secondary pm2.5 merps demonstrations...= 367 tpy merp (tpy) = 1.0 ppb โˆ—...

30
Secondary PM 2.5 MERPs Demonstrations Michael Moeller, Region 4 2019 EPA Regional/State/Local Modelers' Workshop Seattle, WA

Upload: others

Post on 27-Apr-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

Secondary PM2.5 MERPs Demonstrations

Michael Moeller, Region 42019 EPA Regional/State/Local Modelers' Workshop

Seattle, WA

โ€ข EPAโ€™s 2017 revisions to the Guideline on Air Quality Models includes the following two-tiered demonstration approach for addressing single-source impacts on ozone and secondary PM2.5 (as detailed in Section 5):

โ€ข Tier 1 demonstrations involve use of technically credible relationships between emissions and ambient impacts based on existing modeling results or studies deemed sufficient for evaluating a project sourceโ€™s impacts.

โ€ข Tier 2 demonstrations would involve case-specific application of chemical transport modeling (e.g., with an Eulerian grid or Lagrangian model).

โ€ข Section 5 does not provide a requirement for chemical transport modeling

โ€ข The EPA believes photochemical grid models are generally most appropriate for addressing ozone and secondary PM2.5, because they provide a spatially and temporally dynamic realistic chemical and physical environment for plume growth and chemical transformation.

Background: Single-Source Impacts on Ozone and Secondary PM2.5

โ€ข April 30th 2019, the EPA released the final Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM2.5 under the PSD Permitting Program or โ€œMERPs Guidanceโ€

โ€ข Update to the draft MERPs Guidance that was released in December 2016โ€ข Spreadsheet has also been posted to SCRAM that contains the underlying maximum impact and MERPs information (daily

PM2.5, annual PM2.5, and daily maximum 8-hr average O3 ) for each of the hypothetical sources.โ€ข https://www3.epa.gov/ttn/scram/guidance/guide/illustrative_merps_epa_modeling_2018dec28version.xlsxโ€ข Additional hypothetical sources were addedโ€ข More examples were included

โ€ข Cumulative Impact Analysesโ€ข Source Impact analyses for Class I PSD Increment (discussed further later)

Background: Single-Source Impacts on Ozone and Secondary PM2.5

https://www3.epa.gov/ttn/scram/guidance/guide/illustrative_merps_epa_modeling_2018dec28version.xlsx

Tier 1 PM2.5 MERPs Demonstration Example

A step by step demonstration of how to apply Tier 1 MERPs to assess secondary PM2.5 impacts in PSD permits, including a refined analysis to

address long-range transport into Class I areas)

Step 1) Start with lowest, most conservative, illustrative MERPs for selected Climate Zone (Table 4-1, new to revised guidance):

Tier 1 Demonstration: Selecting an appropriate hypothetical MERPs

Step 2) Screen the closest hypothetical sources to the project facility and select the lowest, most conservative, MERPs

Tier 1 Demonstration: Selecting an appropriate hypothetical MERPs

12WUS1 12EUS2 12EUS3

12US2

Step 3) If selecting a nearby hypothetical source that is not the most conservative, the applicant should describe how the existing modeling reflects the formation of O3 or PM2.5 in that geographic area and is therefore most appropriate.

Information that could be used to describe the comparability of two different geographic areas include:โ€ข nearby local and regional sources of pollutants and their emissions (e.g., other industry, mobile, biogenics) โ€ข rural or urban nature of the area โ€ข terrain โ€ข ambient concentrations of relevant pollutants where availableโ€ข average and peak temperatures โ€ข humidity

Tier 1 Demonstration: Selecting an appropriate hypothetical MERPs

Table A-1. Complete list of EPA modeled hypothetical sources presented in this document. โ€œMax Nearby Urban (%)โ€ column provides the highest percentage urban landcover in any grid cell near (within 50 km) the source.

