section 4 vibrational - mackenzie research laboratory …mackenzie.chem.ox.ac.uk/teaching/molecular...

31
Section 4 Ml l Vib ti l S t Section 4 Ml l Vib ti l S t Molecular Vibrational Spectroscopy (lectures 68 ish) Molecular Vibrational Spectroscopy (lectures 68 ish) Quantum theory Previously: Quantum Vl of atoms / molecules Previously: Mechanics V alence Molecular Vibrational Spectroscopy Diatomic molecules (harmonic oscillator revision) Beyond the Harmonic Oscillator Rotational structure in vibrational spectra Polyatomic molecules: Normal modes Symmetry of normal modes Symmetry of vibrational levels Combination differences Combination bands

Upload: phungtruc

Post on 21-Feb-2018

236 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

Section 4 M l l Vib ti l S t

Section 4 M l l Vib ti l S tMolecular Vibrational Spectroscopy

(lectures 6‐8 ish)Molecular Vibrational Spectroscopy

(lectures 6‐8 ish)( )( )

Quantum theoryPreviously: Quantum V l

Q yof atoms / molecules

Previously: QMechanics

Valence

Molecular Vibrational SpectroscopyDiatomic molecules (harmonic oscillator revision)Beyond the Harmonic OscillatorRotational structure in vibrational spectraPolyatomic molecules: Normal modesSymmetry of normal modesSymmetry of vibrational levelsCombination differencesCombination bands

Page 2: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

Molecular l

Molecular lEnergy LevelsEnergy Levels

i.e., typically ΔEel >> ΔEvib >> ΔErot

Different electronic states (electronic arrangements)(electronic arrangements)

λΔ ≈≈E 2 x 104 – 105 cm‐1

500 – 100 nm

102 – 5 x 103 cm‐1

100 μm – 2 μm

3 – 300 GHz (0.1 – 10 cm‐1)

Transitions at λVis – UV 

100 μm  2 μminfrared

10 cm – 1 mmmicrowave

Page 3: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.1 Vibrational Energy Levels: The Harmonic oscillator4.1 Vibrational Energy Levels: The Harmonic oscillatorR0

Obeys Hooke’s Law,   FF k x= −m1

m2

R0

Where kF is the Force constant (Nm‐1) and

∴The potential energy

R0

Where kF is the Force constant (Nm ) and x the displacement from equilibrium 

( )2

0 2x

Fk xV x Fdx= − =∫

∴The potential energy,  μ

x 2

Classical frequency of oscillation: 

V=1/2 kx2

q y

12

Fvib

π μ=

μ

Robert Hooke1635 ‐1703

Page 4: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.2 Harmonic Oscillator Eigenvalues4.2 Harmonic Oscillator EigenvaluesEigenvalues:

( ) ‐11 1/cm vib FkG ν+

gThe vibrational terms

V=1/2 kx2

( ) 112       /cm

2vib F

v e eG vc c

ω ωπ μ

= + = =

v is the vibrational quantum number = 0, 1, 2,..q , , ,ωe the vibrational constant (in cm‐1),kF is the Force Constant,μ is the reduced mass

92 eω ω μ is the reduced mass

52 eω3

72 eω

n.b., existence of zero point energy G0 = ωe/2 ≠ 0

no classical analogue and arises due 12 eω

32 eω

to Heisenberg Uncertainty

Equally spaced non‐degenerate energy levels

For HCl (1Σ+):  kF = 510 Nm‐1 ωe = 2990.9 cm‐1  vibrational frequency ~ 9 x 1013 HzCO: kF = 1902 Nm‐1 ωe = 2169.8 cm‐1  vibrational frequency ~ 6.5 x 1013 Hz

Page 5: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.2 Harmonic Oscillator Wavefunctions4.2 Harmonic Oscillator Wavefunctions

Th i f i f h H i O illThe eigenfunctions of the Harmonic Oscillator are products of Hermite polynomials and Gaussian functions: 1

⎛ ⎞⎛ ⎞v =  3

( ) ( )2 4

     2

Fv v v

mkyx N H y exp y x .ψ⎛ ⎞⎛ ⎞−

= = ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠v =  2

v =  1

v =  0

Note: Penetration into classically forbidden regionsProbability distributions becomeProbability distributions become more classical at high v

Page 6: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.3 Harmonic Oscillator Selection Rules (preamble)4.3 Harmonic Oscillator Selection Rules (preamble)

