second revision (accepted manuscript)€¦ · 108.9% and 75%, respectively and overall output power...

10
91 50 2 1399 "#$ 57 - 66 * : [email protected] : ! 27 / 01 / 97 :() ! 19 / 06 / 97 ()*+, - ()., /" 0 12 342 5, 42 / (6 . + 728 09 : ; " + +,- . /0 - 12 3- 4 :8 /4 <,. / . /0 5 4 3- =,> ;- * - . /0 - 4 12 3- @ / 6/ . 789 : ; /< = 0- > 68 ?/ < @ ?/ A + < 5 / 5 . : /< C A= +D/ 0 EF@ +GF5 +G AH9 I < ?/ A /9 D< +G +GF5 / 6/ 5 6/ ./ 4GJ < @ ?/ A . D +0- - L / < = M/ H2 N 4O < P= (F5 A +< D< :-< :- ?/ +J ?/ < > =< . J QR 4@ 3S 4S T0 + - 6/ + 0< ?/ D +5 HTO + / 6/ 5 ; /< 5 /< L / < ./ I < :5 + - K 1073 kPa 505 ?/ A +< 0< +G D +5 D< +GF5 W6/ +0- @ A<; O % 9 / 108 75 % < F3@ < / 6/ 5 +0- 4F < + 4 = W-5 -/ W< D Z 0 ?/ A +@ < kW 633 [F .< ),- (A (5 : 6/ / A 5 AH9 > @ ?/ +GF5 +G . Energy and Exergy Analysis of a Tri-Generation System based on Ammonia-Fed Solid Oxide Fuel Cell Faculty of Mechanical Engineering, Urmia university of Technology, Urmia, Iran M. Hassani Rikani Department of Mechanical Engineering, Urmia university, Urmia, Iran Sh. Khalil Aria Faculty of Mechanical Engineering, Urmia university of Technology, Urmia, Iran V. Zare Abstract In this research, a tri-generation system based on ammonia fed solid oxide fuel cell is proposed and investigated. This study involves thermodynamic modeling of the fuel cell to conduct energy and exergy analysis of the system components in order to evaluate the energy and exergy efficiencies of the tri-generation system. In the proposed system, a solid oxide fuel cell with hydrogen-proton conducting electrolyte is used as the prime mover, which has the best performance for ammonia-fed fuel cells based on the reported results in the literature. The effects of important parameters such as current density, operating temperature and pressure are investigated on the performance of the proposed tri-generation system. Based on the results, assuming 1073 K and 505 kPa for the fuel cell working conditions, the energy utilization factor and exergetic efficiency of the proposed system are calculated to be 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only, regardless of the cooling and heating load produced. Keywords: Tri-Generation System, SOFC, Ammonia, Energy and Exergy Analysis. 1 - 9 D T0 -< D < < 4O . [S // < 4 @ < / : ( +J : \ D< +< A W+G ] ?/ J < +G A<; M/ < ./ D -< < _@ A ?/ < 4O :F3@ < _/ +< +J ‘a H? - . , D 68 b2 < H/ : +G < ?/ T= +G T= c/ < A T < :< JD 40 % 75 = % =< ] 1 .[ g D +G [ h2 - @ +J i ?/ jk [F 4lTJ +0< [F H +J c9 D 5 +G :TJ < ./ = TJ < bm A 6/ D M/ W:F3@ +J +< FT T; 4D ?/ H +J ./ = = [ D [< D HT@ : 6/ J D 4 ?S +J 6/ Cn g < +J 4 ba 4FTJ < o 4 < pqc2 J 1 CHP / .5 F 5 [/ 4FTJ 1 < rsT1 / ./ +G h ] . + < 4 [5 5 4O < :lTJ 2 CCHP ?= = ] 2 .[ / 5 . +< a D q +G 5 6/ 4 5 +J M/ -/ - :<< .= 5 D M/ / +J tD< [F uO< 5 A a v9 5 [J +J- .= G8 :S AD< I 1 Combined Heating and Power 2 Combined cooling, heating and power

Upload: others

Post on 01-Apr-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

1

91

50

2

1399

"#

$

57-66

* : [email protected] : !27/01/97

:() !19/06/97

()*+, - ()., /" 0 12 342 5, 42 / (6 . +728 09

: ; " + +,- . /0 - 12 3- 4

:8 /4 <,. / . /0 5 4 3-

=,> ;-* - . /0 - 4 12 3-

@

/ 6/ . 789 : ; /< = 0- > 68 ?/ < @ ?/ A + < 5 / 5 . :/< C A= +D/ 0 EF@ +GF5 +G AH9 I < ?/ A /9 D<+G +GF5 / 6/5

6/ . /4GJ < @ ?/ A . D +0- - L / < = M/ H2 N 4O <P= (F5 A +< D< :-< :- ?/ +J ?/ < > =< . J QR 4@ 3S 4S T0 + - 6/ +

0< ?/ D +5 HTO + / 6/ 5 ; /< 5 /< L / < . / I <: 5 + - K 1073 kPa 505 ?/ A +<0< +G D +5 D<+GF5 W6/ +0- @ A<; O %9/108 75% < F3@ <

