see#through#walls#with#wi0fijasleen/courses/fall15-635/slides/wivi-navaneet.pdf10/1/15 6...

24
10/1/15 1 See through Walls with WiFi Presented by Navaneet Galagali Authors: Fadel Adib and Dina Katabi Overview Goal: Detect and track moving objects behind a wall or closed door using WiFi signals Primary novelEes of the approach: o Eliminate “flash effect” by MIMO nulling o ISAR technique to track moving objects ApplicaEons: Law enforcement, surveillance, gaming

Upload: others

Post on 21-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

1  

See  through  Walls  with  Wi-­‐Fi

Presented  by  Navaneet  Galagali  

Authors:  Fadel  Adib  and  Dina  Katabi  

Overview

• Goal:  Detect  and  track  moving  objects  behind  a  wall  or  closed  door  using  Wi-­‐Fi  signals  • Primary  novelEes  of  the  approach:  

o Eliminate  “flash  effect”  by  MIMO  nulling  o ISAR  technique  to  track  moving  objects  

• ApplicaEons:  Law  enforcement,  surveillance,  gaming  

Page 2: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

2  

Wi-­‐Vi  (Wi-­‐Fi  Vision)

• A  wireless  device  consisEng  of  three  USRP  N210  radios  (two  for  transmiXng)  connected  to  an  external  clock  and  LP0965  direcEonal  antennas  • Uses  Wi-­‐Fi  OFDM  signals  in  the  ISM  band  (at  2.4  GHz)  •  Two  modes  

o Track  moving  objects  behind  a  wall  o Gesture-­‐interface  for  people  to  communicate  messages  from  behind  a  wall  

Flash  Effect

Page 3: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

3  

Flash  Effect  (con<nued)

• AcenuaEon  of  signal  depends  on  the  material  of  the  wall  and  cross-­‐secEon  of  the  object  •  In  actuality,  two-­‐way  acenuaEon  occurs  as  the  signal  passes  through  the  wall  twice  

 

Past  work  in  tracking  moving  targets

•  Through-­‐wall  radar  • Gesture-­‐based  interfaces  (Xbox  Kinect,  Nintendo  Wii  MoEonPlus)  •  Infrared/Thermal  Imaging  

Page 4: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

4  

Through-­‐wall  radar

•  Track  objects  behind  the  wall  via  Eme  domain  or  frequency  domain  • Require  ultra-­‐wide  bandwidth  (UWB)  around  2  GHz  –  not  feasible  in  a  civilian  seXng  

Through-­‐wall  radar  (con<nued)

• Other  narrowband  radar  systems  ignore  the  flash  effect  and  use  Doppler  Shig  to  detect  moving  objects  –  only  work  in  ideal  scenarios  (i.e.,  minimal  obstrucEon)  • One  acempt  using  Wi-­‐Fi  signals  required  a  transmicer  and  receiver  inside  the  room  clock  synchronized  to  a  receiver  outside  the  room  

 

Page 5: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

5  

Gesture-­‐based  interfaces

• Requires  line-­‐of-­‐sight  (LoS)  acEviEes  and  uses  cameras  or  sensors  placed  on  the  body  • Xbox  Kinect,  Nintendo  Wii  MoEonPlus  

Infrared/Thermal  Imaging

• Capture  infrared/thermal  energy  reflected  off  object  in  LoS  of  sensor  • Cannot  see  through  walls  because  they  have  short  wavelengths  •  Infrared  wavelength  ~  1013  Hz,  802.11n  ~  109  

Page 6: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

6  

Wi-­‐Vi’s  improvements

• NLoS  (non-­‐line-­‐of-­‐sight)  scenarios  •  Signals  with  longer  wavelengths  that  are  able  to  go  through  walls  • No  sensors  on  the  target  or  devices  inside  the  room  • Requires  a  few  MHz  of  bandwidth  •  Eliminates  the  flash  effect  by  MIMO  interference  nulling  

Elimina<ng  the  flash  effect  •  IniEal  Nulling  –  standard  MIMO  nulling  • Power  BoosEng  –  increase  transmiced  signal  power  •  IteraEve  Nulling  –  null  staEc  object  reflecEons  again  

Page 7: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

7  

Ini<al  Nulling

•  Transmit  antennas  send  a  known  preamble  ‘x’  • Receive  antenna  receives  y1  =  h1x  and  y2  =  h2x  • Compute  channel  esEmates  ℎ ↓1   and   ℎ ↓2   and  obtain  raEo  p  =  − ℎ ↓1 /ℎ ↓2     • Both  transmit  antennas  transmit  concurrently,  with  perceived  channel:  