22 2d221

2

22

2ˆ kx

dxd

mH +

−= 2

21

2

2

21ˆ q

dqdH +−=simplifies in scaled coordinates

and units to become

b l

⎟⎞

⎜⎛ 2q

q is a vibrationalcoordinate

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

2exp0

qψ is the lowest energy eigenfunction: 120 0ψ ψ=

We can obtain all other eigenfunctionsusing the ladder operators: ⎟⎟

⎞⎜⎜⎝

⎛−=+

dqdqQ

21ˆ

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

dqdqQ

21ˆ

⎠⎝ ⎠⎝ q

1v vψ ψ+

+⇒ 1v vψ ψ

−⇒With the properties:

qQQ 2ˆˆ =++and

⎫⎧ if '1Finally, of course all vibrational eigenfunctionsare orthonormal ⎭

⎬⎫

⎩⎨⎧

≠=

==∫∞+

∞−′ vvif

vvifdq vvvv '0

'1'δψψ

Page 7: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.3 Harmonic Oscillator Selection Rules4.3 Harmonic Oscillator Selection Rules

∫∞

∞−

∗′′ = dqR vvvv ψμψ ˆConsider the Transition Dipole 

Moment for a v – v’ transition  where ∑−=i

ireˆμ̂

We can expand the dipole moment operator about q = 0:

⎞⎛⎞⎛ 2 ˆ1ˆ dd …+⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+=

===

2

02

2

00

ˆ21ˆˆˆ q

dqdq

dqd

qqq

μμμμ

Consider each term in the TDM in turn:0

∫∫∞

∞−

∗′=

∞− =∗′′ == dqdqR vvqvqvvv ψψμψμψ 00 ˆˆ

0

Hence this term is identically zero for any vibrational transition 

Page 8: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

+⎟⎟⎞

⎜⎜⎛

+= qd ˆˆˆ μμμ04.3 Harmonic Oscillator Selection Rules4.3 Harmonic Oscillator Selection Rules

…+⎟⎟⎠

⎜⎜⎝

+==

= qdq q

q0

0μμ

0vv v' v

ˆdR q dqdqμ ψ ψ

∞∗

′ −∞

⎛ ⎞= ≠⎜ ⎟⎝ ⎠

∫For an allowed transition (Rvv’ ≠0) we require:

0qdq ∞=⎝ ⎠∫

2 ∫∞

0

≠⎟⎟⎠

⎞⎜⎜⎝

=qdqdμ1.

and2. 0≠∫

∞−

∗′ dqq vv ψψ

( )∫∫∞ +∗∞ ∗ + dqQQdqq ψψψψ ˆˆ1

i.e., a dipole moment that changes during the vibration

( )∫∫ ∞−′

∞−′ += dqQQdqq vvvv ψψψψ

2

i e ∫ ∫∞ ∞ ∗+∗ ≠≠ 0ˆ0ˆ dqQordqQ ψψψψi.e.,  ∫ ∫∞− ∞−

′′ ≠≠ 00 dqQordqQ vvvv ψψψψ

1+=′ vv 1−=′ vvGross selection rule

i.e.,   Δv = ± 1

Specific selection rule

Page 9: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.4 The (very simple) spectrum of a harmonic oscillator4.4 The (very simple) spectrum of a harmonic oscillator

( )12v eG v ω= +Vibrational Terms:

Δv = ± 19ω

Selection Rule:

52 eω

2 eω72 eω

Transitions at: 1v v eG Gν ω+

= − =

12 eω

2 e32 eω

i e only one line in the spectrumi.e., only one line in the spectrum

b I b ti l t iti f 0 i t t hi h Tn.b. In absorption, only see transitions from v =0 since, except at very high T, this is the only level populated:

n hcg ω⎧ ⎫⎪ ⎪1

e.g., if ωe = 1000 cm‐1, T = 300 K1 1

0 0

exp   0.008v e

v

n hcgn g kT

ω=

=

⎧ ⎫−⎪ ⎪⎨ ⎬⎪ ⎪⎩ ⎭

Page 10: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.5 Anharmonicity4.5 Anharmonicity

But of course molecular bonds are not harmonic oscillatorsBut, of course, molecular bonds are not harmonic oscillators 

Dissociation limit (e.g., isolated atoms)

We can break bonds (pull them apart)We can break bonds (pull them apart)

We can identify (finite) dissociation energy for doing soenergy for doing so

As we stretch a bond the bond itself gets weaker (the restoring force is reduced)

Page 11: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.5 Accounting for anharmonicity: The Morse Oscillator4.5 Accounting for anharmonicity: The Morse Oscillator

( ) ( )( )2

1V R D R Rβ⎡ ⎤l ( ) ( )( )1e eV R D exp R Rβ⎡ ⎤= − − −⎣ ⎦Morse Potential:

SHO a good approx. at small x (low v) n.b., the experimental dissociation energy, D0 = De ‐ZPE

Page 12: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.5 Accounting for anharmonicity: The Morse Oscillator4.5 Accounting for anharmonicity: The Morse Oscillator

( ) ( )( )2

1V R D R Rβ⎡ ⎤l

vmax21 1

2 2v e e eG v v xω ω= + − +

( ) ( )( )1e eV R D exp R Rβ⎡ ⎤= − − −⎣ ⎦Morse Potential:

Energy Eigenvalues:a 2 2

0 1 2 3 ma

v e

x

e e

vv , , , ,= …

D0 De

xe is the (dimensionless) anharmonicity constant: 4

ee

e

xDω

=

Specific Selection rule: ( )1 2 3  weakerv , , ,Δ = ± ± ±

Transitions: ( )( )

fundamental  0 1   21  overtone   0 2   2 6

e e est

e e e

xx

ν ω ων ω ω

→ = −

→ = −( ) e e e

SHO a good approx. at small x (low v) n.b., the experimental dissociation energy, D0 = De ‐ZPE

HCl (1Σ+):  ωe = 2990.9 cm-1, ωe xe = 52.8 cm‐1, (xe = 0.018), De = 35486 cm‐1, D0 = 34092 cm‐1

Page 13: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.6 Rotational fine structure: I. Diatomics4.6 Rotational fine structure: I. Diatomics

Associated with a vibrational transition

HF

Associated with a vibrational transition 

we observe rotational transitions:

Combined vibration rotation terms:S v G v F+J JCombined vibration‐rotation terms:S v , G v F= +J J

e g or an anharmonic rigid rotor:i.e., Etot =  Evib +  Erot

e.g., or an anharmonic rigid rotor:

( ) ( ) ( ) ( )21 12 2 1e e e vS v , v v x Bω ω= + − + + +J J J

transitions: ( ) ( )S v , S v ,ν ′ ′ ′′ ′′= −J Jvibrational rotational

transitions: ( ) ( ), ,subject to combined selection rules

All ΔJ = +1 transitions give rise to an R- branch andthe ΔJ = ‐1 transitions comprise a P‐ branch

Recall rotational selection rule ΔJ = ±1:

Page 14: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.7 Rotation Vibration Spectra4.7 Rotation Vibration Spectra

e.g., in the fundamental band:

( ) 2R e e exν ω ω′′ = −J( )( )( ) ( )1 0               1 2 1B B′′ ′′ ′′ ′′+ + + − +J J J J

( ) 2P e e exν ω ω′′ = −J( )( )( ) ( )1 0               1 1

P e e e

B B′′ ′′ ′′ ′′+ − − +J J J J

Assuming;  BBB ~~~01 ==

Spacing in each branch = B~2P‐branchR‐branch

Central gap = R(0) –P(1) =

xωωω 2B~4

eee xωωω 20 −=

*Q‐branch (ΔJ=0) absent unless additional angularQ branch (ΔJ 0) absent unless additional angular momentum present (e.g., NO 2Π) or a degenerate bending mode is involved (see polyatomics later)

Page 15: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

e.g., in the fundamental band of HCl

35note offset of H35Cl and H37Cl lines due to  different reduced mass (and hence different ωeand B constants)

Also, note bunching of the lines in the R‐branchlines in the R branch 

Page 16: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

?~~ BB

4.8 Vibrational dependence of rotational constants4.8 Vibrational dependence of rotational constants

?01 BB =

21~B ∝ but what exactly do we mean by

How good is the assumption

2Rμbut what exactly do we mean by 1/R2 in a vibrating molecule?

We actually mean <1/R2>We actually mean <1/R >

<1/R2> decreases with v and therefore:

0 1 1v >> >

12v e α= − +

Under high resolution we can determine the rotational constant in each vibrational level using a method of combination differencesusing a method of combination differences.

Page 17: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.9 Combination Differences4.9 Combination Differences

Use transitions with common upper or lower levels to determine rotational constants for each vibrational level:

e.g., R(J) and P(J) originate at v =0, J;1

( ) ( ) ( )R 1Pν ν− = +J J J

1→

Likewise the difference of R(J‐1) and P(J+1), which both terminate at v =1, J, gives:

0 ( ) ( ) ( )R 0Pν ν− − + = +J J J

0→

Page 18: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.10 Band heads in Vibrational Spectra4.10 Band heads in Vibrational Spectra

C id th R b h i li ( ) 2′′JConsider the R‐branch in a linear molecule:

( )( )( ) ( )( )21 0 1 0

2

               1 1R e e ex

B B B B

ν ω ω′′ = −

′′ ′′+ + + + − +

J

J J

‐ve

At high enough J the wavenumberseparation of adjacent transitions canseparation of adjacent transitions can change sign.