/ 6/ 5 +0- 4F < + 4 = W-5 -/ W< D Z 0 ?/ A +@ <kW 633 [F .<

),- (A (5: 6/ / A 5 AH9 > @ ?/+GF5 +G.

Energy and Exergy Analysis of a Tri-Generation System based on Ammonia-Fed Solid Oxide Fuel Cell

Faculty of Mechanical Engineering, Urmia university of Technology, Urmia, Iran M. Hassani Rikani Department of Mechanical Engineering, Urmia university, Urmia, Iran Sh. Khalil Aria Faculty of Mechanical Engineering, Urmia university of Technology, Urmia, Iran V. Zare

Abstract In this research, a tri-generation system based on ammonia fed solid oxide fuel cell is proposed and investigated. This study involves thermodynamic modeling of the fuel cell to conduct energy and exergy analysis of the system components in order to evaluate the energy and exergy efficiencies of the tri-generation system. In the proposed system, a solid oxide fuel cell with hydrogen-proton conducting electrolyte is used as the prime mover, which has the best performance for ammonia-fed fuel cells based on the reported results in the literature. The effects of important parameters such as current density, operating temperature and pressure are investigated on the performance of the proposed tri-generation system. Based on the results, assuming 1073 K and 505 kPa for the fuel cell working conditions, the energy utilization factor and exergetic efficiency of the proposed system are calculated to be 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only, regardless of the cooling and heating load produced. Keywords: Tri-Generation System, SOFC, Ammonia, Energy and Exergy Analysis.

1 - 9 D T0 -< D < < 4O . [S // <

4 @ < / : (+J : \ D< +< A W+G ] ?/J < +G A<; M/ < . /D -< < +Ĥ

_@ A ?/ < 4O :F3@ < _/ +< +J `a H? -. , D 68 b2 < H/ :

+G < ?/ T= +G T= c/ < A T < :< JD40 %75 = %

=<]1.[ g D +G [ h2 - @ +Ji ?/ jk [F 4lTJ +0< [F H +J

c9 D 5 +G :TJ < . / = TJ < bm A 6/ D M/W:F3@ +J +< FT T; 4D

?/H +J . / = = [ D [< D HT@ :6/ JD 4 ?S +J 6/ Cn g < +J

4 ba 4FTJ < o 4 < pqc2 J 1CHP / .5F 5 [/ 4FTJ 1 < rsT1

/ . / +G h ] . + < 4 [5 5 4O < :lTJ2

CCHP ?==]2.[ / 5 . +< a D q +G 5

6/ 45 +J M/ -/ - :<< .=5 D M// +JtD< [F uO< 5 A a

v9 5 [J+J- .=G8 :S AD< I

1 Combined Heating and Power 2 Combined cooling, heating and power

Page 2: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

58

H9

A G

+

GF5

+ /

6

/

5 <

+ ...

C/ <@ +8 .F J2008 11 A %5 D + +JCHP 6J ]=1 I a .[-

C/ 4F : 2030 <24 3 bO < ./< %[ < =5 H/< + +JCHP C/ 2030 <

830 b 35 /< ]12.[ = D +J O/ < ? J 4 +G //

A D M/ / 1/ 4FTJ :R 0@ ?/ +J 5 A :lTJ .=< < D< ?/ +J

+-<4 J [F +< . = J? ?/ . D 6/ JD< -< S jq 4CH/ D i1< D 5 +J

] 0 ?/ A1.[ / < @ ?/ AA ]t + ?/ +J s< = jc1 +-<

M/ ?/ < / ; ?/ A ] : .4GJ T= bwM < D 4< @? x

F, ?/ A ./ OT, 4 D 4GJ D bF0, FJ _ :< . :R 9 :< ?

