section 7: three-phase circuit fundamentalsweb.engr.oregonstate.edu/~webbky/engr202_files/section...

53
ENGR 202 – Electrical Fundamentals II SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALS

Upload: others

Post on 30-Mar-2021

10 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

ENGR 202 – Electrical Fundamentals II

SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALS

Page 2: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Balanced Three-Phase Networks2

Page 3: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

3

Balanced Three-Phase Networks

We are accustomed to single-phase power in our homes and offices A single line voltage referenced to a neutral

Electrical power is generated, transmitted, and largely consumed (by industrial customers) as three-phase power Three individual line voltages and (possibly) a neutral Line voltages all differ in phase by Β±120Β°

Page 4: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

4

Ξ”- and Y-Connected Networks

Two possible three-phase configurations Applies to both sources and loads

Y-Connected Source 𝚫𝚫-Connected Source

Y-connected network has a neutral node Ξ”-connected network has no neutral

Page 5: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

5

Line-to-Neutral Voltages

A three-phase network is balanced if Sources are balanced The impedances connected to each phase are equal

In the Y network, voltages π‘‰π‘‰π‘Žπ‘Žπ‘Žπ‘Ž, π‘‰π‘‰π‘π‘π‘Žπ‘Ž, and π‘‰π‘‰π‘π‘π‘Žπ‘Ž are line-to-neutral voltages

A three-phase source is balanced if Line-to-neutral voltages have equal

magnitudes Line-to-neutral voltage are each 120Β°

out of phase with one another

Page 6: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

6

Line-to-Neutral Voltages

The line-to-neutral voltages are

𝑽𝑽𝒂𝒂𝒂𝒂 = π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°

𝑽𝑽𝒃𝒃𝒂𝒂 = π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β°

𝑽𝑽𝒄𝒄𝒂𝒂 = π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 240Β° = π‘‰π‘‰πΏπΏπΏπΏβˆ  + 120Β°

This is a positive-sequence or abc-sequencesource

𝑽𝑽𝒂𝒂𝒂𝒂 leads 𝑽𝑽𝒃𝒃𝒂𝒂, which leads 𝑽𝑽𝒄𝒄𝒂𝒂

Can also have a negative- or acb-sequencesource

𝑽𝑽𝒂𝒂𝒂𝒂 leads 𝑽𝑽𝒄𝒄𝒂𝒂, which leads 𝑽𝑽𝒃𝒃𝒂𝒂

We’ll always assume positive-sequence sources

Positive-Sequence Phasor Diagram:

Page 7: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

7

Line-to-Line Voltages The voltages between the three phases are line-to-

line voltages Apply KVL to relate line-to-line voltages to line-to-

neutral voltages𝑽𝑽𝒂𝒂𝒃𝒃 βˆ’ 𝑽𝑽𝒂𝒂𝒂𝒂 + 𝑽𝑽𝒃𝒃𝒂𝒂 = πŸŽπŸŽπ‘½π‘½π’‚π’‚π’ƒπ’ƒ = 𝑽𝑽𝒂𝒂𝒂𝒂 βˆ’ 𝑽𝑽𝒃𝒃𝒂𝒂

We know that𝑽𝑽𝒂𝒂𝒂𝒂 = π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°

and𝑽𝑽𝒃𝒃𝒂𝒂 = π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β°

so 𝑽𝑽𝒂𝒂𝒃𝒃 = π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β° βˆ’ π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β° = 𝑉𝑉𝐿𝐿𝐿𝐿 1∠0Β° βˆ’ 1∠ βˆ’ 120Β°

𝑽𝑽𝒂𝒂𝒃𝒃 = 𝑉𝑉𝐿𝐿𝐿𝐿 1 βˆ’ βˆ’12 βˆ’ 𝑗𝑗

32 = 𝑉𝑉𝐿𝐿𝐿𝐿

32 + 𝑗𝑗

32

𝑽𝑽𝒂𝒂𝒃𝒃 = 3π‘‰π‘‰πΏπΏπΏπΏβˆ 30Β°

Page 8: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

8

Line-to-Line Voltages

Again applying KVL, we can find 𝑽𝑽𝒃𝒃𝒄𝒄𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑽𝑽𝒃𝒃𝒂𝒂 βˆ’ 𝑽𝑽𝒄𝒄𝒂𝒂𝑽𝑽𝒃𝒃𝒄𝒄 = π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β° βˆ’ π‘‰π‘‰πΏπΏπΏπΏβˆ 120Β°

𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑉𝑉𝐿𝐿𝐿𝐿 βˆ’12βˆ’ 𝑗𝑗

32

βˆ’ βˆ’12

+ 𝑗𝑗3

2

𝑽𝑽𝒃𝒃𝒄𝒄 = 𝑉𝑉𝐿𝐿𝐿𝐿 βˆ’π‘—π‘— 3

𝑽𝑽𝒃𝒃𝒄𝒄 = 3π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 90Β°

Similarly,

𝑽𝑽𝒄𝒄𝒂𝒂 = 3π‘‰π‘‰πΏπΏπΏπΏβˆ 150Β°

Page 9: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

9

Line-to-Line Voltages

The line-to-line voltages, with π‘‰π‘‰π‘Žπ‘Žπ‘Žπ‘Ž as the reference:

𝑽𝑽𝒂𝒂𝒃𝒃 = 3π‘‰π‘‰πΏπΏπΏπΏβˆ 30°𝑽𝑽𝒃𝒃𝒄𝒄 = 3π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 90°𝑽𝑽𝒄𝒄𝒂𝒂 = 3π‘‰π‘‰πΏπΏπΏπΏβˆ 150Β°

Line-to-line voltages are 3 times the line-to-neutral voltage

Can also express in terms of individual line-to-neutral voltages:

𝑽𝑽𝒂𝒂𝒃𝒃 = 3π‘½π‘½π’‚π’‚π’‚π’‚βˆ 30Β°

𝑽𝑽𝒃𝒃𝒄𝒄 = 3π‘½π‘½π’ƒπ’ƒπ’‚π’‚βˆ 30Β°

𝑽𝑽𝒄𝒄𝒂𝒂 = 3π‘½π‘½π’„π’„π’‚π’‚βˆ 30Β°

Page 10: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

10

Line Currents in Balanced 3πœ™πœ™ Networks

𝑰𝑰𝒂𝒂 =π‘½π‘½π‘¨π‘¨π‘¨π‘¨π‘π‘π‘Œπ‘Œ

=π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°π‘π‘π‘Œπ‘Œ

𝑰𝑰𝒃𝒃 =π‘½π‘½π‘©π‘©π‘¨π‘¨π‘π‘π‘Œπ‘Œ

=π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β°

π‘π‘π‘Œπ‘Œ

𝑰𝑰𝒄𝒄 =𝑽𝑽π‘ͺπ‘ͺπ‘¨π‘¨π‘π‘π‘Œπ‘Œ

=π‘‰π‘‰πΏπΏπΏπΏβˆ + 120Β°

π‘π‘π‘Œπ‘Œ

Line currents are balanced as long as the source and load are balanced

We can use the line-to-neutral voltages to determine the line currents Y-connected source and load Balanced load – all

impedances are equal: π‘π‘π‘Œπ‘Œ

Page 11: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

11

Neutral Current in Balanced 3πœ™πœ™ Networks

Apply KCL to determine the neutral current

𝑰𝑰𝒂𝒂 = 𝑰𝑰𝒂𝒂 + 𝑰𝑰𝒃𝒃 + 𝑰𝑰𝒄𝒄

𝑰𝑰𝒂𝒂 =π‘‰π‘‰πΏπΏπΏπΏπ‘π‘π‘Œπ‘Œ

1∠0Β° + 1∠ βˆ’ 120Β° + 1∠120Β°

𝑰𝑰𝒂𝒂 =π‘‰π‘‰πΏπΏπΏπΏπ‘π‘π‘Œπ‘Œ

1 + βˆ’12 βˆ’ 𝑗𝑗

32 + βˆ’

12 + 𝑗𝑗

32

𝑰𝑰𝒂𝒂 = 0

The neutral conductor carries no current in a balanced three-phase network

Page 12: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Delta- & Wye-Connected Networks12

Page 13: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

13

Three-Phase Network Configurations

As for sources, three-phase loads can also be connected in two different configurations