MERP (tpy) =๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† ๐‘ฃ๐‘ฃ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ฃ๐‘ฃ๐‘Ž๐‘Ž (๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

) โˆ— ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘€๐‘€๐‘š๐‘š๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘€๐‘€๐‘’๐‘’ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก ๐‘’๐‘’๐‘š๐‘š๐‘ก๐‘ก๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก๐‘ก๐‘ก๐‘๐‘ ๐‘€๐‘€๐‘Ÿ๐‘Ÿ ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€

MERP (tpy) = 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

โˆ— 1000 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก๐‘š.271 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š= 367 tpy MERP (tpy) = 1.0 ppb โˆ— 500 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก

1.1๐‘š4 ๐‘ก๐‘ก๐‘ก๐‘ก๐‘๐‘= 441 ๐‘ก๐‘ก๐‘Ž๐‘Ž๐‘ก๐‘ก

Tier 1 Demonstration: Example MERPs Calculation

Class II Values

Metric Poll State County Emissions Stack Height Conc MERPDAILY SULFATE Florida Bay 1000 10 3.271 367

Metric Poll State County Emissions Stack Height Conc MERPO3 MDA8 NOX Florida Bay 500 10 1.134 441

FL Project Source

Tier 1 Demonstration: PM2.5 24-hr SIL ExampleExample: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Žmodeled

concentration of Primary PM2.5 for the 24-hr Class II SIL.

NOX and SO2 precursor contributions to secondary PM2.5 are considered together, in addition to modeled primary PM2.5, to determine if the sourceโ€™s air quality impact would exceed the PM2.5 SIL.

Equations to assess Project emission secondary impacts:

Project Impact as % of SIL = ๐ธ๐ธ๐‘š๐‘š๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘€๐‘€๐‘’๐‘’ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘ƒ๐‘ƒ๐‘€๐‘€๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘†๐‘†๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€

* 100

Project Impact in ppb or ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

= ๐ธ๐ธ๐‘š๐‘š๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘€๐‘€๐‘’๐‘’ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘ƒ๐‘ƒ๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘ƒ๐‘ƒ๐‘€๐‘€๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€

โˆ— ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† ๐‘ฃ๐‘ฃ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ฃ๐‘ฃ๐‘Ž๐‘Ž (๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘œ๐‘œ๐‘œ๐‘œ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

)

Project Impact in ppb or ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

= ๐ธ๐ธ๐ธ๐ธ๐‘Ž๐‘Ž๐ธ๐ธ๐ธ๐ธ๐‘Ž๐‘Ž๐‘œ๐‘œ๐ธ๐ธ ๐‘œ๐‘œ๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘Ž๐‘Ž ๐‘ก๐‘ก๐‘Ž๐‘Ž๐‘ก๐‘ก ๐‘“๐‘“๐‘œ๐‘œ๐‘œ๐‘œ๐ธ๐ธ ๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ก๐‘ก โˆ— ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก ๐‘’๐‘’๐‘š๐‘š๐‘ก๐‘ก๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘ข๐‘ข๐‘ฆ๐‘ฆ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘€๐‘€๐‘š๐‘š๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘€๐‘€๐‘’๐‘’ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ (๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก) ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€

Tier 1 Demonstration: PM2.5 24-hr SIL Example

Is Primary + Secondary PM2.5 > SIL?

Step 1): Use lowest illustrative MERP from the Southeast Climate Zone:

Tier 1 Demonstration: PM2.5 24-hr SIL Example

PM2.5 24-hr SIL = 1.2 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

modeled concentration of Primary PM2.5 for the 24-hr Class II SIL.

Tier 1 Demonstration: PM2.5 24-hr SIL ExampleExample: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Žmodeled

concentration of Primary PM2.5 for the 24-hr Class II SIL.

Step 1): Use lowest illustrative MERP from the Southeast Climate Zone:

Project Impact as % of SIL =( 100 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€1,94๐‘š ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘€๐‘€๐‘ก๐‘ก ๐‘ƒ๐‘ƒ๐‘€๐‘€2.5๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ

+ 100 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘†๐‘†๐‘๐‘2 ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€๐‘š67 ๐‘‡๐‘‡๐‘ƒ๐‘ƒ๐‘‡๐‘‡ ๐‘†๐‘†๐‘๐‘2 ๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘€๐‘€๐‘ก๐‘ก ๐‘ƒ๐‘ƒ๐‘€๐‘€2.5 ๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ

) * 100 = 32% of SIL

Project Impact in ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

= ( 100 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€1,94๐‘š ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘€๐‘€๐‘ก๐‘ก ๐‘ƒ๐‘ƒ๐‘€๐‘€2.5 ๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ

+ 100 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘†๐‘†๐‘๐‘2 ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€๐‘š67 ๐‘‡๐‘‡๐‘ƒ๐‘ƒ๐‘‡๐‘‡ ๐‘†๐‘†๐‘๐‘2 ๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘€๐‘€๐‘ก๐‘ก ๐‘ƒ๐‘ƒ๐‘€๐‘€2.5๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ

) * 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

= 0.384 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

Primary + Secondary PM2.5 as % of SIL:1.0๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š๐‘š๐‘š๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

1.2๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š ๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†+ 0.32 = 115% of SIL

Primary + Secondary PM2.5 in ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

:

1.0 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

+ 0.384 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

= 1.384 ๐ฎ๐ฎ๐ฎ๐ฎ๐ฆ๐ฆ๐’Ž๐’Ž

Is Primary + Secondary PM2.5 > SIL?1.0 + 0.38 = 1.38 ๐ฎ๐ฎ๐ฎ๐ฎ

๐ฆ๐ฆ๐’Ž๐’Ž

If no, then total PM2.5daily is below the SIL and no Class II Increment or NAAQS analysis is necessary

Step 2: Select lowest MERP from nearby sources with similar stack height:

Step 1): Use lowest, illustrative MERP from the Southeast Climate Zone:

100 tpy NOx from source/1,943 tpy NOx daily PM2.5 MERP = 0.05100 tpy SO2 from source/367 tpy SO2 daily PM2.5 MERP = 0.27 Total Secondary PM2.5 = .05 + .27 = .32 * 100 = 32% or 0.32 * 1.2 ug

m๐‘š= 0.384 ๐ฎ๐ฎ๐ฎ๐ฎ

๐ฆ๐ฆ๐’Ž๐’Ž

Tier 1 Demonstration: PM2.5 24-hr SIL ExampleExample: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Žmodeled

concentration of Primary PM2.5 for the 24-hr Class II SIL.

PM2.5 24-hr SIL = 1.2 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: PM2.5 24-hr SIL Example

Step 2): Select lowest MERP from nearby sources with similar stack height:

-Florida, Bay (12EUS2):-Alabama, Tallapoosa (12EUS3):-Alabama, Autauga (12EU2):

Metric Poll State County Emissions Stack Height Conc MERPDAILY NITRATE Florida Bay 1000 10 0.618 1943DAILY NITRATE Florida Bay 500 10 0.283 2122DAILY NITRATE Alabama Autauga 500 10 0.178 3370DAILY NITRATE Alabama Autauga 1000 10 0.341 3514DAILY NITRATE Alabama Tallapoosa 500 10 0.092 6555

Metric Poll State County Emissions Stack Height Conc MERPDAILY SULFATE Florida Bay 1000 10 3.271 367DAILY SULFATE Alabama Autauga 1000 10 3.097 387DAILY SULFATE Florida Bay 500 10 1.366 439DAILY SULFATE Alabama Autauga 500 10 1.231 487DAILY SULFATE Alabama Tallapoosa 500 10 0.325 1844

Same MERPs from Step 1; therefore:

Total Secondary PM2.5 = 0.384 ugm๐‘š

or 32% of SIL

Total PM2.5 = 1.0 + 0.38 = 1.38 ๐ฎ๐ฎ๐ฎ๐ฎ๐ฆ๐ฆ๐’Ž๐’Ž

Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

modeled concentration of Primary PM2.5 for the 24-hr Class II SIL.

Is Primary + Secondary PM2.5 > SIL?1.0 + 0.38 = 1.38 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Then Total PM2.5 Daily is below the SIL and no Class II Increment or NAAQS analysis is necessary

Step 2: Select lowest MERP from nearby sources with similar stack height:-Florida, Bay (12EUS2):-Alabama, Tallapoosa (12EUS3):-Alabama, Autauga (12EU2):

Same as Step 1:

Total Secondary PM2.5 = 0.384 ug/m3 or 32% of SILTotal PM2.5 = 1.0 + 0.38 = 1.38 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Step 3): Select most representative nearby source for similar scenario (500 tpy and L stack):

Step 1): Use lowest illustrative MERP from the Southeast Climate Zone:

100 tpy NOx from source/1,943 tpy NOx daily PM2.5 MERP = 0.05100 tpy SO2 from source/367 TPY SO2 daily PM2.5 MERP = 0.27 Total Secondary PM2.5 = .05 + .27 = .32 * 100 = 32% or 0.32 * 1.2 ug

m๐‘š= 0.384 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: PM2.5 24-hr SIL ExampleExample: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Žmodeled

concentration of Primary PM2.5 for the 24-hr Class II SIL.

