

)µ(τ

decayτ not from µ

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

TTbar (from W)

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.00

0.05

0.10

0.15

0.20

0.25

0.30hτ

)µ(τ

decayτ not from µ

= 7 TeVs, -1 Simulation only, L = 1 fbtt

WJets (from tau)

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

norm

alize

d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40hτ

)µ(τ

decayτ from µ

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

TTbar (from tau)

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0no

rmal

ized

0.00

0.05

0.10

0.15

0.20

0.25

0.30hτ

)µ(τ

decayτ from µ

= 7 TeVs, -1 Simulation only, L = 1 fbtt

F. Nowak (Hamburg) Search for SUSY with a Single Tau 43 / 34

Summary and Outlook

Real-Tau Estimate: Consistency Check I

[GeV]jet1TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

jet1η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

[GeV]jet2TP

0 200 400 600 800 1000 1200 1400 1600Ev

ents

/80

GeV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

jet2η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

[GeV]jet3TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

jet3η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 44 / 34

Summary and Outlook

Real-Tau Estimate: Consistency Check II

(jet1,jet2)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

,jet123)T

H(Φ∆min

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

(jet1,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ev

ents

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

(jet2,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

Number of jets

0 5 10 15 20

Even

ts

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 45 / 34

Summary and Outlook

Real-Tau Estimate: Consistency Check III

[GeV]τTP

0 100 200 300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-110

1

10

210 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

τη

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310 = 7 TeVs, -1W+Jets Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1W+Jets Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 46 / 34

