semiconductor-based experiments for 0 decay search · see poster 138 24. 25 marik barnabé heider...

36
Semiconductor-based experiments for 0 decay search Marik Barnabé Heider, MPIK Heidelberg for the GERDA collaboration XXIV International Conference on Neutrino Physics and Astrophysics Athens, Greece, June 14-19 2010

Upload: others

Post on 07-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Semiconductor-based experiments for

0 decay search

Marik Barnabé Heider, MPIK Heidelberg

for the GERDA collaboration

XXIV International Conference on Neutrino Physics and Astrophysics

Athens, Greece, June 14-19 2010

Page 2: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Outline

1. Semiconductor technology for

the search of 0 decay

2. The COBRA experiment

(CdZnTe detectors)

3. Germanium detector experiments

MAJORANA

GERDA

2

Marik Barnabé Heider MPIK Heidelberg

Page 3: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

3

Marik Barnabé Heider MPIK Heidelberg

1. Semiconductor technology for

the search of 0 decay

2. The COBRA experiment

(CdZnTe detectors)

3. Germanium detector experiments

MAJORANA

GERDA

Page 4: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Advantages for 0 decay search:

● detector-grade semiconductors are

high-purity materials (low background)

● very good detection efficiency due to:

detectors made of source material

● established detector technologies

industrial support

● very good energy resolution:

~2-3 keV for Ge (~15-20 keV for CdZnTe)

4

Marik Barnabé Heider MPIK Heidelberg

p-type germanium

feedback circuit

read out

high

voltage

(+)

p+ contact

n+ contact

holes

drift to p+

contact

electrons

drift to n+

contact

germanium detector operating principle

(CZT principle similar)

Semiconductor detectors

Coplanar grid detector

COBRA: CdZnTe detectors Room temperature operation

GERDA&MAJORANA: Ge det.Cryogenic operation

Coaxial p-type detector

p-n junction

de

ple

ted

re

gio

n

(ac

tive

vo

lum

e)

ionizing

radiation

Page 5: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

5

Marik Barnabé Heider MPIK Heidelberg

1. Semiconductor technology for

the search of 0 decay

2. The COBRA experiment

(CdZnTe detectors)

3. Germanium detector experiments

MAJORANA

GERDA

Page 6: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

COBRAK. Zuber, Phys. Lett. B 519,1 (2001)

● CdZnTe detectors

● Most promising 116Cd, Q=2809 keV

Marik Barnabé Heider MPIK Heidelberg

COBRA Setup at LNGS 1st layer of 16 crystals

• FWHM 3.5% - 8.5% @ 2.8 MeV

• stopped end of 2008

• exposure18 kg*days

Physics results on 113Cd & DBD limits:

Inner copper shieldLead castle

Faraday cage

Neutron shield

1st layer, 16 x 1 cm3

crystals, 6.5 g each

J.V. Dawson et al., Nucl. Phys. A 818, 264 (2009),

Phys. Rev. C 80,025502 (2009)

6

Background at 2.8 MeV:

5 cts/(keVkgyr)

Upgrade to 64 detectors in near

future

Page 7: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Marik Barnabé Heider MPIK Heidelberg

COBRA: outlook

R&D: Detector pixelisation to reduce background

alphas

betas(0similar)

Particle

identification:

55 μm pixel size

20x20x15

mm3 detector

(11x11 pixel,

36 grams)

• Fiducial cut excludes edge pixels

• No low background tuning

• Running at LNGS Sep 09-Jan 10

no event in peak range at 2809 keV in 124 days

7

1) Energy and tracking: solid-state TPC 2) Fiducial cut

Rejection of

alphas, muons

see poster 85

In collaboration with

Zhong He (UMichigan)

Page 8: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

8

Marik Barnabé Heider MPIK Heidelberg

1. Semiconductor technology for

the search of 0 decay

2. The COBRA experiment

(CdZnTe detectors)

3. Germanium detector experiments

MAJORANA

GERDA

Page 9: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Search for the half-life of 0 decay of 76Ge

MPIK Heidelberg

9

Marik Barnabé Heider

Enrichment in 76Ge to 87%

Best limits on 0ββ-decay used Ge

(IGEX & Heidelberg-Moscow):

T1/2> 1.9 ×1025y (90%CL)

(& claim for evidence)

GERDA MAJORANA

• Bare Ge-diodes array in LAr

• Shield: high-purity LAr/ H2O

• Arrays of Ge-diodes in high

purity electroformed Cu cryostats

• Shield: electroformed Cu, Pb

Open exchange of knowledge & technologiesIntent to merge for a ton scale experiment

Spectral signature

A = 76

Q = 2039 keV

Page 10: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

~4

000 –

7000 m

.w.e

Deep underground sites for suppression of cosmic ray muons

Partly funded; under construction

MAJORANA @ DUSEL, USA

Suppression of -flux > 106

Background reduction MPIK HeidelbergMarik Barnabé Heider

3400 m

.w.e

.

GERDA in Hall A @ LNGS, Italy

Phase I: B < 10-2 cts/(keV· kg· y)

Phase II: B < 10-3 cts/(keV· kg· y) Demonstrator: B 10-3 cts/(keV· kg· y)

Background suppression techniques required for B 10-3 cts/(keV· kg· y)

Background reduction by factor 102 - 103 relative to past experiments

10

Full scale experiment: B 10-4 cts/(keV· kg· y)

• Pulse shape analysis

• Array anti-coincidence

• R&D: Segmentation, LAr scintillation

• Material cleaning

• Passive shield (Cu & Pb)• Muon vetoS

tan

da

rd

No

ve

l

Page 11: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Mass scale:

<24 - 41 meV

Inverted

<75 - 129 meV

Degenerate

KKassuming

|M0|=2.99-8.99 †

and 86% enrichment

† [Smolnikov&Grabmayr

PRC 81 (2010) 028502]

B: O(10-3) cts/(kgykeV)

Exposure:

GERDAPhase II/

MajoranaDemonst.