PM2.5 24-hr SIL = 1.2 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: PM2.5 24-hr SIL Example

Step 3): Select most representative nearby source for similar scenario (500 tpy and L stack):

-Florida, Bay (12EUS2):-Alabama, Tallapoosa (12EUS3):-Alabama, Autauga (12EU2):

Information that could be used to assess the comparability of two different geographic areas include:โ€ข nearby local and regional sources of pollutants and

their emissions (e.g., other industry, mobile, biogenics)

โ€ข rural or urban nature of the area โ€ข terrain featuresโ€ข ambient concentrations of relevant pollutants

where availableโ€ข average and peak temperatures โ€ข humidity

Metric Poll State County Emissions Stack Height Conc MERPDAILY NITRATE Florida Bay 500 10 0.283 2122DAILY NITRATE Alabama Autauga 500 10 0.178 3370DAILY NITRATE Alabama Tallapoosa 500 10 0.092 6555

Metric Poll State County Emissions Stack Height Conc MERPDAILY SULFATE Florida Bay 500 10 1.366 439DAILY SULFATE Alabama Autauga 500 10 1.231 487DAILY SULFATE Alabama Tallapoosa 500 10 0.325 1844

100 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€6,555 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘๐‘๐‘๐‘๐‘๐‘ ๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘€๐‘€๐‘ก๐‘ก ๐‘ƒ๐‘ƒ๐‘€๐‘€2.5 ๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ

= 0.015

100 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘†๐‘†๐‘๐‘2 ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€1,844 ๐‘‡๐‘‡๐‘ƒ๐‘ƒ๐‘‡๐‘‡ ๐‘†๐‘†๐‘๐‘2 ๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘€๐‘€๐‘ก๐‘ก ๐‘ƒ๐‘ƒ๐‘€๐‘€2.5๐‘€๐‘€๐ธ๐ธ๐‘€๐‘€๐‘ƒ๐‘ƒ

= 0.05

Total Secondary PM2.5 = .015 + .05 = .065 * 100 = 7% of SILor 0.065 * 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š= 0.078 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Total PM2.5 = 1.0 + 0.078 = 1.078 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž โˆš

Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

modeled concentration of Primary PM2.5 for the 24-hr Class II SIL.

Is Primary + Secondary PM2.5 > SIL?1.0 + 0.38 = 1.38 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Then Total PM2.5 Daily is below the SIL and no Class II Increment or NAAQS analysis is necessary

Step 2: Select lowest MERP from nearby sources with similar stack height:-Florida, Bay (12EUS2):-Alabama, Tallapoosa (12EUS3):-Alabama, Autauga (12EUS2):

Same as Step 1:Total Secondary PM2.5 = 32% of SIL or 0.384 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’ŽTotal PM2.5 = 1.0 + 0.38 = 1.38 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Step 3): Select representative nearby source for similar scenario (500 tpy and L stack)-Florida, Bay (12EUS2):-Alabama, Tallapoosa (12EUS3):-Alabama, Autauga (12EU2):

NOx: 100 tpy/6555 MERP = 0.015SO2: 100 tpy/1844 MERP = 0.05Total Secondary PM2.5 = 7% of SIL or 0.078๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’ŽTotal PM2.5 = 1.0 + 0.078 = 1.078 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Step 1): Use lowest illustrative MERP from the Southeast Climate Zone:

100 tpy NOx from source/1,943 tpy NOx daily PM2.5 MERP = 0.05100 tpy SO2 from source/367 TPY SO2 daily PM2.5 MERP = 0.27 Total Secondary PM2.5 = .05 + .27 = .32 * 100 = 32% or 0.32 * 1.2 ug/m3 = 0.384 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: PM2.5 24-hr SIL Example

โˆš

Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 1.0 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

modeled concentration of Primary PM2.5 for the 24-hr Class II SIL.

PM2.5 24-hr SIL = 1.2 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: PM2.5 24-hr SIL Example

Is Primary + Secondary PM2.5 > 100% or 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š?

Perform Cumulative Analysis

NAAQS Modeling:Modeled Primary PM2.5 + MERPs Secondary

PM2.5 + Background Monitor < NAAQS?

PSD Increment:Modeled Primary PM2.5 + MERPs Secondary

PM2.5 < Increment?