Summary and Outlook

Fake-Tau Estimate: Fake Rate

[GeV]jetTP

210 310

fake

rate

-410

-310

-210

-110

1 |<1ηSim |

|<1ηData |

<60 GeVTH>350 GeV, 40<TH

[GeV]jetTP

10 210 310

fake

rate

-410

-310

-210

-110

1 |<1.5ηSim 1<|

|<1.5ηData 1<|

<60 GeVTH>350 GeV, 40<TH

[GeV]jetTP

10 210 310

fake

rate

-410

-310

-210

-110

1 |<2.1ηSim 1.5<|

|<2.1ηData 1.5<|

<60 GeVTH>350 GeV, 40<TH

F. Nowak (Hamburg) Search for SUSY with a Single Tau 47 / 34

Summary and Outlook

Fake-Tau Estimate: Consistency Check I

[GeV]jet1TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

jet1η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-210

-110

1

10

210

= 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

[GeV]jet2TP

0 200 400 600 800 1000 1200 1400 1600Ev

ents

/80

GeV

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

jet2η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-210

-110

1

10

210

= 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

[GeV]jet3TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

jet3η

-5 -4 -3 -2 -1 0 1 2 3 4 5Ev

ents

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 48 / 34

Summary and Outlook

Fake-Tau Estimate: Consistency Check II

(jet1,jet2)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-310

-210

-110

1

10

210

310 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

,jet123)T

H(Φ∆min

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

(jet1,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0Ev

ents

-310

-210

-110

1

10

210

310 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

(jet2,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

Number of jets

0 5 10 15 20Ev

ents

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 49 / 34

Summary and Outlook

Fake-Tau Estimate: Consistency Check III

[GeV]τTP

0 100 200 300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-410

-310

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

τη

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-210

-110

1

10

210 = 7 TeVs, -1QCD Simulation only, L = 1 fb

selected

predicted

total uncertainty

= 7 TeVs, -1QCD Simulation only, L = 1 fb

F. Nowak (Hamburg) Search for SUSY with a Single Tau 50 / 34

Summary and Outlook

Data I

[GeV]jet1TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-110

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

[GeV]jet1TP

0 200 400 600 800 1000 1200 1400 1600

Data

/Bkg

0.51.01.52.0

jet1η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310

410

510

= 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

jet1η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Data

/Bkg

0.51.01.52.0

[GeV]jet2TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-110

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

[GeV]jet2TP

0 200 400 600 800 1000 1200 1400 1600Da

ta/B

kg0.51.01.52.0

jet2η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310

410

510

= 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

jet2η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Data

/Bkg

0.51.01.52.0

[GeV]jet3TP

0 200 400 600 800 1000 1200 1400 1600

Even

ts/8

0 G

eV

-110

1

10

210

310 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

[GeV]jet3TP

0 200 400 600 800 1000 1200 1400 1600

Data

/Bkg

0.51.01.52.0

jet3η

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310

410

510

= 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

jet3η

-5 -4 -3 -2 -1 0 1 2 3 4 5Da

ta/B

kg

0.51.01.52.0

F. Nowak (Hamburg) Search for SUSY with a Single Tau 51 / 34

Summary and Outlook

Data II

(jet1,jet2)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

(jet1,jet2)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Data

/Bkg

0.51.01.52.0

,jet123)T

H(Φ∆min

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

1

10

210

310

410

510 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

,jet123)T

H(Φ∆min

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Data

/Bkg

0.51.01.52.0

(jet1,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

(jet1,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0Da

ta/B

kg0.51.01.52.0

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

)τ,T

H(Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Data

/Bkg

0.51.01.52.0

(jet2,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Even

ts

1

10

210

310

410 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

(jet2,jet3)Φ∆

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Data

/Bkg

0.51.01.52.0

Number of jets

0 5 10 15 20

Even

ts

-110

1

10

210

310 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

Number of jets

0 5 10 15 20Da

ta/B

kg

0.51.01.52.0

F. Nowak (Hamburg) Search for SUSY with a Single Tau 52 / 34

Summary and Outlook

Data III

[GeV]τTP

0 100 200 300 400 500 600 700 800 900 1000

Even

ts/4

0 G

eV

-110

1

10

210

310 = 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

[GeV]τTP

0 100 200 300 400 500 600 700 800 900 1000

Data

/Bkg

0.51.01.52.0

τη

-5 -4 -3 -2 -1 0 1 2 3 4 5

Even

ts

-110

1

10

210

310

410

510

= 7 TeVs, -1, L = 5.0 fbTBase-Line + M

DataReal-TauFake-TauTotal uncertainty

LM13

LM2

τη

-5 -4 -3 -2 -1 0 1 2 3 4 5

Data

/Bkg

0.51.01.52.0

F. Nowak (Hamburg) Search for SUSY with a Single Tau 53 / 34

Summary and Outlook

cMSSM Signal Acceptance and Uncertainties

[GeV]0m

500 1000 1500 2000 2500 3000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

-410

-310

-210

Acceptance

[GeV]0m

300 400 500 600 700 800 900 1000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30Relative Uncertainty: Combined Exp.

[GeV]0m

500 1000 1500 2000 2500 3000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

-410

-310

-210

-110

1

10

210

= 7 TeVs=40, βNLO Cross Section [pb], tan

[GeV]0m

300 400 500 600 700 800 900 1000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

-210

-110

1Relative Uncertainty: Combined Theo.

F. Nowak (Hamburg) Search for SUSY with a Single Tau 54 / 34

Summary and Outlook

Signal Contamination

[GeV]0m

300 400 500 600 700 800 900 1000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

-210

-110

1 = 7 TeVs, -1Signal Cont. (Real), L = 5.0 fb

[GeV]0m

300 400 500 600 700 800 900 1000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

-610

-510

-410

= 7 TeVs, -1, L = 5.0 fbT

Signal Cont. (Real) with M [GeV]0m

300 400 500 600 700 800 900 1000

[GeV

]1/

2m

100

200

300

400

500

600

700

800

900

1000

-210

-110

1 = 7 TeVs, -1Signal Cont. (Fake), L = 5.0 fb

Real-Tau Estimate: O(80%)contamination outside co-annihilationregion (no MT cut)

Real-Tau Estimate: Very smallcontamination left with MT cut

Fake-Tau Estimate: O(20%)contamination outside co-annihilationregion

F. Nowak (Hamburg) Search for SUSY with a Single Tau 55 / 34

Summary and Outlook

WMAP Multipole Moment

No Dark Matter

No Dark Energy

DM = 4%, Baryonic = 22%

Sonic waves in matter of the earlyuniverse imprinted in cosmicmicrowave background

Information contained in multipolemoment include Dark Mattercontent, Baryonic Matter content,Dark Energy content, Hubbleconstant,...

F. Nowak (Hamburg) Search for SUSY with a Single Tau 56 / 34

Summary and Outlook

Fermi LAT signal?