[J +3T-S g < 4GJ :R +<]<3.[ W][TJ <4@ ?/ A D [(SOFC) O < 4

/ 5 H2 >9AH9 0 . M/ 5 +Js - FJ/ 6/ . J . 5

. o, + 4T?/ D J +<T c9 D bq- A Ta

?/4 ?/ D H y <J y +J 0< 5 > .(NH) A < / T= b : D

4< 4D) +D- HT@ D 455 h2 4 jk 4< / (5| 3 DT +J ?/ 4O <

M/ @ ?/ A 5 ; ]5.[ b889 / <`9/ 4TJ ]6 [ +G 3S>

48 < h 4GJ D -< % 4 -5 T,a +J + bD +J/ < @ < C; A<; a F

9 4- /< . g x (TJ .=< ./t rT8 ?/ . 4O < > 4

+1< o5 4G 4GJ < F, D ~ ?/ A : . /< D 4 @ ?/ A . HTO :lTJ 789

/ <) 4| D MSOFC-O (4GJ - )SOFC-H( / = 8 ]7 .[ b889 789 : g

?/ A +< M/ D +34GJ ?/ +< D a L 5 o, @ -

L / < +g < = M/ ?/ A b889 : D /<SOFC-H JD< :-<

/ = ?/ A +J?/ 3 < 4 ]8.[ ] ?/ A < FT < _ :<SOFC-H C :

1 > F, -@ +< < ?/ A

1 First-order

4TJ qWS v/ q; 1c /]9[ < 5 o,= ,]10 .[WC : -@ \ . <WC WD5 ? 52

)DGM +/ F, Ca > = oy (. /< H +J 9 m

J1< `9/4TJ]60< < [ = o, b889 +D/ ?/ A AH9 o < 889 g H; < > D M/ H<; o, > ?/ < @ ?/ A +< D 4GJ Aa ?/ 4O

. ; /<3 789 + /MD, 6/ . +< +D5 :< . < = A @ ?/ A

M/ 0- H8 A/ ]11.[ r? 889 v/`9/ , ?/ A . _ / =

< < = A > 68 ?/ < @ +D5 :] / 5 ; /<12.[

:lTJ /[TJ ?/ A . D M/ < ?S . = 7; ? > ?/ < @

< L ; /< 4 8 <, +J 4 Cka 789 : , . M/ b2 s<

]< ? > D13.[ +3 789 r? = o, ,, 4GJ < @ ?/ A .

T= +D :Tm ; /< J > ?/ D M/ / < L ? 4G

8]14.[ :lTJ /w v/ r? 889 :- 5 o, b889 H /< :Tm 5 o, (TJ

A < c< QR > 68 ?/ < ?/ +J ?/ A + + 0 m J ]

] / 5 ; /< 15.[ +4S +3 789 [TJ 4 W+1< QR

A tEF@] /< > F, ?/16[ .[TJ += = - W789 :@ F b QR

68 ?/ < ?/ A + - 3S > 4- 789 : L . /< 4 4@ -

D s< + J750 rq > H/ @ < J A- 2O? F,=]17[ .HO 6y o, b889

?SD D M/ k? 889 4 H; 5 +J ?/ A +5 < < C 4 6/ -< : : D . / 3 o, > ?/ < @

1/ 789 QR ?SD . D M/ < =/ 6/ 4 [F 6/ H + 4 4 -

5.5 ; /<

2 - C:.D (ED + 12 0 / 6/A= +0- 5 1 . / = 4-

/ :< @ ?/ A . D 6 H2 4O

2 Dusty Gas Model

Page 3: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

59

a

T9

0

=H?

oA

a

]

D

/ 1- 12 0(ED +

?SD D M/ < 0 = M/[ bF0, J -

OT, 4 +< = < W4 D + 5 +G :R D /.=

- 9 ]= > +a 4F . 6/ : bar 5 . / = < [ @ W?/ A ?/ :R +<

4 + - > jk 6/ < ]= < A? [J 4F@ +< .< < - [J : 4

. D M/5 : t . 4O < 88a ATO o C/ +< < 5 > 4/ +< oDs

- <+ > C1 88a ]= 4F - I +J D =<.? +< +D/

. PT= c8 4O < > 4F D @? c8 .5 5 I .=

4@ v/ Ha g 4F D ? D ~ > WD5 .T < ?/ A D @? Z +JD5:W5 +J

A= = 4- 1I + < < A + c8 ?/3 / + - .= CT1 A

_ < 6/ : @ W?/K 1073 kPa 505 .=< / ?/ A w < > -

= + - J k + F +/T D O g v/ a < +D5 :< . 5 : [F

5 c8)4(. H2 q< > @ ?/ A + < @ <

F, 4G 4GJ 2O < . g .=H/H 4 T= +J ?/ A D

+J D s< + < b 2O D = ? .5 ?/ A : +< =

T/ < :<< < 4GJ ] D= J? A-]6 ?/ A D @? +JD5 .[ << .

