section 3 ml lmolecular r t ti lr otational sts ...mackenzie.chem.ox.ac.uk/teaching/molecular... ·...

41
Section 3 Ml l R t ti lS t Section 3 Ml l R t ti lS t Molecular R ot ationalSpectroscopy Lectures 46 Molecular R ot ationalSpectroscopy Lectures 46 Quantum theory of atoms / molecules Previously: Quantum Mechanics of atoms / molecules Molecular Rotations and Spectroscopy Mechanics Molecular Rotations and Spectroscopy Diatomic Molecules (revision) Beyond diatomics Beyond rigid rotors: Complications of nuclear spin statistics

Upload: doantuong

Post on 21-Feb-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Section 3 M l l R t ti l S t

Section 3 M l l R t ti l S tMolecular Rotational Spectroscopy

Lectures 4‐6Molecular Rotational Spectroscopy

Lectures 4‐6

Quantum theoryof atoms / molecules

Previously: Quantum Mechanicsof atoms / molecules

Molecular Rotations and Spectroscopy

Mechanics

Molecular Rotations and SpectroscopyDiatomic Molecules (revision)Beyond diatomicsBeyond rigid rotors: y gComplications of nuclear spin statistics

Page 2: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.1 The spectroscopist as sleuth3.1 The spectroscopist as sleuthIt is now possible to following nuclearIt is now possible to following nuclear motion in real time (femtochemistry):

Photodissociation of ICN

Ahmed Zewail, N b l P i 1999

Photodissociation of ICN→ Very “classical” pictures 

(balls on surfaces)

Most spectroscopy however is performed in the “frequency domain” i e as a

Nobel Prize 1999 

Can be used in many guises:i T d t i l l t t d ti

Most spectroscopy, however, is performed in the  frequency domain  i.e., as a function of frequency or wavelength. 

i. To determine molecular structures and properties ii. To determine chemical composition (e.g., extraterrestrial)iii. To determine properties (Temperature, velocities, etc.)

Page 3: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.1.1 Determining Chemical Composition3.1.1 Determining Chemical Composition

IR (vibrational) spectroscopyIR (vibrational) spectroscopy useful for determining functional groups in synthetic chemistry.y

But spectroscopy is also useful beyond the lab:beyond the lab:

The Orion NebulaThe Orion Nebula

Page 4: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Molecular identification in space: Emission SpectraMolecular identification in space: Emission Spectra

>130 molecules / ions have been identified in interstellar space by their rotational>130 molecules / ions have been identified in interstellar space by their rotational emission spectra (rf‐astronomy)

H2 C3 c-C3H C5 C5H C6H CH3C3N CH3C4H CH3C5N? HC9N CH3OC2H5 HC11N

AlF C2H l-C3H C4H l-H2C4 CH2CHCN HCOOCH3 CH3CH2CN (CH3)2CO

AlCl C2O C3N C4Si C2H4 CH3C2H CH3COOH? (CH3)2O NH2CH2COOH

C2 C2S C3O l-C3H2 CH3CN HC5N C7H CH3CH2OH CH3CH2CHO

CH CH2 C3S c-C3H2 CH3NC HCOCH3 H2C6 HC7N

CH+ HCN C2H2 CH2CN CH3OH NH2CH3 CH2OHCO C8H2 2 3 2

CN HCO CH2D+ CH4 CH3SH c-C2H4O CH2CHCHO

CO HCO+ HCCN HC3N HC3NH+ CH2CHOH

CO+ HCS+ HCNH+ HC2NC HC2CHO

CP HOC+ HNCO HCOOH NH2CHO

CSi H2O HNCS H2CHN C5N

HCl H2S HOCO+ H2C2O HC4N

KCl HNC H2CO H2NCN

NH HNO H2CN HNC3NIST & National Radio Astronomy Lab.

NH HNO H2CN HNC3

NO MgCN H2CS SiH4

NS MgNC H3O+ H2COH+

y

Page 5: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Extraterrestrial Absorption SpectroscopyExtraterrestrial Absorption Spectroscopy

Use a star behind the cloud as light source for direct absorption

Page 6: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

← λ

uvvisibleInfra‐red visibleInfra red

1st identified in 1921, >300 lines observed throughout the galaxy.