Power  Boos<ng

•  Signals  due  to  moving  objects  are  not  strong  enough,  so  we  increase  the  transmiced  signal  power  • Because  the  channel  is  already  nulled,  the  increase  in  power  does  not  overwhelm  the  receiver’s  ADC  (analog  to  digital  converter)  • Overall  result  is  improved  SNR  (signal  to  noise  raEo)  of  objects  behind  the  wall  

Page 8: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

8  

Itera<ve  Nulling

• Power  boosEng  causes  previously  negligible  staEc  reflecEons  to  spike  up,  so  we  must  null  again  • Challenge:  Cannot  separately  esEmate  channels  from  transmit  antennas  because  only  combined  channel  is  received  ager  iniEal  nulling  • Removing  iniEal  nulling  would  saturate  the  ADC  due  to  the  power  boosEng  step  •  Insight:  Errors  in  channel  esEmates  are  much  smaller  than  channel  esEmates  themselves  

Itera<ve  Nulling  (con<nued)

•       Assume  and  h2  esEmate  is  accurate  (so                          )  and  solve  for  ℎ ′↓1 :    

ℎ↓𝑟𝑒𝑠 = ℎ↓1 − ℎ ↓1   

•  Assume  the  same  for  h1  and  solve  for  ℎ ′↓2 :  

•  Iterate  between  steps  unEl  h1  and  h2  esEmates  converge  

Page 9: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

9  

Final  points  on  MIMO  nulling

• Can  be  performed  when  objects  are  moving  behind  the  wall  or  in  front  of  the  wall  (as  long  as  they  are  moving  out  of  the  view  of  the  direcEonal  antennas)  • Algorithm  provides  a  42  dB  mean  reducEon  in  power,  which  removes  the  flash  effect  from  solid  wood  doors,  6’’  hollow  walls,  and  most  indoor  concrete  walls  

Tracking  Mo<on  in  prior  work

• Past  systems  used  an  antenna  array  •  Tracking  the  AoA  in  Eme  tracks  movement  of  the  object  

Page 10: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

10  

Tracking  Mo<on  in  prior  work

•  Large  antenna  array  is  needed  to  obtain  a  narrow  beam  and  good  resoluEon  •  Increasing  length  of  the  antenna  decreases  its  footprint  •  Each  receive  antenna  would  need  corresponding  transmit  antennas  for  MIMO  nulling,  making  it  even  bulkier  

hcp://www.crisp.nus.edu.sg/~research/tutorial/mw.htm    

Tracking  Mo<on  using  ISAR

•  Treats  the  movement  of  the  target  as  an  antenna  array  •  Target  takes  AoA  of  signal  as  target  moves  •  Time  samples  received  by  Wi-­‐Vi  correspond  to  spaEal  locaEons  of  the  moving  target  • A  technique  used  in  mapping  the  surfaces  of  planets  

Page 11: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

11  

ISAR  (Inverse  Synthe<c  Aperture  Radar)

•  y[n]  :  Signal  sample  received  by  Wi-­‐Vi  at  Eme  n  • 𝜃  :  Angle  between  the  line  from  human  to  Wi-­‐Vi  and  the  normal  to  the  moEon  • A[𝜃,  n]  :  A  funcEon  that  measures  the  signal  along  the  spaEal  direcEon  𝜃  at  Eme  n  

ISAR  (con<nued)

• h[n]  :  Received  samples  as  a  funcEon  of  Eme  =  n  • h[n]  =  y[n]/x[n]  • Antenna  array  of  size  w  uses  consecuEve  channel  measurements  h[n]…h[n+w]  

Page 12: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

12  

ISAR  (con<nued)

• 𝜆  –  wavelength,  Δ  –  spaEal  separaEon  between  successive  antennas  in  the  array  •  The  value  of  𝜃  that  causes  highest  value  of  A[𝜃,  n]  is  the  direcEon  of  target  movement  

ISAR  (con<nued)

• Δ  =  vT  (distance  =  velocity  *  Eme),  approximaEng  v  =  1  m/s  (walking  speed)  in  Wi-­‐Vi  •  Errors  in  value  of  ‘v’  overesEmate  or  underesEmate  the  direcEon  of  the  target  • With  errors,  Wi-­‐Vi  is  able  to  track  relaEve  movement  of  the  target,  but  cannot  pinpoint  exact  locaEon  