IM9`a [ AT D 6J ;a +J < +D5 :< s< - c8) =7 JD5 : .(

@ A<; + 4lTJ +D5 :< D @? < 4O . 5 N?S .5w :1 M/ ; 5]18[ W D ? D ~ .?S ORC JD5 : 4@

= ?= 95 8< + +J [5 +< 4@ D % ; M/ > [5 +< ?= : .5

9 4@ D ~ = _ 3 < q? IM D O5 : HE1 4@ . [5 +<

; M/.5 ?S ORC 4 M/ C/ FN-Octane

.T < / = +5 = 4 G :< . D +5 0< .=

m 5 ; M/ b889 : ; < D:=< • 6/ EF@ JC C 6,a . 4O < +D/

5 I .=

• 5 C v9 < ?/ A +F@ D . J.

• +G bs1 A -@ +J +G D I j2 +GF5 .=

• C +D/?S F @ ?/ A?S ORC .= J? o, v=

• 5 :< ?/ A 6/ JD5 TJ D5 D C .

• . @ @ ?/ A 6/ -

• _ < v9 - K 298 kPa 101 I

1 Organic Rankin Cycle (ORC)

Page 4: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

60

H9

A G

+

GF5

+ /

6

/

5 <

+ ...

/ = 5.

• / 6/ +F@ - D I j2 5. / =

3 - 05; FGEH 3 -1- 728 :* I5,- :E2. JEH

Q +5 ?/ A + > g [ D < 4GJ 4G F, =]5[:

NH ↔ 32 H 12 N )1(

[ ` 55 < / 1 4 < - + 6/ 3< . : [ < [F [ < T/ / < D - [ < T/ S AT , 4 [J 4GJ / .C1 +<

> 4 D 7g < A;a 4/ +G ~5 [ /< ]5[:

(∆G), 0 )2(

+G ~5 [ 4 D ]T, iH2a 1 C bsk9 +G ~5 k 0 -

[ /9 ]5[:

G, ng )3(

+G ~5 k F < b2 ]T, h< A- ~5 / 1 T= EF@ io /< .+< +JD5

1; 1 T= < b2 /5 EF@ io - + [ < /5 4 EF@ - / /<

]6[:

g g ! RT ln ff! )4(

D5 < = +JD5 +< C < [ 0 T= 1 a 1 D M/ .T < 4

@ EF@ +< . /9 6/ F@ +J- = C3S) h1 6/ H ~5 +G D ( < 4

/9 D b2]6[:

∆G & n ' g ! RT ln(y))*+,- & n g ! +./0101

)5(

0< <[ :1 < +D 3 c< : D +5 +J ( D M/ 4 +@ < .< J T=GEM

2 )T +G +D/ +< / A- ~5 h< bOqg (~5

I T= EF@ oT= 1 [ = = J? D =<. [ > F, +J

A= ?/ A OT, @ T=2 = 4-. /

A? - Ta bQ D +5H@ +< , DJ [ 3 /? bQ ?/ A 6/ < J

1 Condensed 2 Gibbs energy minimization

8 D -< +8 [ +/ [ +< oDs [ ?/ jk 4F =

1 D b2 < J : .< J? +)5QR -

]=12[:

U Fuel(./061)Fuel(671) H(./061)H(671) )6(

U8 Air(./061)Air(671) O(./061)O(671) )7(

/ 2- 31-. 1, (ED 5, 42 / K,2;.L

]2 -. )-A11[

3 -2- 42 / (>1 b F@ +J- D 1< ?/ A D @? G +g < . / T= [ = T=

aD< 3 < (bMH : 5 I 4<)( D/9 5]6[:

E >∆G2F RT2F ln ?pAB(p8B)C/pAB8 E )8(

OT, Q ?/ A + G ATO D +C1 +JGIHy 8 +D/ D T D< a G

<< G4 ?/ A + G : .= /< D c< D G]6[:

V. E > V-.,-0 > V-.,.- > VG > V./0,-0 > V.-0,.- )9(

C1 +JG IHy 8 +D/ v< D _ < /< D]12[:

V-.,H RTF sinhKC L JzJ!,HO , γ anode, cathode )10(

VG JδRG )11(

V./0,-0 RT2F ln ? pABpAWXE )12(

V.-0,.- RT2F ln YL p8p8WXOC LpA8WXpA8OZ

)13(

b2k? HT@ D +1 +J h< IHy G Q M _m WT= F 5 F@ +J-

+D / a T= [ = b 2O)TPB(6 v< D /)14 -16( /<]12[:

pAWX p > [p > pAB\exp L JRTτ-2FD- O )14(

3 Open-circuit 4 Closed-Circuit 5 Effective Diffusion 6 Triple Phase Boundary

Page 5: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

61

a

T9

0

=H?