After 89 years, not one line has been conclusively assigned! 

Page 7: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

At least that was true until Jan 2011.....Group leader, an ex‐Balliol / PTCLDPhil student!

C=C=CH

HH

Page 8: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Molecular l

Molecular lEnergy LevelsEnergy Levels

i.e., typically ΔEel >> ΔEvib >> ΔErot

Different electronic states (electronic arrangements)(electronic arrangements)

λΔ ≈

≈E 2 x 104 – 105 cm‐1

500 – 100 nm

102 – 5 x 103 cm‐1

100 μm – 2 μm

3 – 300 GHz (0.1 – 10 cm‐1)

Transitions at λVis – UV 

00 μ μinfrared

10 cm – 1 mmmicrowave

Page 9: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Molecular Rotational Energy Levels and SpectroscopyMolecular Rotational Energy Levels and Spectroscopy3.2 The moment of inertia3.2 The moment of inertia

Definition: The moment of inertia I of a system about an axis passing through the centre of mass is given by; ∑= iirmI 2 where mi is the mass of the ith particle and∑

iiirmI

e.g.,: For a diatomic molecule:

i pri is its perpendicular distance from the axis

2222

211

2 RrmrmrmIi

ii μ=+== ∑g ,

m1 m2

R)( 21

21

mmmmμ

+=

Where the reduced mass, 

≈ μR

I is the rotational equivalent of mass. F b d t ti b t i ith l l it JFor a body rotating about an axis with angular velocity ω;

The angular momentum, J = I ω (c.f.   p = mv)

J

μ RThe rotational kinetic energy,    E = J2/2I = ½ I ω2

(c.f.   E = p2/2m = ½mv2)

μ R

ω

Page 10: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.3 Quantum Rotation: The Diatomic Rigid Rotor3.3 Quantum Rotation: The Diatomic Rigid Rotor

The rigid rotor represents the quantum mechanical “particle on a sphere” problem:

Rotational energy is purely kinetic energy:

2 2 22 2

2 2

2 12 2

H Er r r r

ψ ψ ψμ μ

⎛ ⎞∂ ∂= − ∇ = − + + Λ =⎜ ⎟∂ ∂⎝ ⎠

22

22H E

rψ ψ ψ

μ= − Λ =Which, for constant r, simplifies to

The solutions resemble those of the particle on a ring with cyclic boundary conditions ψ(φ+2π)=ψ(φ) and are called spherical harmonics ( ) ( ) ( )Y θ φ θ φ= Θ Φψ(φ+2π)=ψ(φ) and are called spherical harmonics

The energy eigenvalues (the bit we will be interested in) are given by

( ) ( ) ( )l l llm lm mY ,θ φ θ φ= Θ Φ

( )2

12JJmE I

+= J J

The energy eigenvalues (the bit we will be interested in) are given by

with J = 0, 1, 2, 3....and m = 0 ±1 ±2 ±Jand mJ = 0, ±1, ±2,..... ±J

Page 11: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.3 Quantum Rotation: The Diatomic Rigid Rotor3.3 Quantum Rotation: The Diatomic Rigid Rotor J530B

Eigenvalues: ( )1   E B= +J J J

( )2

JouleB in

J is the rotational quantum number = 0, 1, 2, 3,...B is the rotational constant given by

420B

( ) Joule  2

B inI

=

These are usually given as wavenumbers or

312B

These are usually given as wavenumbers or rotational terms:

( )1EF Bhc

= = +JJ J J 0 0

1

22B6B

B( )hc

2 2 28 8h hBcI c Rπ π μ

= =H2 60.85 cm‐1

CO     1.93 cm‐1

HCl 10 59 cm‐1

B

8 8cI c Rπ π μ HCl 10.59 cm 1

n.b.,   There is no zero point energy associated with rotation, i.e., EJ=0= 0p gy J 0 Rotational energy levels get more widely space with increasing  JSo how fast do molecules rotate?