YES

PM2.5 24hr Analysis Complete

NO

Tier 1 Demonstration: Class I Analysis Example (Daily PM2.5) PM2.5 24-hr Class I SIL = 0.27 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

concentration of Primary PM2.5 at 50 km and the nearest Class I area is 150 km away

FL Source

Class I Area -Chassahowitzka

Use AERMOD to model primary PM2.5 at 50km in the direction of the nearest Class I area โ€“Chassahowitzka, 150km away

Primary PM2.5 at 50 km = ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Include Secondary PM2.5for Class I PM2.5assessments

Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 0.18 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

concentration of Primary PM2.5 at 50 km and the nearest Class I area is 150 km away

Step 2) Select lowest MERP from nearby sources (Florida, Bay) with similar stack height:

Same as Step 1Total Secondary PM2.5 = .05 + .27 = 0.32 * 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š= 0.384 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Step 3): Select representative nearby source (Alabama, Tallapoosa) for similar scenario (500 tpy and L stack)

NOx: 100 tpy/6555 MERP = 0.015SO2: 100 tpy/1844 MERP = 0.05Total Secondary PM2.5 = 0.065 * 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š= 0.078 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Step 1) Use lowest illustrative MERP from the Southeast Climate Zone:

100 tpy NOx from source/1,943 tpy NOx daily PM2.5 MERP = 0.05100 tpy SO2 from source/367 TPY SO2 daily PM2.5 MERP = 0.27 Total Secondary PM2.5 = .05 + .27 = 0.32 * 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š= 0.384 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: Class I Analysis Example (Daily PM2.5)

Primary PM2.5 at 50km + Secondary PM2.5 = 0.18 + 0.384 = 0.564 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Primary PM2.5 at 50km + Secondary PM2.5 = 0.18 + 0.384 = 0.564 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Primary PM2.5 at 50km + Secondary PM2.5 = 0.18 + 0.078 = 0.258 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

PM2.5 24-hr Class I SIL = 0.27 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

โˆš

Tier 1 Demonstration: Class I Analysis Example (Daily PM2.5)Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 0.2 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Žconcentration of Primary PM2.5 at 50 km and the nearest Class I area is 150 km away.

Step 3): Select representative nearby source (Alabama, Tallapoosa) for similar scenario (500 tpy and L stack)

NOx: 100 tpy/6555 MERP = 0.015SO2: 100 tpy/1844 MERP = 0.05Total Secondary PM2.5 = 0.065 * 1.2 ๐‘ข๐‘ข๐‘ข๐‘ข

๐‘š๐‘š๐‘š= 0.078 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Primary PM2.5 at 50km + Secondary PM2.5 = 0.2 + 0.078 = 0.278 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

PM2.5 24-hr Class I SIL = 0.27 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

What to do when neither Step 1 โ€“ 3 will work and the nearest Class I area is significantly further than 50km?

The maximum predicted secondary concentrations are within 10 โ€“ 50 km of the source and decrease substantially with distance. Taking the conservative, maximum values from the MERPs may not work for all projects, requiring a more refined approach.

https://www.epa.gov/visibility/regional-haze-program

Alabama, Tallapoosa: 500 tpy, L Height (From MERPs Guidance Modeling)

Conc

entr

atio

n (u

g/m

3)

Distance from Source (Km)

Source 19: Alabama, TallapoosaEmissions: 500 TPY

Stack Height: L

Maximum Impact โ‰ฅ 50 km from source (ug/m3)

24-hr AnnualSulfate 0.2031 0.0041Nitrate 0.0626 0.0012

Tier 1 Demonstration: Class I Analysis Example (Daily PM2.5)Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 0.2 ๐ฎ๐ฎ๐ฎ๐ฎ

๐ฆ๐ฆ๐’Ž๐’Žconcentration of Primary PM2.5 at 50 km and the nearest Class I area is 150 km away.