oA

a

]

D

p8WX p8 > JRTτ.2FD. )15(

pA8WX pA8 JRTτ.4FD. )16(

?/ A D @? 4 3S < /< D ( -

]12:[

P JVb )17(

?/ A 4@ 4 F 1 7g D)18( 5 /9:

Wd ef,gf PAηijk )18(

? 1 < +< / 6/5 v< 4D< < < o C 4; +J 4<:

Wd lmn Wd ef,gf > Wd o Wd p Wd q > Wd )19(

3 -3- 0 ()*+, - ()., /" v= D +G +< . OT, J . D +F@ 4 D c< D /< :

Qd Wd (nd h)0> [nd h\/6

0 )20(

() F +GF5 ]T, F H +GF5 /< D b2 < / T=:

Ed x Ed xs Ed x.s )21(

D b2 < T= F +GF5 ` c< /9=:

Ed xs nd t[h > h/\ > T!(s > s/)v )22(

Ed x.s nd w yex.s,! RT! y ln yx )23(

+G b D ` bs1 +GF5 A -@ C8 D = +GF5 . / = I j25 F4TJ g

+ D< < 6a c< D = D :

Ed xy Qz 1 > T!T | )24(

+ < jq? / < +GF5 789 : K 298 - kPa 101 ,/ .= 4F +GF5 _1 Q -5< -

+) EF@ D . J +J D b2 < F 1=:

Ed x,. Qzz1 > T!T | > Wd [Ed x\0

> [Ed x\/6

)25(

H +GF5 _ / 6/ +< F c< D 5)26( / /9 A<;:

Ed x,/-7 Ed x,. )26(

6/ +G D</ 5 a (D < F ?/ : (>) / <:

η Wd lmnnd LHV )27(

c< 7g D +G +GF5 D<)28( /<:

1 Exergy destruction

ψ Wd lmnnd ex.s! )28(

) +G D +5 0< :lTJEUF( +<6/ /5 / /9 A<; D c< D:

η Wd lmn Qd y Qd o//70,nd LHV )29( D< /< D b2 < F A +GF5:

ψ Wd lmn Ed xy Ed xynd ex.s! )30(

0 D v< 7g D ?/ A o C 4; D< /9=:

ηo Wd ef,gf > Wd ond LHV )31(

ψo Wd ef,gf > Wd ond ex.s! )32(

4 - P: 6Q,1(> A2a L = D ?/ < t@ ?/ A +D/

w 7g D A; [< = v< / < > 68t o = = F EES2 / v/ = L < `9

L = 8 (TJ ; A<; ;.J A=3 = 8 L +D/ : +< @ ?/ A

][TJ `9/ v/ = L 78912 4- [.J

/ 3- J 6Q,42 / R(>

/ 6/ M/ ?/ A5+

+0- @ ] D 4GJ < - < D 4 J OT, +< _Ni-

YSZǀYSZǀLSM-YSZ . / = M/ + +J H/ bm M b9M2 hc8 c/ A= 4 +<

+ - D WF bk- 3 C@1 =]12[.

2 Engineering Equation Solver

Page 6: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

62

H9

A G

+

GF5

+ /

6

/

5 <

+ ...

J- 1- S9" T:, E E#, E2 FU.V - (E-- (A.,

8

@ ?/ A +HTO bk-

1073 T [K] 505 p [kPa]

85/0 U 25/0 U8 5 (pr) -

250 A [m2] 7060 J 'AK*

7 10 pABp! pABp! exp (> 10 ) J!,- 'AK*

7 10 p8p! !. exp (> 130000 ) J!,. 'AK* 500 τ- [µm]

10 τ. [µm]

30 δ [µm]

735/0 RG [Ωm]

000001537/0 D- 'm KC*

0000015/0 D. 'm KC*

/ 6/ < bF0, +HTO bk-5

85 η. [%]

90 η [%]

90 ηA [%]

95 ηp [%]

98 ηijk [%] 80 ηW [%]

/ 6/ J +< < bm 5

298 T9 [K] 3/101 p0 [kPa]

21% B [%]

79% lB [%]

5- W" - P: A=4 4- 4@ 3S / < ?/ A 9

9 < A= : = L .J[cw;1 j1 @? 4 ?/ A + G bM D 4- /

. 4@ 3S b Q 4 D A= cTJ 4 + G [J @ < 4@ 3S [F < =

/ A @? [F ? 8 < / < .<Am-2 7060 I +0- 6/ ?/ A W4@ 3S +<

C@ = a :=1 = M/ b9M2 +< 4 @? 4 ?/ AkW 103 × 183/1 .< J?