Y-Connected Load 𝚫𝚫-Connected Load

The Y load has a neutral connection, but the Ξ” load does not Currents in a Y-connected load are the line currents we just

determined Next, we’ll look at currents in a Ξ”-connected load

Page 14: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

14

Balanced Ξ”-Connected Loads

We can use line-to-line voltages to determine the currents in Ξ”-connected loads

𝑰𝑰𝑨𝑨𝑩𝑩 =𝑽𝑽𝑨𝑨𝑩𝑩𝑍𝑍Δ

=3π‘½π‘½π‘¨π‘¨π‘¨π‘¨βˆ 30Β°

𝑍𝑍Δ=

3π‘‰π‘‰πΏπΏπΏπΏβˆ 30°𝑍𝑍Δ

𝑰𝑰𝑩𝑩π‘ͺπ‘ͺ =𝑽𝑽𝑩𝑩π‘ͺπ‘ͺ𝑍𝑍Δ

=3π‘½π‘½π‘©π‘©π‘¨π‘¨βˆ 30Β°

𝑍𝑍Δ=

3π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 90°𝑍𝑍Δ

𝑰𝑰π‘ͺπ‘ͺ𝑨𝑨 =𝑽𝑽π‘ͺπ‘ͺ𝑨𝑨𝑍𝑍Δ

=3𝑽𝑽π‘ͺπ‘ͺπ‘¨π‘¨βˆ 30Β°

𝑍𝑍Δ=

3π‘‰π‘‰πΏπΏπΏπΏβˆ 150°𝑍𝑍Δ

Page 15: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

15

Balanced Ξ”-Connected Loads

Applying KCL, we can determine the line currents𝑰𝑰𝒂𝒂 = 𝑰𝑰𝑨𝑨𝑩𝑩 βˆ’ 𝑰𝑰π‘ͺπ‘ͺ𝑨𝑨

𝑰𝑰𝒂𝒂 =3𝑉𝑉𝐿𝐿𝐿𝐿𝑍𝑍Δ

1∠30Β° βˆ’ 1∠150Β°

𝑰𝑰𝒂𝒂 =3𝑉𝑉𝐿𝐿𝐿𝐿𝑍𝑍Δ

32 + 𝑗𝑗

12 βˆ’ βˆ’

32 + 𝑗𝑗

12 =

3𝑉𝑉𝐿𝐿𝐿𝐿𝑍𝑍Δ

3 =3𝑉𝑉𝐿𝐿𝐿𝐿𝑍𝑍Δ

The other line currents can be found similarly:

𝑰𝑰𝒂𝒂 =3π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°

𝑍𝑍Δ= 3π‘°π‘°π‘¨π‘¨π‘©π‘©βˆ  βˆ’ 30Β°

𝑰𝑰𝒃𝒃 =3π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β°

𝑍𝑍Δ= 3𝑰𝑰𝑩𝑩π‘ͺπ‘ͺ∠ βˆ’ 30Β°

𝑰𝑰𝒄𝒄 =3π‘‰π‘‰πΏπΏπΏπΏβˆ 120Β°

𝑍𝑍Δ= 3𝑰𝑰π‘ͺπ‘ͺπ‘¨π‘¨βˆ  βˆ’ 30Β°

Page 16: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

16

Ξ” βˆ’ π‘Œπ‘Œ Conversion

Analysis is often simpler when dealing with π‘Œπ‘Œ-connected loads Would like a way to convert Ξ” loads to π‘Œπ‘Œ loads (and vice

versa)

For a π‘Œπ‘Œ load and a Ξ” load to be equivalent, they must result in equal line currents

Page 17: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

17

Ξ” βˆ’ π‘Œπ‘Œ Conversion

Line currents for a π‘Œπ‘Œ-connected load:

𝑰𝑰𝒂𝒂 =π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°π‘π‘π‘Œπ‘Œ

𝑰𝑰𝒃𝒃 =π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β°

π‘π‘π‘Œπ‘Œ

𝑰𝑰𝒄𝒄 =π‘‰π‘‰πΏπΏπΏπΏβˆ 120Β°

π‘π‘π‘Œπ‘Œ

For a Ξ”-connected load:

𝑰𝑰𝒂𝒂 =3π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°

𝑍𝑍Δ

𝑰𝑰𝒃𝒃 =3π‘‰π‘‰πΏπΏπΏπΏβˆ  βˆ’ 120Β°

𝑍𝑍Δ

𝑰𝑰𝒄𝒄 =3π‘‰π‘‰πΏπΏπΏπΏβˆ 120Β°

𝑍𝑍Δ

Page 18: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

18

Ξ” βˆ’ π‘Œπ‘Œ Conversion

Equating any of the three line currents, we can determine the impedance relationship