Page 12: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.3 Quantum Rotation: The Diatomic Rigid Rotor3.3 Quantum Rotation: The Diatomic Rigid Rotor

11BI

∝ provides the spectral link to molecular geometric structure 

F diatomics it i it li it1 1B ∝ → extract bond lengths (strictly ⟨1/R2⟩)For diatomics it is quite explicit: 2BI Rμ

∝ = → extract bond lengths (strictly ⟨1/R2⟩)

Isotope Effects:Isotope Effects: R is isotope independent (the electronic problem) but clearly the reduced mass does change and so e.g., 

37 36B u u uμ35 37

37 35

37 36 1 001538 35

H Cl H Cl

H Cl H Cl

B u.u u. .B u u.u

μ

μ= = =For H35Cl and H37Cl:

MJ

12

12

Degeneracy of Rotational LevelsDegeneracy of Rotational Levels

In the absence of external fields each J level exhibits (2J+1)-fold degeneracy arising from the projection quantum number MJ:

0

1

‐1

0

1

‐1the projection quantum number MJ: ‐2 ‐2e.g., J = 2

Page 13: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.4 Populations of J levels3.4 Populations of J levels

J E⎛ ⎞From the Boltzmann distributionJ

530BE

n g expkT

⎛ ⎞⎜ ⎟∝ −⎜ ⎟⎝ ⎠

j

j j

( ) ( )420B

( ) ( )2 1  and  1g E hcB= + = +j JJ J J

( )1h B⎛ ⎞J J( ) ( )12 1

hcBn exp

kT

⎛ ⎞+⎜ ⎟∝ + −⎜ ⎟⎝ ⎠

j

J JJ

2

312B

6BThe most populated level occurs for  0jdn

dJ=

( )⎛ ⎞0 0

12B ( ) ( )2 12 2 1 0j

hcBdn hcB expd kT kT

⎛ ⎞+⎡ ⎤ ⎜ ⎟= − + − =⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

J JJ

J

i.e., ( )22 2 1 0hcB− + =J or

1kT= −Ji.e.,  ( )2 2 1 0max kT

+J 22max hcB

Page 14: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.5 Rotational wavefunctions3.5 Rotational wavefunctions

( ) 2 where lim

m l

e EImφ

ψ φ = = ±

General Solution:

( )2lm lψ φπ

Imposing cyclic boundary conditions restricts this to 2lm =

0,  1,  2,  3, lm = …1lm =

These are imaginary functions but it is useful to plot the real part to see their symmetries: odd and even J levels have opposite parity. 

0lm =Parity = (‐1)J

Page 15: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.6 Rotational Spectroscopy3.6 Rotational Spectroscopy J530B

A G S l ti R lA. Gross Selection Rule: For a molecule to exhibit a pure rotational spectrum it must posses a permanent dipole moment.

420B(otherwise the photon has no means of interacting –“nothing to grab hold of”)

312BB. Specific Selection Rule: ΔJ = ± 1

0 01

2

2B

6B(Conservation of angular momentum → max. ΔJ = ± 1But need to change parity (see rotational wavefunctions))

( )( ) ( )1

1 2 1v F F

B B+

= −

= + + − +J J

J J J J

Transitions observed at:

Equally spaced ( )( ) ( )( )

1 2 1   2 1

B BB

+ + +

= +

J J J JJ

q y plines, separation 2B 

n.b., all lab‐based rotational spectroscopy is performed in absorption due to very slow spontaneous decay rates (A coefficient ∝ ν3 and ν small)

Page 16: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.7 e.g., Rotational Spectrum of CO3.7 e.g., Rotational Spectrum of CO

Rotational spectrum of CO (300K)

( )( ) ( )1

1 2 1v F F

B B+

= −

= + + − +J J

J J J J( )( ) ( )( )   2 1B= +J

Transitions in the microwave region:1‐100 cm‐1 (λ = 1 cm – 100 μm)

Lines spaced by 2B

Spectral Profile governed by population of lower p g y p plevels and J dependence of the transition strength.

Page 17: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.8 General Classification of Molecules3.8 General Classification of Molecules

Recall Definition: The moment of inertia I of a system about an axis passing 

Back to  the moment of inertia

through the centre of mass is given by; ∑=i

iirmI 2

We classify polyatomic molecules on the basis of their moments of inertia about three mutually perpendicular axes through the centre of mass (principal axes). 