1 Polarization Curve

/ 4- "I6XYZ 42 /

cTJ G < G = = H; [<

+JG < F@ +J- D Z ?/ A +C1 D = A= . / < Iy 8 +D/5

4- 4@ 3S / < J : cTJ .J A= = 4F 4@ 3S [F <

?/ A + G , [F ) +JG [J.<

/ 5- 42 / (5 )1- . :. 1[@ I:,*V, .\]

/ 6/ W+G N 4O < ?/ A , D -

9 5 = 3S Q 4 + G/ 6/ HTO + < ? bQ 4@ . = J? 5

A=6 0< < 4@ 3S b QR +G D +5 D<+GF5= 1 H; [< 4- .J

A= cTJ [F < = 4@ 3S < 68 +)5 Q < [J ?/ A 4

/ 6/ HTO 6/ [J < , 5 -

+g < .5D< +GF5 / 6/ 3S 5 4@[A/m2] 7060 .F 75 % 4@ 3S [F < =<

[A/m2] 10000 D T < 60./ J? %

Page 7: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

63

a

T9

0

=H?

oA

a

]

D

/ 6- F,.^ . 25V E> - ()., >, (.+()*+, .\, E

:. 1[@ .^ ) (a1,. 25V ()., >, (.+ ) (b E>()*+,

/ 7- F,.^ . 25V E> - ()., >, (.+()*+, .\, E

42 / (5 (E E .^ ) (a1,. 25V ()., >, (.+ ) (b E>()*+,

QR +J HT@ D ?/ A HTO 3 W)5

/ 6/ , < . / ?/ A + + 5 + + [F < n QR D Z ?/ A

?/ A D @? +JD5 > F, 4 +-< 60/ , = +-< +GF5

/ 6/ [F cTJ . = J? 5 A=7 + [F < / = 4- ?/ A +

0< n QR D< +G D +5+GF5 H 6/ [J b2 / +a < QR : .=

?/ A + +K900 4 +GF5 6// a < 556 [J %.<

/ A + + : a g D +0- W?K860 : + S / A > F, 4 D

> F, +< @? xwM < D b2 : =]< J? ?/ A < D [11HO .[ [F +F 6y

9 A < ATO ?/ A + +@ +J P= oT T; :lTJ ?/ A < ~@

A ] : + + 4 < 4 ?/ +JK 1100 ] / < 9611.[

/ 8- F,.^ . 25V E> - ()., >, (.+()*+, .\, E

42 / (5 DV E .^ ) (a1,. 25V ()., >, (.+ ) (b E>()*+,

A + - [F t> t n QR D 4- L :lTJ

0< < ?/ 4 +G D +5+GF5 < . ?/ A + - [F < +gkPa 700 D<

+GF5 / 6/ < [F 2 / < 578 J? %

)(

)(

)(

()

()

)(

Page 8: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

64

H9

A G

+

GF5

+ /

6

/

5 <

+ ...

A= : ./8 Ds 3 jg D . / = 4- A < + ?/ J W- [F 6/ + - [F A + - [F 5 J , D . / ?/

/ :R 0@ -< FJ j2 ?/ +< oDs +JF / 6/ + - ) = J? 5

b/9 / < < -.= 0< b2 < +k; L A= = 9 4- J 980 %

85% 0< ?/ D +5 L :0< H D< 6/+GF5 . = J? 4 HTO +< 3 bO <

/ 6/ 0< ?/ A _/ +0- 5 <80 85 > F, D = D 4GJ D 2

= [. = T

/ 9- F,.^ . 25V E> - ()., >, (.+()*+, .\, E

. 25V E .^ 342 >, (.+ ) (a1,. 25V ()., >, (.+ ) (b E>()*+,

?/ A + - D Z < ~@

@ ?/ A t J ?/ QR0< +<. ?/ D +5 4TJ [< g

= M5 H; +< ma 789 D _ < Ni-YSZ YSZ LSM-YSZ = M/

/]12[. A= < @ <90< _m [J < ?/ D +5 70F % 4 [90 4 %+GF5 ?/ A26 %

4+GF5 / 6/ 572 [J %.< C@ 2 = - 8 T ?