This leads to a bandhead in R branch:This leads to a bandhead in R‐branch: 

Page 19: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

Diatomics have only one vibrational mode

4.11 Beyond Diatomics: Normal Modes in Polyatomic Molecules4.11 Beyond Diatomics: Normal Modes in Polyatomic Molecules

Diatomics have only one vibrational mode. In polyatomics we define Normal Modes as independent, harmonic vibrations which:

1. leave the centre of mass unmoved;2. involve all atoms moving in phase (coherent motion);3. transform as an irreducible representation of the molecular point group

N isolated atoms have 3N degrees of freedom (x y z translations for each)

I. Number of Normal Modes:I. Number of Normal Modes:

N atoms in a molecule have 3N degrees of freedom arranged amongst  translations, vibrations and rotations:

N isolated atoms have 3N degrees of freedom (x, y, z translations for each)

vibrations and rotations:

Molecule: Linear Non-linear

no. translations = 3 3

no. rotations = 2 3

∴ no. vibrations = 3N-5 3N-6

Page 20: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.12 Visualising normal modes4.12 Visualising normal modes

H OH2O

Symmetric

CO2

Symmetric ν1Symmetric 

stretch

Asymmetric 

ystretch

ν3

Bend

stretch

A t iDegenerate

B dν2Asymmetric 

stretchBend 2

Page 21: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.13 Symmetry of normal mode vibrations4.13 Symmetry of normal mode vibrations

A normal mode must transform as an irreducible representation of the point group of the molecule.

Once we can picture the mode itself this is usually easyOnce we can picture the mode itself this is usually easy:

e.g., water, C2v

C2v E C2 σxz σyz

A 1 1 1 1

E C2 σxz σyz

A1 1 1 1 1

A2 1 1 ‐1 ‐1

B 1 ‐1 1 ‐1

1 1 1 1 A1Mode 1Symmetric stretch

B1 1 1 1 1

B2 1 ‐1 ‐1 11 1 1 1 A1Mode 2

1 -1 -1 1 B2

Bend

M d 3 2Mode 3Asymmetric stretch 

Page 22: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.14 Symmetry of normal modes: Linear molecules (D∞h, C∞v)4.14 Symmetry of normal modes: Linear molecules (D∞h, C∞v)

CO2 D∞h2 ∞h

HCN CHCN C∞v

acetylene D∞h

Page 23: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

As well as the normal modes the vibrational wavefunctions have distinct

4.15 Symmetry of vibrational wavefunctions4.15 Symmetry of vibrational wavefunctions

As well as the normal modes, the vibrational wavefunctions have distinct symmetry which can be useful in determining selection rules. These are different for different v levels.

I. Ground levels (v = 0 levels)I. Ground levels (v = 0 levels)

⎞⎛ 2

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

2exp

2

0qψAs we have seen, ψ0 has the form

The sign ofΨ0 is independent of the sign of q:

→It follows that Ψ0 transforms as the totally symmetric irreducible representation of the relevant point group

i.e.,   A1 in C2vΣg

+ in D∞hΣ+ in C∞v

Page 24: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

2 21 d q qˆ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −

II. First excited vibrational levels (v = 1 levels)II. First excited vibrational levels (v = 1 levels)

1 0

1 22 22

d q qQ̂ q exp qexpdq

ψ ψ+⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −

∝ = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ψ1 has the same symmetry as the normal coordinate q

→ ψ1 transforms as the same symmetry as the normal mode

ψ0 ψ1Normal 

So, in the case of water:

Mode 1 A1

ψ0 ψ1mode

A1 A1Mode 1

Mode 2

A1

A1

A1

A1

A1

A1Mode 2

Mode 3

A1

B

A1

A

A1

BMode 3 B2 A1 B2

Page 25: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

III. Higher vibrational levelsIII. Higher vibrational levels

212 qQ̂ ∝= +ψψ

For non‐degenerate modes:

→  transforms as tot. symmetry IR

323

12

qqQ̂

qQ

+∝= +ψψ

ψψ f y y

→  transforms as same symmetry as the normal mode

(degenerate modes, E, T, etc., are more complex)

H2O

Page 26: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.16 Vibrational Selection Rules in Polyatomic Molecules4.16 Vibrational Selection Rules in Polyatomic Molecules

As normal modes are harmonic, the selection rules are:

The dipole moment must change during the vibrationΔ ±1Δvi = ±1

For polyatomics it can be hard to see if the former is true. Clearly though it relates to the transition dipole moment,p