Call these axes a, b, c and (and thus Ia, Ib, Ic) such that Ic=Imax and

cba III ≤≤

Page 18: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.9 General Classification of Molecules3.9 General Classification of MoleculesTd Oh Ih

I. Spherical tops: cba III ==

Zero dipole moment ∴ no pure rotational absorption spectrum

II. Symmetric tops: (two identical Ii)

a) Prolate tops:cba III =<

cba III <=b) Oblate tops:

III. Asymmetric tops: cba III <<

Page 19: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

d d f d l1 1B

3.10 Rotational terms3.10 Rotational terms

For diatomics we defined a rotational constant2B

I Rμ∝ =

In general we require three such rotational constants:

hB~hA~hC~b

bcIhB 28π

=acI

hA 28π=

ccIC 28π

=as wavenumbers:

≥ ≥≥ ≥

H2O molecule

‐1

‐1

27.9 cm14.5 cm

AB

==

‐1

14.5 cm9.3 cm

BC = But, we can no longer relate 

these constants explicitly to p yindividual bond lengths within the molecule. 

Page 20: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

KBAJJBF KJ −++= )~~()1(~ 2,

3.11 Prolate tops3.11 Prolate tops

JKJ

±±±==

……

,2,1,0,3,2,1,0

Levels labelled JKa

J is the total angular momentum or rotational quantum number and

Ka the projection quantum numbera p j q(for projection on the unique, a axis).

)J(JJ 1 KJJK JK

)J(JJ 1+= KJa =

J = 2

J

JK=0 KK=-1K=-2

66 6

6

J

JK=0 KK=-1K=-2

6666 66

66

J = 2

2

K +2K=+1

JK

66

K +2K=+1

JK

6666

20

2221

K=+2K=+1JK K=+2K=+1JKn.b.,  Each level has 2J+1 degeneracy (arising from MJ)

In addition, each level K > 0 has extra two‐fold degeneracy (±K)

Page 21: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.12 Oblate tops3.12 Oblate topsKBCJJBF KJ −++= )~~()1(~ 2

,

JKJ

±±±==

……

,2,1,0,3,2,1,0

,

J i th t t l l t

Levels labelled JKcJ is the total angular momentum 

or rotational quantum number andKc the projection quantum number

(for projection on the unique, c axis).

Oblate tops are typically flat “discus” – like molecules (e.g., benzene)

n.b.,  Each level has 2J+1 degeneracy (arising from MJ)In addition each level K > 0 has extra two‐fold degeneracy (±K)In addition, each level K > 0 has extra two fold degeneracy (±K)

Page 22: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.13 Don’t confuse various projections3.13 Don’t confuse various projections

( )= +J J J

K refers to a projection on a body‐fixed axis

(in this case, for a prolate top, the a axis)( , p p, )MJ refers to a projection on 

a space‐fixed axis

Page 23: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.14 Energy levels for Symmetric tops3.14 Energy levels for Symmetric tops

21 K)B~C~()J(JB~F

Oblate top terms

21 K)B~A~()J(JB~F ++

Prolate top terms

21 K)BC()J(JBF K,J −++=<0

1 K)BA()J(JBF K,J −++=>0

234

3

4J

K=0 K=1 K=2

23

211

0

2

K=0 K=1 K=20

1

K 0K 0 K 1 K 2

K ‐ stacks K ‐ stacks

For a given J, energy increases with K For a given J, energy decreases with K

Page 24: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

b

3.15 Linear Molecules (C∞v, D∞h)3.15 Linear Molecules (C∞v, D∞h)

∞== A~I hence0 a

Special, limiting case of prolate top:

∞A,Ia hence 0c

Only K = 0 exists, so

( )( )1         0 1 2 3F B , , , ....= =J

J J + J

Page 25: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

b

3.16 Linear Molecules (C∞v, D∞h)3.16 Linear Molecules (C∞v, D∞h)

∞== A~I hence0 a

Special, limiting case of prolate top:

∞A,Ia hence 0c

Only K = 0 exists, so

( )( )1         0 1 2 3F B , , , ....= =J

J J + J

3.17 Spherical Tops (Td, Oh, Ih)3.17 Spherical Tops (Td, Oh, Ih)3.17 Spherical Tops (Td, Oh, Ih)3.17 Spherical Tops (Td, Oh, Ih)

C~B~A~ ==

( )1         0 1 2 3F B , , , ....= =J

J J + J

Degeneracy = (2J+1)2

Page 26: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.17 Asymmetric tops3.17 Asymmetric tops

Alas, for the vast majority of molecules there is no simple general analytical form for the rotational levels. Some molecules are described as “near prolate” and “near oblate” tops. In general, terms can be derived by matrix diagonalisation.oblate  tops. In general, terms can be derived by matrix diagonalisation.