/ 6/ AH9 D A2a L / < +0- 5

C@ . / = +GF5 +G3 F [5 4 8 W+ [/ 6/ /5 4F TJ <

0< D< +G D +5+GF5 < / +J C@ 1 4- C@ = L / < .J3 D M/ <

/ 6/ = W-5 -/ W< D Z 5 4F < + 4kW 633 ?/ A + W4 <

[F .<

J- 2- d,24 12 0 E efD g9 :E2. +

6/ c8 p [kPa] T [K] d [mol/s] d [kW]

/

6

/

5

[

/

[

5 4

+

Ja

A

=

H2

1 505 6/277 175/7 2468 2 505 1/509 175/7 2483

3 505 3/647 175/7 2504 4 505 2/781 11/87 870 5 505 1073 202/5 59/446

6 505 1073 68/91 1552 7 505 1193 08/96 1930

8 101 843 08/96 72/740

9 101 298 11/87 249/11 10 505 500 11/87 82/481 11 101 6/821 08/96 034/698 12 101 4/540 804/4 05/11

13 101 9/560 276/91 455/236 14 101 9/559 08/96 48/247 15 101 3/538 08/96 286/218

16 101 2/364 08/96 664/50 17 101 2/298 1000 9500 18 101 2/313 1000 9513

25 101 2/113 7/348 86/48 26 101 2/298 7/348 027/45

.

5w :

?S

19 77/35 365 8754/0 4758

20 2000 6/365 8754/0 4760 21 2000 553 8754/0 4785

22 77/35 2/479 8754/0 4773 23 101 2/313 99/50 8/485

24 101 2/328 99/50 85/489

/ </ 6/ +GF5 AH9 D /< L -

?/ A A? +GF5 _ :-< +0- 5 \ @ +J [ OT, A < : .J

+) -5< bQR ?/ A 5 o, T=4 D = a +GF5 _ :-< +1< . /J

5 Rec o5 C/ D + jq? F 4 A ; A= . / = o5 W 10 +GF5 _ 4F

/ 6/ bF0, 4- +0- 5.J

)(

()

Page 9: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

65

a

T9

0

=H?

oA

a

]

D

C@ 3 - O +J 8/ 6/ +HT < 5

/ C@ +J1 103 × 816/1 Wd lmn [kW]

3/152 Qd o//70, [kW]

3/505 Qd y [kW]

103 × 183/1 Wd ef [kW]

9/108 η [%]

81/74 ψ [%]

2/29 ηo [%]

2/27 ψo [%]

92/79 η [%]

46/74 ψ [%]

/ 10 - ,* h:.f ()*+, E F,* 0 12 +

(ED

6 - (.+ / 6/ +GF5 +G AH9 D /< L -

4- +0- 5 + v= 9 JK 1073 kPa 505 9 < Am-2 7060 ?/ A 4@ 3S 4O <

A<; 8 / ; 6/ @%9/108 0< 4O < -

+G D +5%81/74 H D< 4O <+GF5 .J 4- L+HTO v= : J < ?/ A A <

/ 6/ 8 +0- 5kW 3/152 -/ W<kW 3/505 = m W-5< + 4 F 6/

4F <kW 633 a)53(% ?/ A + W4 < [F .<

L :lTJ a [F n QR D + - D< 6/ H [F < ?/ A+GF5 . 4

, F ?/ A W4@ 3S [F _/ = ~O /< WL / < .= J? 6/ H [J

9 <850< 4O < % ?/ A +< ?/ D +5 6/ H W4 , ?/ A 4 +< +0< L

. J? /< +0- AH9 D /< L / < 7<c 6/ +GF5

[ :-< < _ ?/ A OT, < < +GF5

4 D ~ < ba a 3@ `a IM9 J ; +1< < > D M/ u9< 5D < @ < .5

A k 68 ?/ 4O @ ?/ +J?SD 4F < 4/< o, 3 +J -

+J -tb889 +k; :Tm W[J Q AO6/ : H D< +GF5 _ J. [F

:lTJW+GF5 +G AH9 D /< L < / < / 6/5 0- + D Z 5 , 4

A D M/ P= bQ n bQR @ ?/ +J6/ : +G H2 N 4O <J 4D b

4GJ H2 ?/ 4O < > I y 5 I Hc bQ [J :Tm M/ :<

A D T= +J g =T 4S <Hc A . +5H@ :< - Q ?/ +J

7 - AE A ?/ A a[m2]

D- M _m'm KC*

D. M _m'm KC*

e k +GF5'J molKC*

Ed x +GF5 'W*

Ed x _ +GF5'W*

E D< G [V]

