semi-lagrangian approximation of navier-stokes equations

24
Semi-Lagrangian Approximation of Navier-Stokes Equations Vladimir V. Shaydurov Institute of Computational Modeling of SB RAS Beihang University [email protected]

Upload: tanner-sweet

Post on 03-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Semi-Lagrangian Approximation of Navier-Stokes Equations. Vladimir V. Shaydurov Institute of Computational Modeling of SB RAS Beihang University [email protected]. Contents. Approximation in norm. Modified method of characteristics. Convection-diffusion equation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Semi-Lagrangian Approximation of Navier-Stokes Equations

Vladimir V. Shaydurov

Institute of Computational Modeling of SB RAS

Beihang University

[email protected]

Page 2: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Contents

• Approximation in norm.

Modified method of characteristics.

Convection-diffusion equation.

• Approximation in norm.

Conservation law of mass.

• Approximation in norm.

Conservation law of energy.

L

1L

2L

Page 3: Semi-Lagrangian Approximation  of Navier-Stokes Equations

• The main original feature of semi-Lagrangian approach consists in approximation of all advection members

as one “slant” (substantial or Lagrangian) derivative

in the direction of vector

u vdt y

d

t x

d

d l

.l

Page 4: Semi-Lagrangian Approximation  of Navier-Stokes Equations

First example: convection-diffusion equation

u v ft x y

d

d lf

1

ˆˆ ˆ( , , ),

ˆ ˆ( , , ),k k

dxu t x y

dt t t tdy

v t x ydt

Page 5: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Approximation of substantial derivative along trajectory approachL

Page 6: Semi-Lagrangian Approximation  of Navier-Stokes Equations

( )tf

• The equation at each time level became self-adjoint!

Pironneau O. (1982), …Chen H., Lin Q., Shaidurov V.V., Zhou J. (2011), …

Page 7: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Computational geometric domain

out

inrigid

Page 8: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Navier-Stokes equations

(0, )fint , , ,u v eIn the cylinder we write 4 equations in unknowns

( )0,xyxxD u P

Dt x x y

( )0,xy yyD v P

Dt y x y

( ).yx

qqD e u vP

t x y x y

( ) ( ) 0u vt

D

t yD x

Page 9: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Notation

( , , ) is density;t x y

( , , ), ( , , ) are components of the vector velocity ;u t x y v t x y u

( , , ) is internal energy of mass unit;e t x y

( , , ) is pressure;P t x y

1( , , ) ( , , )

Ret x y t x y

is the dynamic coefficient of viscosity:

21 , 0.76 0.9M e

Page 10: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Notation

, , are the components of the stress tensor (matrix)

:

xx xy yy

xx xy

xy yy

2 22 , 2 ,

3 3

xx yy

xy

u v v u

x y y x

u v

y x

Page 11: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Notation

, are components of the vector density of a heat flow:x yq q

( , , ) , ( , , )Pr Prx y

e eq t x y q t x y

x y

( 1) .P e

2 2 222 2

.3 3

u v v u u v

x y x y x y

Re is the Reynolds number; Pr is the Prandtl number;

M is the Mach number; is a gas constant

The equation of state has the following form (perfect gas):

The dissipative function is taken in the form:

Page 12: Semi-Lagrangian Approximation  of Navier-Stokes Equations

How to avoid the Courant-Friedrichs-Lewy restriction for high Reynolds number

approach

( ) ( ) 0u vt

D

t yD x

Curvilinear hexahedron V:

1

ˆˆ ˆ( , , ),

ˆ ˆ( , , ),k k

dxu t x y

dt t t tdy

v t x ydt

Trajectories:

1L

Page 13: Semi-Lagrangian Approximation  of Navier-Stokes Equations

0V Q

D

DV d

td dQ

Approximation of curvilinear quadrangle Q:

1 1, ,

4, , 2

1( )

k ki j i j

hk i jQ Q

d dQ O h dQh

Due to Gauss-Ostrogradskii Theorem:

Page 14: Semi-Lagrangian Approximation  of Navier-Stokes Equations

0V Q R

dV d dQ u dDt

RD

1 1, ,

1 1, ,

4

, , 2 2

( )

1 1

k ki j i j

k ki j i j

Q R

hk i j Q R

d dQ u dR O h

dQ u dRh h

Gauss-Ostrogradskii Theorem in the case of boundary conditions:

Page 15: Semi-Lagrangian Approximation  of Navier-Stokes Equations

( )0xyxxD u P

Dt x x y

( , ) :x y

( , , ) : ( , , ) ( , ),

0

kt x y t x y x y

u vy

d

xdt t

approach

2L

Page 16: Semi-Lagrangian Approximation  of Navier-Stokes Equations

( )0xyxxD u P

Dt x x y

( ) ( ) ( )D u D u D u du

Dt Dt Dt dt

( )0xyxxD u P

Dt x x y

Page 17: Semi-Lagrangian Approximation  of Navier-Stokes Equations

( )0xyxx

V

D u PdV

Dt x x y

1k k

xy yy

t t t tQ

v P vd dQ

y x y

1k k

xyxxt t t t

Q

u P ud dQ

x x y

Page 18: Semi-Lagrangian Approximation  of Navier-Stokes Equations

( ) 10

2yxqD q u v

PDt x y x y

( ) yxqD e q u v

PDt x y x y

1 2e

2( ) yxqD q u v

PDt x y x y

2 22( ) ( ) ( )

2D D D D

Dt Dt Dt Dt

Page 19: Semi-Lagrangian Approximation  of Navier-Stokes Equations

( )0

2yx

V

qD q u vP dV

Dt x y x y

1

1

2 k k

yxt t t t

Q

qq u vP d dQ

x y x y

Page 20: Semi-Lagrangian Approximation  of Navier-Stokes Equations

1k k

xyxxt t t t

Q

u P ud dQ

x x y

1k k

xy yy

t t t tQ

v P vd dQ

y x y

1

1

2 k k

yxt t t t

Q

qq u vP d dQ

x y x y

Finite element formulation at each time level

kt t

Page 21: Semi-Lagrangian Approximation  of Navier-Stokes Equations

The channel with an obstacle at the inlet

Page 22: Semi-Lagrangian Approximation  of Navier-Stokes Equations

The component of velocity u

The distribution of density

Page 23: Semi-Lagrangian Approximation  of Navier-Stokes Equations

Conclusion

• Stability of full energy (kinetic + inner)• Approximation of advection derivatives in the frame of

finite element method without artificial tricks• The absence of Courant-Friedrichs-Lewy restriction on the

relation between temporal and spatial meshsizes• Discretization matrices at each time level have better

properties (positive definite)• The better smooth properties and the better approximation

along trajectories

Page 24: Semi-Lagrangian Approximation  of Navier-Stokes Equations

• Thanks for your attention!