Refined Approach Step 1: Take the maximum impact โ‰ฅ 50 km from the hypothetical source and add to the primary PM2.5

Project Impact (๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

) = ๐ธ๐ธ๐ธ๐ธ๐‘Ž๐‘Ž๐ธ๐ธ๐ธ๐ธ๐‘Ž๐‘Ž๐‘œ๐‘œ๐ธ๐ธ ๐‘œ๐‘œ๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘Ž๐‘Ž ๐‘ก๐‘ก๐‘Ž๐‘Ž๐‘ก๐‘ก ๐‘“๐‘“๐‘œ๐‘œ๐‘œ๐‘œ๐ธ๐ธ ๐‘ƒ๐‘ƒ๐‘œ๐‘œ๐‘œ๐‘œ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ก๐‘ก โˆ— ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘Ÿ๐‘Ÿ ๐‘ž๐‘ž๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘’๐‘’๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก ๐‘’๐‘’๐‘š๐‘š๐‘ก๐‘ก๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘ข๐‘ข๐‘ฆ๐‘ฆ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘€๐‘€๐‘š๐‘š๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’๐‘€๐‘€๐‘’๐‘’ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ (๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก) ๐‘“๐‘“๐‘Ÿ๐‘Ÿ๐‘€๐‘€๐‘š๐‘š โ„Ž๐‘ก๐‘ก๐‘ก๐‘ก๐‘€๐‘€๐‘Ÿ๐‘Ÿโ„Ž๐‘€๐‘€๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘ฆ๐‘ฆ๐‘Ÿ๐‘Ÿ๐‘€๐‘€ ๐‘’๐‘’๐‘€๐‘€๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ฆ๐‘ฆ๐‘€๐‘€

PM2.5 Nitrate Daily: 100 ๐‘ก๐‘ก๐‘Ž๐‘Ž๐‘ก๐‘ก โˆ—0.0626๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž500 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก

= .013 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

PM2.5 Sulfate Daily: 100 ๐‘ก๐‘ก๐‘Ž๐‘Ž๐‘ก๐‘ก โˆ—0.20๐‘š1๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š500 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก

= .041 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

Total Secondary PM2.5 = .013 + .041 = .054 ๐‘ข๐‘ข๐‘ข๐‘ข๐‘š๐‘š๐‘š

Primary PM2.5 + Secondary PM2.5 = .20 + .054 = 0.254 ๐’–๐’–๐’–๐’–๐’Ž๐’Ž๐’Ž๐’Ž

PM2.5 24-hr Class I SIL = 0.27 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Tier 1 Demonstration: Class I Analysis Example (Daily PM2.5)Example: A small, surface-level source in central Florida with 100 tpy of NOx and 100 tpy of SO2 with 0.23 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Žconcentration of Primary PM2.5 at 50 km and the nearest Class I area is 150 km away.

What if Step 1 refined screening was not enough?

Step 2: Take the maximum impact โ‰ฅ the distance the project facility is from the nearest Class I area and add to the primary PM2.5

Distance (km)24-hr Impact (ยตg/m3)

Nitrate Sulfate10 0.0702 0.258420 0.0915 0.325330 0.0821 0.305240 0.0720 0.258450 0.0492 0.155360 0.0626 0.203170 0.0501 0.150080 0.0389 0.109490 0.0306 0.0880

100 0.0287 0.0787110 0.0266 0.0590120 0.0256 0.0667130 0.0206 0.0577140 0.0235 0.0572150 0.0201 0.0571

Maximum Impact โ‰ฅ 150km:

PM2.5 Daily Nitrate: 100 tpy โˆ— 0.0201 ๐‘ข๐‘ข๐‘ข๐‘ข/๐‘š๐‘š๐‘š500 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก

= .004 ๐ฎ๐ฎ๐ฎ๐ฎ๐ฆ๐ฆ๐’Ž๐’Ž

PM2.5 Daily Sulfate: 100 tpy โˆ— 0.0571 ๐‘ข๐‘ข๐‘ข๐‘ข/๐‘š๐‘š๐‘š500 ๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก๐‘ก๐‘ก

= .012 ๐ฎ๐ฎ๐ฎ๐ฎ๐ฆ๐ฆ๐’Ž๐’Ž

Total Secondary PM2.5 = .004 + .012 = .016 ๐ฎ๐ฎ๐ฎ๐ฎ๐ฆ๐ฆ๐’Ž๐’Ž

Primary PM2.5 + Secondary PM2.5 = .23 + .016 = .246 ๐ฎ๐ฎ๐ฎ๐ฎ๐ฆ๐ฆ๐’Ž๐’Ž

PM2.5 24-hr Class I SIL = 0.27 ๐’–๐’–๐’–๐’–

๐’Ž๐’Ž๐’Ž๐’Ž

Thank You!

Questions?

[email protected](404) 562-8985