Christoph Weniger, arXiv:1204.2797v1

χχ→ γγ (suppressed) in galactic centre

significance: 4.6 σ (local), 3.3 σ (global), not confirmed by collaboration!

F. Nowak (Hamburg) Search for SUSY with a Single Tau 57 / 34

Summary and Outlook

cMSSM Masses

mχ0

2≈ m

χ±1

≈ 2mχ0

1≈ 0.8m1/2

mχ0

4≈ m

χ±2

≈ 2mχ0

3≈ O(|µ|)

m2lL≈ m2

0 + 0.49m21/2 − 0.27 cos 2βM2

Z

m2lR≈ m2

0 + 0.15m21/2 − 0.23 cos 2βM2

Z

m2ν ≈ m2

0 + 0.49m21/2 − 0.5 cos 2βM2

Z

m2uL ≈ m2

0 + 5m21/2 − 0.35 cos 2βM2

Z

m2uR ≈ m2

0 + 4.5m21/2 − 0.15 cos 2βM2

Z

m2dL≈ m2

0 + 5m21/2 − 0.42 cos 2βM2

Z

m2A = Bµ(cotβ + tanβ)m2

H± = m2A + M2

W

m2h,H =

1

2[(m2

A + M2Z )∓

√(m2

A + M2Z )2 − 4m2

AM2Z cos2 2β]

F. Nowak (Hamburg) Search for SUSY with a Single Tau 58 / 34

Summary and Outlook

Allowed Regions and Search Reach

Baer et al

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000

mSUGRA, A0=0 tanβ=10, µ>0

m0(GeV)

m1

/2(G

eV

)

LEP

no REWSB

Z~

1 n

ot

LS

P

Φ(p-)=3x10

-7 GeV

-1 cm

-2 s

-1 sr

-1

(S/B)e+=0.01

Φ(γ)=10-10

cm-2

s-1

Φsun

(µ)=40 km-2

yr-1

l 0<Ωh2<0.129

mh=114.4 GeV

σ(Z~

1p)=10-9

pb

LHC

LC1000

LC500

TEV

µD

D1

2

3

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000

mSUGRA, A0=0, tanβ=50, µ<0

m0 (GeV)

m1

/2 (

Ge

V)

LEP

no REWSB

Z~

1 n

ot

LS

P

Φ(p-) 3e-7 GeV

-1 cm

-2 s

-1 sr

-1(S/B)e+=0.01

Φ(γ)=10-10

cm-2

s-1

Φsun

(µ)=40 km-2

yr-1

l 0< Ωh2< 0.129

mh=114.4 GeV

Φearth

(µ)=40 km-2

yr-1

σ(Z~

1p)=10-9

pb

LHC

LC1000

LC500

µ

DD

4

Reaches of the LHC (100 fb−1), Linear Collider (LC), Tevatron (TEV), Direct Dark Matter searches(DD), Ice Cube (µ) and others

1: LSP-Tau co-annihilation region, 2: light higgs funnel region, 3: focus point region, 4: A0 funnelregion

F. Nowak (Hamburg) Search for SUSY with a Single Tau 59 / 34

Summary and Outlook

cMSSM Fitted

Fit includes: rare B decays, (g − 2), EWK precision measurements, relicdensity, direct and indirect DM searches, LEP limits, LHC limits

Tension: g − 2 prefers low masses of uncolored sparticles, direct limits highmasses of colored sparticles: coupled in the cMSSM

High Higgs mass m = 126 GeV difficult to achieve in cMSSM

F. Nowak (Hamburg) Search for SUSY with a Single Tau 60 / 34

Summary and Outlook

Tau Reconstruction Efficiency

F. Nowak (Hamburg) Search for SUSY with a Single Tau 61 / 34

Summary and Outlook

Higgs Production and BR

F. Nowak (Hamburg) Search for SUSY with a Single Tau 62 / 34

Summary and Outlook

Data Flow

F. Nowak (Hamburg) Search for SUSY with a Single Tau 63 / 34

Summary and Outlook

HappyFace

Allows quasi real-time site monitoring

Acquires information automatically

Can be used as shift tool for non-experts

Provides as well detailed information for admins

Provides rating system

Allows to correlate information

Can trigger automatic alarms/notifications

Highly configurable and adjustable

F. Nowak (Hamburg) Search for SUSY with a Single Tau 64 / 34