H2OA=27.88 cm‐1

m‐1

B=14.52 cm‐1

C=9.28 cm‐1

mbe

r / cm

Waven

um

2e gJ 212 e.g.,,J Kc,Ka

Page 27: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

I G S l i l T hibi i l l l

3.18 Rotational Spectroscopy3.18 Rotational Spectroscopy

I. Gross Selection rule: To exhibit a pure rotational spectrum a molecule must possess a permanent dipole moment. 

TDM = el el el el elˆ ˆ ˆ, ,M , ,M ,M ,M ,M ,Mψ μ ψ ψ μ ψ μ′ ′ ′ ′ ′ ′= =

J J J J J JJ J J J J J

l f | ⟩

II Specific Selection Rule: During a transition the allowed changes in the J K

Dipole moment of state |ψel⟩

0Δ1±Δ KJ

II.  Specific Selection Rule: During a transition the allowed changes in the J, Kquantum numbers are:

0Δ 1 =±=Δ KJ

(arises from the TDM but we can think of this as a combination of (conservation of angular momentum and need to change parity)

Page 28: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.19 Spectra of Symmetric tops3.19 Spectra of Symmetric tops

Terms: 2, )~~()1(~ KBAJJBF KJ −++= 2

, )~~()1(~ KBCJJBF KJ −++=

prolate oblate

KJKJ FFv~ −= 1Allowed 

K,JK,J FFv +1transitions:

)1(~2~.,. += JBvei

Within the rigid rotor approximation spectra of prolate & oblate tops are the same g pp p p pas for linear molecules (and indeed spherical tops): 

i.e., Equally spaced lines with separation = 2Bi.e., Equally spaced lines with separation   

We thus obtain no information on the unique axis (a for prolate, c for oblate) i.e., nothing about the other rotational constants.

2B

Page 29: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.20 Beyond the Rigid Rotor: Centrifugal Distortion3.20 Beyond the Rigid Rotor: Centrifugal Distortion

The rigid rotor model holds for, well, rigid rotors. 

Molecules, unfortunately, are not rigid rotors – their bonds stretch during rotation.

As a result, the various I (and thus rotational constants) change with J.

It is more convenient (i.e., easier) to treat centrifugal distortion as a perturbation to the rigid rotor terms.

Page 30: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

22 )1(~)1(~)( JJDJJBJF

3.21 Centrifugal Distortion in diatomic molecules3.21 Centrifugal Distortion in diatomic molecules

R t ti l t b 22 )1()1()( +−+= JJDJJBJF

where D is the centrifugal distortion constant (in cm‐1)

Rotational terms become3

2

4BD =g ( )

30BJ

5

JTypical values of

Rigid Rotor Centrifugaldistortion

2eω

mbe

r

20B 4

D~B~

H35Cl 10.44  0.0005282

in cm‐1

wav

enum 0 4

12B 3

12C16O 1.923 0.0000061

HCN 1.478 0.0000029

2B6B

0 12

3

00 0( )

( )1ν

+

J

J

2B4D−Δ = ± =J

Transitions occur at 

3)1(~4)1(~2

)()1()(~

+−+=

−+=

JDJB

JFJFJν

( )21+J

Page 31: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Prolate tops:

3.22 Centrifugal Distortion in symmetric tops3.22 Centrifugal Distortion in symmetric tops

Prolate tops:

,KD~K)J(JD~)J(JD~K)B~A~()J(JB~)K,J(F KJKJ42222 111 −+−+−−++=

Obl t t

,KD~K)J(JD~)J(JD~K)B~C~()J(JB~)K,J(F KJKJ42222 111 −+−+−−++=

Oblate tops:

Rigid rotor terms Centrifugal distortion terms

i.e., three distortion constants!Δ ±J

Transitions occur at:32 1412

1

)J(D~)J)(KD~B~(

)K,J(F)K,J(F~ −+=νΔ = ± =J

32 1412 )J(D)J)(KDB( JJK +−+−=

J = 1 →2 J = 2 →3

Effect on Spectrum:

cm‐1

Page 32: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.23 Effects of External Fields3.23 Effects of External Fields