π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°π‘π‘π‘Œπ‘Œ

=3π‘‰π‘‰πΏπΏπΏπΏβˆ 0Β°

𝑍𝑍Δ

π‘π‘π‘Œπ‘Œ = 𝑍𝑍Δ3

and 𝑍𝑍Δ = 3π‘π‘π‘Œπ‘Œ

Page 19: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

19

Line-to-Neutral Schematics

For balanced networks, we can simplify our analysis by considering only a single phase A per-phase analysis Other phases are simply shifted by Β±120Β°

For example, a balanced π‘Œπ‘Œ-π‘Œπ‘Œ circuit:

Page 20: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

20

One-Line Diagrams

Power systems are often depicted using one-line diagrams or single-line diagrams Not a schematic – not all wiring is shown

For example:

Page 21: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Example Problems21

Page 22: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Determine: 𝐈𝐈𝐚𝐚 𝐕𝐕𝐀𝐀𝐀𝐀 𝐕𝐕𝐀𝐀𝐀𝐀

Page 23: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 24: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Determine: 𝐈𝐈𝐚𝐚 𝐕𝐕𝐀𝐀𝐀𝐀 𝐕𝐕𝐀𝐀𝐀𝐀 𝐕𝐕𝐀𝐀𝐁𝐁

Page 25: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 26: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 27: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Power in Balanced 3πœ™πœ™ Networks27

Page 28: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

28

Instantaneous Power

We’ll first determine the instantaneous power supplied by the source Neglecting line impedance, this is also the power absorbed by the load

The phase π‘Žπ‘Ž line-to-neutral voltage is

π‘£π‘£π‘Žπ‘Žπ‘Žπ‘Ž 𝑑𝑑 = 2𝑉𝑉𝐿𝐿𝐿𝐿 cos πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 The phase π‘Žπ‘Ž current is

π‘–π‘–π‘Žπ‘Ž 𝑑𝑑 = 2𝐼𝐼𝐿𝐿 cos πœ”πœ”π‘‘π‘‘ + 𝛽𝛽where 𝛽𝛽 depends on the load impedance

Page 29: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

29

Instantaneous Power

The instantaneous power delivered out of phase π‘Žπ‘Žof the source is

π‘π‘π‘Žπ‘Ž 𝑑𝑑 = π‘£π‘£π‘Žπ‘Žπ‘Žπ‘Ž 𝑑𝑑 π‘–π‘–π‘Žπ‘Ž 𝑑𝑑

π‘π‘π‘Žπ‘Ž 𝑑𝑑 = 2𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 cos πœ”πœ”π‘‘π‘‘ + 𝛽𝛽

π‘π‘π‘Žπ‘Ž 𝑑𝑑 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 2πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 + 𝛽𝛽

The 𝑏𝑏 and 𝑐𝑐 phases are shifted by Β±120Β° Power from each of these phases is

𝑝𝑝𝑏𝑏 𝑑𝑑 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 2πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 + 𝛽𝛽 βˆ’ 240Β°

𝑝𝑝𝑐𝑐 𝑑𝑑 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 + 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 2πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 + 𝛽𝛽 + 240Β°

Page 30: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

30

Instantaneous Power

The total power delivered by the source is the sum of the power from each phase

𝑝𝑝3πœ™πœ™ 𝑑𝑑 = π‘π‘π‘Žπ‘Ž 𝑑𝑑 + 𝑝𝑝𝑏𝑏 𝑑𝑑 + 𝑝𝑝𝑐𝑐 𝑑𝑑

𝑝𝑝3πœ™πœ™ 𝑑𝑑 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽+𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿[cos 2πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 + 𝛽𝛽+ cos 2πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 + 𝛽𝛽 βˆ’ 240Β°+ cos 2πœ”πœ”π‘‘π‘‘ + 𝛿𝛿 + 𝛽𝛽 + 240Β° ]

Everything in the square brackets cancels, leaving

𝑝𝑝3πœ™πœ™ 𝑑𝑑 = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 = 𝑃𝑃3πœ™πœ™

Power in a balanced πŸ‘πŸ‘πŸ‘πŸ‘ network is constant In terms of line-to-line voltages, the power is