∫∞

∞−

∗′′ = dqR vvvv ψμψ ˆ a vector with x, y, z components of:

∫∞

∞−

∗′′ = dxR vxvxvv ψμψ ˆ ∫

∞−

∗′′ = dyR vyvyvv ψμψ ˆ ∫

∞−

∗′′ = dzR vzvzvv ψμψ ˆ

Each of these is a scalar and thus in order for Rv,v’ ≠ 0 at least one of these components must transform as the totally symmetric IR.

i.e., see if any of the direct products  v'v XΓ⊗Γ⊗Γ μ

Γ⊗Γ⊗Γ v'v YΓ⊗Γ⊗Γ μ

v'v ZΓ⊗Γ⊗Γ μ

transform as the totally symmetric irrep

Page 27: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

C id th f d t l (0→1) b d

4.16 Example of Vibrational Selection Rules4.16 Example of Vibrational Selection Rules

Consider the fundamental (0→1) band in mode 3 (B2) of H2O (C2v):

0ψ transforms as the totally symmetric IR,  i.e., 1A

1ψ transforms as the normal mode,    i.e., 2B1ψ , , 2BThe components of     transform, in C2v as:   μ̂

2

1

B

BX

=Γμ transforms as x, y, z read IRs from characterμ̂

1

2

A

B

Z

Y

μ

μ

The components ˆ' Γ⊗Γ⊗Γ become

read IRs from character table: 

212112:ABBABBABBABBX

⊗⊗⊗=⊗=⊗⊗μ

The components vz,y,xˆ'v Γ⊗Γ⊗Γ μ become

The y‐component transforms as A1, so the transition is “dipole‐allowed with transition 

212112

122122

::

BABAABABBABB

X

Y

=⊗=⊗⊗=⊗=⊗⊗

μμ p

dipole along y”.

Page 28: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.17 General Vibrational Selection Rules4.17 General Vibrational Selection Rules

The fundamental transition is allowed provided the symmetry of the normal mode (and thus v = 1) is the same as x, y, or z. In this case the mode is infra‐red active.

If the transition moment is parallel to the symmetry (z‐) axis the mode is called a parallel mode.f h i i i di l h i h d i ll dIf the transition moment is perpendicular to the symmetry axis the mode is called a perpendicular mode.

Page 29: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.18 Combination Bands4.18 Combination Bands

Just as anharmonicity permits changes in vibrational quantum number Δv > ±1, it also allows for simultaneous changes in more than one normal mode. 

Such transitions all break the harmonic oscillator selection rule but we can again use symmetry to determine if such combination bands are allowed:

e.g., Consider the v1=0, v3=0 → v1=1, v3=1 combination band in H2O(i.e., simultaneous excitation of both symmetric and asymmetric stretches)v =0 transforms as A symmetryv =0 transforms as A1 symmetry.v1=1 level transforms as A1,v3= 1 level transforms as B2. H h 1 1 l l f BBA ⊗Hence, the v1=1, v3=1 level transforms as  221 BBA =⊗

112212 AABBAB =⊗⊗=⊗Γ⊗ 112212 AABBABY

⊗⊗⊗Γ⊗ μ

The transition is symmetry allowed with transition dipole along y. (Despite breaking the harmonic oscillator selection rule)

Page 30: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

4.19 Rotational Fine Structure4.19 Rotational Fine Structure

1. Linear Molecules1. Linear Molecules1. Linear Molecules1. Linear Molecules

2 types of bands:2 types of bands: Σ−Σ (parallel bands)   and   Σ−Π (perpendicular bands)ΔJ = ±1 (P,R, branches) ΔJ = 0, ±1 (Q, P, R branches)

( ) ( ) ( )1el vibQ B Bν−

′ ′′= + − +J J J

Q‐branch (ΔJ=0) arises from the additional angular momentum from the degenerate bending modemomentum from the degenerate bending mode

Σ+−Σ+ infrared band in HCN(asymmetric stretch fundamental) Πu−Σg

+ overtone band in HC≡CH

Page 31: SECTION 4 Vibrational - Mackenzie Research Laboratory …mackenzie.chem.ox.ac.uk/teaching/Molecular Vibrational Spectroscopy... · of atoms / molecules Mechanics Valence Molecular

A. Parallel transitions:ΔJ = 0 ±1 ΔK = 0

2. Symmetric tops2. Symmetric topsB. Perpendicular transitions: 

ΔJ= 0, ±1    ΔK = ± 1 ΔK=ΔJ = 0, ±1  ΔK = 0 , ΔK=

‐1+1

+1‐1

‐1+1

+1