We know that every rotational level, J, comprises 2J+1 states due to space quantization:

MJe.g., J = 2MJ = -2, -1, 0, 1, 2

1

2

1

2MJ 2, 1, 0, 1, 2 MJ

0

‐1

0

‐11

‐2

1

‐2

In the absence of external fields these states are all degenerate. However, external E(or B) fields can lift this degeneracy:(or B) fields can lift this degeneracy:

Page 33: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

E

3.23 Electric Fields: The Linear Stark Effect3.23 Electric Fields: The Linear Stark Effect

An electric dipole μ interacts with an applied field resulting in an interaction energy

μ μ θ=μ

E

θμ cosμ μ θ= θθμ cos

Effect on energy levels: Symmetric topsEffect on energy levels: Symmetric tops

Consider J level of CH3F:3

μ points along the C3 axis with J at some angle to it:

But we know this angle from the ratio of JA and J (and hence J, K): cos =

Kαthe ratio of JA and J (and hence J, K):)1(

cos+JJ

α

Page 34: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

As J precesses, the component of μperpendicular to J cancels leaving only μJ:perpendicular to J cancels leaving only μJ:

cos ==Kμαμμ

)1(cos

+==

JJJ μαμμ

So, an external field making an angle β to J yields an i iinteraction energy

βμ cosEJ−)1(

cos+

=JJ

M Jβand)(

cos),,( −= EMKJE JJStark βμ

.)1()1()1( +

−=

++−=

JJEKM

JJM

EJJK JJ μ

μ

n.b., Estark ∝ μ, E, K, MJ but   Estark ∝ |J|‐2

Page 35: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

− EKM Jμ3.24 Electric Fields: Symmetric Tops3.24 Electric Fields: Symmetric Tops

Example: .)1(

),,(+

=JJEKMMKJE J

JStarkμ

Consider the transition 21 ← 11 in a symmetric top:

For J = 2, K = 1, MJ = ±2, ±1, 0

Consider the transition 21 ← 11 in a symmetric top:

0,,2 EEEStarkμμ

±±= ,6

,6Stark

In J 1 K 1 M ±1 0

0EES kμ

±=

In J = 1, K = 1, MJ = ±1, 0

0,2

EStark ±=

Page 36: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

Eff t th t f t i t

3.25 Electric Fields: The Effects on the Spectrum3.25 Electric Fields: The Effects on the Spectrum

Effect on the spectrum of a symmetric rotor:

Remember the selection rule ΔMJ = 0. 

No field

Useful for determining absolute values of J in complex spectra.

Page 37: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

N l ( t t ) F i d lt l i i l

3.26 Effects of nuclear spins on rotational energy levels3.26 Effects of nuclear spins on rotational energy levels

Nucleons (protons, neutrons) are Fermions and as a result nuclei possess spin angular momentum I with corresponding quantum number I.

If the mass number is even: I is integral such nuclei are BosonsIf the mass number is    even: I is integral such nuclei are Bosonsodd:   I is half‐integral    such nuclei are Fermions

This can affect rotational energy Levels in two ways:

1) The nuclear spin gives rise to a magnetic moment which can interact1) The nuclear spin gives rise to a magnetic moment which can interact with external  magnetic fields (the basis of NMR) and internal  magnetic fields to give nuclear hyperfine structure: small splittings in the spectrum

2) They can determine whether or not rotational levels in symmetric molecules actually exist as a result of nuclear spin statistics

Recall the Pauli Principle:

“Any acceptable wavefunction must be anti‐symmetric with respect to the exchange of two identical fermions and totally symmetric with 

respect to the exchange of identical bosons”

Page 38: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.27 Nuclear Spin statistics in H2: ortho‐ and para‐ hydrogen3.27 Nuclear Spin statistics in H2: ortho‐ and para‐ hydrogen

W h f h l i i h l f i hi h b

ψtot = ψelψvibψrotψns

We have to account for the nuclear spin in the total wavefunction which becomes:

Consider ψns [c.f.electron spins in Section 2.16]