𝑃𝑃3πœ™πœ™ = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽

Page 31: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

31

Complex Power

The complex power delivered by phase π‘Žπ‘Ž is

𝑺𝑺𝒂𝒂 = π‘½π‘½π’‚π’‚π’‚π’‚π‘°π‘°π’‚π’‚βˆ— = π‘‰π‘‰πΏπΏπΏπΏβˆ π›Ώπ›Ώ πΌπΌπΏπΏβˆ π›½π›½ βˆ—

𝑺𝑺𝒂𝒂 = π‘‰π‘‰πΏπΏπΏπΏπΌπΌπΏπΏβˆ  𝛿𝛿 βˆ’ 𝛽𝛽𝑺𝑺𝒂𝒂 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 + 𝑗𝑗𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 βˆ’ 𝛽𝛽

For phase 𝑏𝑏, complex power is

𝑺𝑺𝒃𝒃 = π‘½π‘½π’ƒπ’ƒπ’‚π’‚π‘°π‘°π’ƒπ’ƒβˆ— = π‘‰π‘‰πΏπΏπΏπΏβˆ  𝛿𝛿 βˆ’ 120Β° 𝐼𝐼𝐿𝐿∠ 𝛽𝛽 βˆ’ 120Β° βˆ—

𝑺𝑺𝒃𝒃 = π‘‰π‘‰πΏπΏπΏπΏπΌπΌπΏπΏβˆ  𝛿𝛿 βˆ’ 𝛽𝛽𝑺𝑺𝒃𝒃 = 𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 + 𝑗𝑗𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 βˆ’ 𝛽𝛽

This is equal to 𝑺𝑺𝒂𝒂 and also to phase 𝑺𝑺𝒄𝒄

Page 32: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

32

Complex Power

The total complex power isπ‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 𝑺𝑺𝒂𝒂 + 𝑺𝑺𝒃𝒃 + π‘Ίπ‘Ίπ’„π’„π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 3π‘‰π‘‰πΏπΏπΏπΏπΌπΌπΏπΏβˆ  𝛿𝛿 βˆ’ 𝛽𝛽

π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽 + 𝑗𝑗3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 βˆ’ 𝛽𝛽

The apparent power is the magnitude of the complex power

𝑆𝑆3πœ™πœ™ = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿

Page 33: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

33

Complex Power

Complex power can be expressed in terms of the real and reactive power

π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 𝑃𝑃3πœ™πœ™ + 𝑗𝑗𝑄𝑄3πœ™πœ™

The real power, as we’ve already seen is

𝑃𝑃3πœ™πœ™ = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 cos 𝛿𝛿 βˆ’ 𝛽𝛽

The reactive power is

𝑄𝑄3πœ™πœ™ = 3𝑉𝑉𝐿𝐿𝐿𝐿𝐼𝐼𝐿𝐿 sin 𝛿𝛿 βˆ’ 𝛽𝛽

Page 34: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

34

Advantages of Three-Phase Power

Advantages of three-phase power: For a given amount of power, half the amount of wire

required compared to single-phase No return current on neutral conductor

Constant real power Constant motor torque Less noise and vibration of machinery

Page 35: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

35

Three-Phase Power – Example

Determine Load voltage, 𝑽𝑽𝑨𝑨𝑩𝑩 Power triangle for the load Power factor at the load

We’ll do a per-phase analysis, so first convert the Ξ” load to a π‘Œπ‘Œ load

π‘π‘π‘Œπ‘Œ =𝑍𝑍Δ3

= 1 + 𝑗𝑗0.5 Ξ©

Page 36: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

36

Three-Phase Power – Example

The per-phase circuit:

The line current is

𝑰𝑰𝑳𝑳 =𝑽𝑽𝒂𝒂𝒂𝒂

𝑍𝑍𝐿𝐿 + π‘π‘π‘Œπ‘Œ=120∠0Β° 𝑉𝑉1.1 + 𝑗𝑗1 Ξ©

=120∠0Β° 𝑉𝑉

1.45∠42.3° Ω

𝑰𝑰𝑳𝑳 = 80.7∠ βˆ’ 42.3Β° 𝐴𝐴

The line-to-neutral voltage at the load is

𝑽𝑽𝑨𝑨𝑨𝑨 = π‘°π‘°π‘³π‘³π‘π‘π‘Œπ‘Œ = 80.7∠ βˆ’ 42.3Β° 𝐴𝐴 1 + 𝑗𝑗0.5 Ξ©

𝑽𝑽𝑨𝑨𝑨𝑨 = 80.7∠ βˆ’ 42.3Β° 𝐴𝐴 1.12∠26.6Β° Ξ©

𝑽𝑽𝑨𝑨𝑨𝑨 = 90.25∠ βˆ’ 15.71Β° V

Page 37: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

37

Three-Phase Power – Example

Calculate the line-to-line voltage from the line-to-neutral voltage

𝑽𝑽𝑨𝑨𝑩𝑩 = 3π‘½π‘½π‘¨π‘¨π‘¨π‘¨βˆ 30Β°

𝑽𝑽𝑨𝑨𝑩𝑩 = 156∠14.3Β° 𝑉𝑉

Alternatively, we could calculate line-to-line voltage from the two line-to-neutral voltages. The line-to-neutral voltage at phase 𝐡𝐡 is

𝑽𝑽𝑩𝑩𝑨𝑨 = 90.25∠ βˆ’ 135.71Β° 𝑉𝑉

So the line-to-line voltage is given by

𝑽𝑽𝑨𝑨𝑩𝑩 = 𝑽𝑽𝑨𝑨𝑨𝑨 βˆ’ 𝑽𝑽𝑩𝑩𝑨𝑨 = 156∠14.3Β° 𝑉𝑉

Page 38: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

38

Three-Phase Power – Example

The complex power absorbed by the load is

π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 3𝑺𝑺𝑨𝑨 = 3π‘½π‘½π‘¨π‘¨π‘¨π‘¨π‘°π‘°π‘³π‘³βˆ—

π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 3 90.25∠ βˆ’ 15.71Β° 𝑉𝑉 80.7∠ βˆ’ 42.3Β° 𝐴𝐴 βˆ—

π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 21.85 ∠26.6Β° π‘˜π‘˜π‘‰π‘‰π΄π΄

π‘Ίπ‘ΊπŸ‘πŸ‘πŸ‘πŸ‘ = 19.53 + 𝑗𝑗𝑗.78 π‘˜π‘˜π‘‰π‘‰π΄π΄

The apparent power:𝑆𝑆3πœ™πœ™ = 21.85 π‘˜π‘˜π‘‰π‘‰π΄π΄

Real power:𝑃𝑃 = 19.53 π‘˜π‘˜π‘Šπ‘Š

Reactive power:𝑄𝑄 = 9.78 π‘˜π‘˜π‘£π‘£π‘Žπ‘Žπ‘˜π‘˜

Page 39: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

39

Three-Phase Power – Example

The power triangle at the load:

𝑄𝑄 = 9.78 kvar

𝑃𝑃 = 19.53 kW

26.6Β°

The power factor at the load is

𝑝𝑝.𝑓𝑓. = cos 26.6Β° =𝑃𝑃𝑆𝑆

=19.53 π‘˜π‘˜π‘Šπ‘Š21.85 π‘˜π‘˜π‘‰π‘‰π΄π΄

𝑝𝑝. 𝑓𝑓. = 0.89 π‘™π‘™π‘Žπ‘Žπ‘™π‘™π‘™π‘™π‘–π‘–π‘™π‘™π‘™π‘™

Page 40: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Example Problems40

Page 41: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Determine complex power: From the source To the load To the line

Page 42: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 43: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 44: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Line-to-line voltage at the load is maintained at 4.16 kV. What is the voltage at the source? How much complex power is delivered by the source?

Page 45: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 46: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 47: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Line-to-line voltage at the load is maintained at 4.16 kV. Determine: Power factor at load Power triangle at load Loss in Lines

Page 48: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 49: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 50: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Add power factor correction to improve p.f. to 0.98, lagging.Determine: Power triangle at load Loss in Lines

Page 51: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 52: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202

Page 53: SECTION 7: THREE-PHASE CIRCUIT FUNDAMENTALSweb.engr.oregonstate.edu/~webbky/ENGR202_files/SECTION 7...Three-Phase Power – Example The per-phase circuit: The line current is 𝑰𝑰

K. Webb ENGR 202