Page 13: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

13  

ISAR  output

•  Zero  line  represenEng  DC  –  average  energy  from  staEc  elements  •  Curved  line  with  changing  angle  tracks  target’s  moEon  •  [0-­‐1.8  sec]:  Person’s  moEon  and  line  from  person  to  Wi-­‐Vi  are  in  same  direcEon  •  1.8  sec:  Person  crosses  in  front  of  Wi-­‐Vi  device  •  [1.8-­‐3  sec]:  Person’s  moEon  and  line  from  person  to  Wi-­‐Vi  are  in  opposite  direcEon  •  [3  onwards]:  Person  moves  inward  and  towards  the  Wi-­‐Vi  device  

Tracking  Mul<ple  Humans

• Received  signal  is  a  superposiEon  of  all  the  antenna  arrays  represenEng  all  moving  targets  •  Signal  reflected  off  all  humans  is  correlated  in  Eme  and  is  not  independent  (they  may  interact  with  one  another)  • Apply  smoothed  MUSIC  algorithm  to  disentangle  signals  

Page 14: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

14  

MUSIC  Algorithm  Background •  Stands  for  MulEple  Signal  Classifier  •  Super-­‐resoluEon  DOA  (direcEon  of  arrival)  algorithm  • Applied  only  to  narrowband  signal  sources  –  represented  as  complex  sinusoids  

hcp://www.girdsystems.com/pdf/GIRD_Systems_Intro_to_MUSIC_ESPRIT.pdf    

Complex  Sinusoids  Background

•  Signal  represented  as  a  complex  sinusoid:  

• A  real  sinusoid  is  the  sum  of  two  complex  sinusoids  

 • A  delay  of  a  sinusoid  is  a  phase  shig:  

hcp://www.girdsystems.com/pdf/GIRD_Systems_Intro_to_MUSIC_ESPRIT.pdf    

Page 15: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

15  

Antenna  Array  Background

•  Signal  s(t)  hits  the  array  at  angle  𝜃  • At  sensor  1,  let  received  signal  x1(t)  =  s(t)  • Delay  at  sensor  i  is    

• Received  signal  at  sensor  i  is    

hcp://www.girdsystems.com/pdf/GIRD_Systems_Intro_to_MUSIC_ESPRIT.pdf    

MUSIC  Algorithm  Background  (con<nued)

• All  N  sensors:  

   •  a(𝜃)  –  “steering  vector”  

hcp://www.girdsystems.com/pdf/GIRD_Systems_Intro_to_MUSIC_ESPRIT.pdf    

Page 16: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

16  

MUSIC  Algorithm  Background  (con<nued)

•  Signal  data  model:  X  =  AF  +  W  o X  –  Received  signals  (in  our  paper  this  is  denoted  ‘h’)  o A  –  Steering  vectors  for  all  source  signals  o F  –  Incident  Signals  o W  –  Noise  

hcp://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1143830    

MUSIC  Algorithm

• Compute  correlaEon  matrix:  •  Eigen  decomposiEon  of  R[n]  gives  the  eigenvectors  corresponding  to  the  moving  humans  and  DC  line  • ParEEon  eigenvector  matrix  into  signal  space  (US)  and  noise  space  (UN)  • Key  idea  (1):  Signal  space  and  noise  space  are  orthogonal  • Key  idea  (2):  Steering  vector  a(𝜃)  is  equal  to  the  signal  space  •  Thus,  a(𝜃)UN  =  0  

hcp://www.girdsystems.com/pdf/GIRD_Systems_Intro_to_MUSIC_ESPRIT.pdf    

Page 17: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

17  

MUSIC  algorithm  (con<nued)

• Power  density  is  computed:  

•  a(𝜃)  -­‐    steering  vector  consisEng  of  the                            terms  • Whenever  𝜃  corresponds  to  the  real  signals,  P(𝜃)  shows  a  peak  • Peak  will  indicate  the  angle  of  the  signal  

 

hcp://www.girdsystems.com/pdf/GIRD_Systems_Intro_to_MUSIC_ESPRIT.pdf    

MUSIC  Algorithm  (con<nued)

•  Same  formula:  

• K  –  Total  number  of  noise  eigenvectors  • w  –  number  of  sensors  • 𝜔  -­‐  angular  wavenumber  corresponding  to  2𝜋/𝜆   where  𝜆  is  the  wavelength  

•  For  comparison:  

Page 18: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

18  

“Smoothed”  MUSIC  algorithm

• Compute  w  x  w  correlaEon  matrix  R[n]:    •  “Smoothing”  –  ParEEon  each  array  h  of  size  w  into  subarrays  of  size  w’  and  compute  correlaEon  matrix  R[n]  for  each  of  them  