In H each nucleus is a fermion with s = ½ and thereforem = ±½ (or α β)In H2 each nucleus is a fermion with s = ½ and therefore ms = ±½ (or α, β)

Four combinations are possible:      α(1)α(2), β(1)β(2), α(1)β(2), β(1)α(2)

But we are interested in symmetry with respect to exchange so take linear combinations  of latter two and we achieve: 

( ) ( )( ) ( )1 21 2

α αβ β Symmetric to exchange( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 1 2 2 1   21 1 2 2 1

α β α β

β β

⎡ ⎤+⎣ ⎦⎡ ⎤

Symmetric  to exchange[3 of]

( ) ( ) ( ) ( )1 2 2 12

α β α β⎡ ⎤−⎣ ⎦ Anti‐symmetric  to exchange[1 of]

Page 39: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.27 Nuclear Spin statistics in H2: ortho‐ and para‐ hydrogen3.27 Nuclear Spin statistics in H2: ortho‐ and para‐ hydrogen

ψtot = ψelψvibψrotψns

ψtot must be anti‐symmetric with respect to the permutation of H nuclei:  12P ψ ψ=−ψtot

In the ground state of H2 :ψel (1Σg

+) is symmetric with respect nuclear interchange and

12

ψel ( g ) y p gAll v = 0 vibrational levels are symmetric

So, for acceptable ψtot we need anti‐symmetric ψrotψns productsSo, for acceptable ψtot we need anti symmetric ψrotψns products 

ψrot: permutation equivalent to a c2 rotation

even J levels are symmetricodd J levels are anti‐symmetric

( )2 1rot rotcψ ψ= −J

All even J levels correspond with Anti‐Symm ψ of which there is oneAll even J levels correspond with Anti Symm ψns of which there is oneAll odd J levels correspond with Symm ψns of which there are three

Page 40: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.27 Nuclear Spin statistics in H2: ortho‐ and para‐ hydrogen3.27 Nuclear Spin statistics in H2: ortho‐ and para‐ hydrogen

The extra statistical weighting of ortho‐H2 (odd Jlevels) over para‐H2 (even J) means intensity alternations of 3:1 in rotationally resolved spectra of H2.

Of course H2 doesn’t  exhibit a pure rotational absorption spectrum but this effect is clear in the 

(idealised) rotational Raman spectrum:(idealised) rotational Raman spectrum: 

o‐H2 and p‐H2 are essentially different forms of H2: They do not interconvert except in the presence of a high spin catalyst. 

o‐H2 has a J = 1 ground state and thus exhibits zero‐point rotational motion = 2B

Page 41: Section 3 Ml lMolecular R t ti lR otational StS ...mackenzie.chem.ox.ac.uk/teaching/Molecular... · 4Si C2H4 CH3C2H CH 3COOH? (CH3) 2ONH 2CH 2COOH ... = bond lengths ... levels and

3.28 Nuclear Spin Statistics: General3.28 Nuclear Spin Statistics: GeneralConsider symmetry of ψel ψ ib individually. ψel is usually symmetric but beware O2Consider symmetry of ψel ψvib individually. ψel is usually symmetric but beware O2

ground state (3Σg–) which is anti‐symmetric.

In general, the statistical weighting of  . of SYM 1no Iψ +nuclear spin functions is given by:

. of SYM  1. of ANTI‐SYM

ns

ns

no Ino I

ψψ

+=

Example 1: 14N214N is a Boson (I = 1), ∴ ψtot SYMψel is SYM (1Σg

+), hence:

ψtot = ψelψvibψrotψns

SYMAS

S S S SAS

Weight:

21

2:1 intensity alternationψel ( g ), AS AS 1

Example 2: 16O2 ψtot = ψelψvibψrotψns Weight: even J

alternation

16O is a Boson (I = 0), ∴ ψtot SYMψel is AS (3Σg

–), hence:

ψtot ψelψvibψrotψns

SYMAS

AS S S ASS

Weight:

10

levels missing!

Example 3: C16O216O is a Boson (I = 0), ∴ψtot SYM

ψtot = ψelψvibψrotψns

SYM S S S S

Weight:

1 odd J( ), ψtotψel is SYM (1Σg

+), hence: SYMAS

S S S SAS

10

levels missing!