F + O

f 6/ A? T= EF@ /5

f ! / v= T= EF@ /5

g k ~5 +G'J molKC*

G ~5 +G'J*

g! / v= k ~5 +G'J molKC*

h k 'J molKC*

J 4@ 3S'AK*

J! 4@ 3S'AK*

n C 1[mol]

nd C 4@ [mol sKC]

P ?/ A D @? 4 3S[WK]

p F@ - [kPa]

pWX F@ - EF@io +D / a [kPa]

Q ba'J*

Qd 5 C8 xJ [W]

R JD5 0@ <Q[J molKC KKC]

RG 8[Ωm]

s k [J molKC KKC]

S [J KKC]

T [K]

U ?/ jk _m

U8 J jk _m

Page 10: Second Revision (Accepted Manuscript)€¦ · 108.9% and 75%, respectively and overall output power is increased 633 kW by using tri-generation system instead of fuel sell stack only,

66

H9

A G

+

GF5

+ /

6

/

5 <

+ ...

V-. G C1 +D/[V]

VG 8 G [V]

V./0 IHy G [V]

W 'J*

Wd 4[W]

y T= EF@ η D< ψ D<+GF5

τ- m[m]

τ. m[m]

δ m[m]

ch T=

C /T

CC `a IM9

cmp EF@

e

FC ?/ A

G G

HE 5 :

MC q? IM9

GT +D5 :<

ph () F

8 - i,. [1] Combined heat and power: evaluating the benefits of greater

global investment. International Energy Agency, Paris, France, 2008.

[2] International Energy Outlook 2009. Energy Information Administration, USA, 2009.

[3] U.S. Department of Energy, Fuel cell handbook, seventh edition, EG, Inc. G Technical Services, and U.S. Department of Energy, USA, November 2004.

[4] Weber C., Koyama M. and Kraines S., Co2-emissions reduction potential and costs of a decentralized energy system for providing electricity, cooling and heating in an office-building in Tokyo. Energy, Vol. 31, No. 14, pp. 2705 – 2725, 2006.

[5] Fuerte A. et al, Ammonia as efficient fuel for SOFC. Journal of Power Sources, Vol. 192, pp. 170-174, 2009.

[6] Ishak F., Dincer I. and Zamfirescu C., Thermodynamic Analysis of Ammonia-fed Solid Oxide Fuel Cells, Journal of Power Sources, Vol. 202, pp. 157-165, 2012.

[7] Meng Ni, Dennis Y.C. Leung and Michael K.H. Leung Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. Journal of Power Sources, Vol. 183, No. 2, pp. 682-686, 2008.

[8] Anatoly Demin P. T., Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor. International Journal of Hydrogen Energy, Vol. 26, No. 10, pp. 1103-1108, 2001.

[9] Chellappa A.S., Fischer C.M., Thomson W.J., Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Applied Catalysis A: General, Vol. 227, No. 1-2, pp. 231-240, 2002.

[10] Meng Ni, Dennis Y.C. Leung and Michael K.H. Leung, An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate

temperatures. Journal of Power Sources, Vol. 185, No. 1, pp. 233-240, 2008.

[11] Dincer I. and Zamfirescu C., Thermodynamic performance analysis and optimization of a SOFC-H+ system. Thermochimica Acta, Vol. 486, No. 1-2, pp. 32-40, 2009.

[12] Dincer I. and Ishak F., Energy and Exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle. Journal of Power Sources, Vol. 212, pp. 73-85, 2012.

[13] Cinti G, et al., SOFC operating with ammonia: Stack test and system analysis. International Journal of Hydrogen Energy, Vol. 41, pp. 13583-13590, 2016.

[14] Kalinci Y. and Dincer I., Analysis and performance assessment of NH3 and H2 fed SOFC with proton-conducting electrolyte. International Journal of Hydrogen Energy, in Press, corrected Proof, 2017.

[15] Siddiqui O. and Dincer I., A review and comparative assessment of direct ammonia fuel cells. Thermal Science and Engineering Progress, Vol. 5, pp. 568-578, 2018.

[16] Tan W.Ch., Iwai H., Kishimoto M., Bruz G., S. Szmyd J. and Yoshida H., Numerical analysis on effect of aspect ratio of planner solid oxide fuel cell fueled with decomposed ammonia. Journal of Power Sources, Vol. 384, pp. 367-378, 2018.

[17] Shy S.S., Hsieh S.C., Chang H.Y., A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements. Journal of Power Sources, Vol. 396, pp. 80-87, 2018.

[18] Fahad A. Al-Sulaiman, Thermodynamic Modeling and Thermoeconomic Optimization of Integrated Trigeneration Plants Using Organic Rankine Cycles. PhD thesis, Waterloo, Ontario, Canada, 2010.