 •  Sum  up  the  different  correlaEon  matrices  and  then  perform  eigen  decomposiEon  

 

“Smoothed”  MUSIC  algorithm  (con<nued)

• Benefit:  De-­‐correlates  signals  coming  from  different  spaEal  targets  •  Taking  overlapping  subarrays  of  the  same  antenna  array  shigs  reflecEons  from  other  targets  by  different  amounts,  which  helps  to  de-­‐correlate  them  

Page 19: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

19  

Detec<ng  number  of  moving  targets

•  SpaEal  variance  as  a  measure  of  the  number  of  moving  targets  

•  SpaEal  Centroid:  

•  SpaEal  Variance:      

• Variance  is  averaged  to  return  one  number  for  the  rest  of  the  measurement  

Spa<al  variance  thresholds

•  ProporEonal  to  #  of  targets  so  a  training  set  is  used  to  find  the  thresholds  for  0,  1,  2,  3  humans  

•  Adding  more  humans  to  a  congested  space  doesn’t  increase  the  spaEal  variance  as  much  as  adding  more  humans  to  a  less  congested  space  

•  As  a  result,  there  is  some  inaccuracy  as  the  number  of  humans  increases  

Page 20: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

20  

Gesture-­‐based  communica<on

• Wi-­‐Vi  enables  humans  to  communicate  without  a  wireless  device  via  simple  gesture-­‐based  communicaEon  • Gestures  are  encoded  using  ‘0’  and  ‘1’  bits  • Wi-­‐Vi’s  three  imposed  gesture  condiEons:  

o Must  be  composable:  At  the  end  of  a  ‘0’  or  ‘1’  bit,  human  should  be  back  in  iniEal  state  

o Must  be  simple  o Must  be  easy  to  detect  and  decode  without  the  use  of  machine  learning  techniques  

Page 21: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

21  

Gesture  Encoding

• Wi-­‐Vi  has  adopted  the  following  scheme  for  encoding  gestures:  o ‘0’  bit:  A  step  forward  followed  by  a  step  backward  o ‘1’  bit:  A  step  backward  followed  by  a  step  forward  

Gesture  Decoding • Apply  two  matched  filters  to  A’[𝜃,  n]  for  the  step  forward  and  step  backward  • Matched  filter:  A  linear  filter  that  is  designed  to  detect  the  presence  of  a  waveform  that  is  buried  in  addiEonal  noise.  • Apply  standard  peak  detector  to  match  the  peaks/troughs  to  their  corresponding  bits  

 

hcp://local.eleceng.uct.ac.za/courses/EEE3086F/notes/212-­‐Matched_Filter_2up.pdf    

Page 22: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

22  

Gesture  Decoding  (con<nued)

Matched  filter  

       Standard    Peak  detector  

Gesture  Recogni<on  Performance

• Distance  less  than  5m:  100%  • Distance  between  6m  and  7m:  93.75%  • Distance  at  8m:  75%  • Distance  greater  than  9m:  None  

Page 23: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

23  

Gesture  Recogni<on  Performance  (con<nued)

• Glass,  solid  wooden  doors,  interior  walls,  concrete  walls  of  limited  thickness  • Does  not  work  with  denser  material  (ex.  Reinforced  concrete)  

Limita<ons

• Can  only  detect  moving  targets  • Assumes  a  given  velocity  of  moEon  (delta  =  vT)  in  order  to  pinpoint  the  target  • ResoluEon  decreases  as  the  number  of  moving  targets  increases  and  as  the  distance  of  the  targets  increases  

 

Page 24: See#through#Walls#with#Wi0Fijasleen/Courses/Fall15-635/slides/WiVi-Navaneet.pdf10/1/15 6 Wi0Vi’s#improvements • NLoS%(nonDlineDofDsight)%scenarios% • Signals%with%longer%wavelengths%thatare%able%to%go%through%walls%

10/1/15  

24  

Conclusion

• Wi-­‐Vi  enables  detecEon  of  moving  targets  behind  a  wall  using  Wi-­‐Fi  signals  • Represents  a  form  of  Wi-­‐Fi-­‐based  sensing  and  localizaEon  and  raises  quesEons  of  user  privacy  and  regulaEon  around  Wi-­‐Fi  signals  • With  becer  hardware  and  improved  nulling  techniques,  the  resoluEon  of  the  system  will  improve  for  greater  distances  and  denser  building  materials