GERDAPhase I

GERDA Phase III/Majorana

2·1026 (90 % CL) *

3·1025 (90 % CL) *

*: no event in ROI

2·1027 (90 % CL) *

Phases and physics reachMPIK HeidelbergMarik Barnabé Heider

exposure (kgy)

T 1/2

(y)(

90

% C

.L.,

no

bg

d.)

GERDA

Phase I: 18 kg (HdM/IGEX) for 1 y

Phase II: total ~40 kg enrGe for 3 y

MAJORANA

Demonstrator: ~ 30 kg enrGe for 3 y

GERDA Phase III & MAJORANA: 1 ton year

B: O(10-4) cts/(kgykeV)

B: O(10-2) cts/(kgykeV)

11

Page 12: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

12

Marik Barnabé Heider MPIK Heidelberg

1. Semiconductor technology for

the search of 0 decay

2. The COBRA experiment

(CdZnTe detectors)

3. Germanium detector experiments

MAJORANA

GERDA

Page 13: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

MAJORANA project status

• Demonstrator approved for FY 2010-2013

– 30 kg natGe & 30 kg enrGe

– Running 3 years (90 kgy) T1/2 1026 y (90% CL))

– B =10-3 cts/(kgkeVy)

• Objective: Demonstrate background low enough

to justify building a ton scale Ge experiment

Marik Barnabé Heider MPIK Heidelberg

• Schedule:

– Start of Cu electroforming deep

underground at DUSEL this year

– First cryostat with 20 kg of natGe modified

BEGe p-type detectors ready in fall 2011

See posters 4, 95 & 120

13

Page 14: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

14

Marik Barnabé Heider MPIK Heidelberg

1. Semiconductor technology for

the search of 0 decay

2. The COBRA experiment

(CdZnTe detectors)

3. Germanium detector experiments

MAJORANA

GERDA

Page 15: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Design of GERDA

15

Liquid Ar cryostat:

Shielding, cooling

of detectors

Water tank instrumented with PMTs:

Shielding, Cherenkov muon-veto

Clean room:

Detector handling Lock system:

Detector

insertion

Phase I

detector array

Cu shield

MPIK HeidelbergMarik Barnabé Heider

1400 m thick

rock shield

Page 16: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

GERDA status report

16

MPIK HeidelbergMarik Barnabé Heider

Page 17: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Cryostat installated in Hall A of LNGS – 6th March 2008

17

MPIK HeidelbergMarik Barnabé Heider

Produced from selected low-background austenitic steel

Page 18: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Construction of water tank – May 2008

MPIK HeidelbergMarik Barnabé Heider

10 m

H = 9.5 m

V = 650 m3

Designed for external ,n,μ background ~10-4 cts/(keVkg y)18

Page 19: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Clean room construction – February 2009

19

MPIK HeidelbergMarik Barnabé Heider

Page 20: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Muon veto completed – August 2009

MPIK HeidelbergMarik Barnabé Heider

20

Page 21: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Muon veto completed – August 2009

MPIK HeidelbergMarik Barnabé Heider

21

Page 22: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Phase I detectors

22

8 diodes (from HdM, IGEX):

•Enriched 86% in 76Ge

• All diodes reprocessed

with new contacts

optimized for LAr

• Well tested procedure

for detector handling

• Long term stability

in LAr established

• All detectors mounted in low-

mass holder & tested in LAr

• Energy resolution in LAr:

~2.5 keV (FWHM) @1.3 MeV

• Total mass 17.66 kg

6 diodes from Genius-TF natGe:

• Same reprocessing & testing

as enriched diodes

• Total mass: 15.60 kg

Ge diodes before and

after the reprocessing

Low-mass holder

and electrical

contacts

Detector handling under N2 atmosphere

MPIK HeidelbergMarik Barnabé Heider

Page 23: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

1580 1600 1620 16400

1000

2000

3000

4000

5000

6000

Energy [keV]

Nu

mber

of

cou

nts

1950 2000 2050 210010

0

101

102

103

104

Energy [keV]

Nu

mber

of

cou

nts

all events

after PSD

all events

after PSD

Th228

1621 keVfull absorp-tion peak

survivingfraction10.1%

(a) (b)

DEP1593 keV

survivingfraction89.2%

surviving fraction 0.93%

Co60

Phase II detectors

23

1) n-type segmented

Two technologies pursued with advanced 0-signal recognition & bgd suppression

n-type detectors

with 18-fold

segmented

electrodes, 1.6 kg

I.Abt et al., NIMA 583 (2007), Eur. J. Phys. C 52 (2007)

2) p-type BEGe

DEP: 82%

0-like

-bgd: 19%

0-like

D. Budjáš et al., JINST 4 P10007 (2009)

MPIK HeidelbergMarik Barnabé Heider

n+ contact

p-type germanium

81 mm

32

mm

878 g

p+ contact

Segmentation + PSD PSD only

Page 24: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

enrGe & deplGe:• 37.5 kg of 86% enrGe and 58 kg of depGe acquired

Reduction & purification:• procedure tested and optimized with

depGe at PPM Pure Metals GmbH

• no isotopic dilution

• minimal exposure to cosmic rays (underground storage)

• purification of enriched material completed:

35.4 kg (94% yield) of 6N grade material (+ 1.1 kg tail 97%)

Crystal pulling:n-type for segmented detectors:

• R&D for n-type pulling by Institut für Kristallzüchtung, Berlin

p-type for BEGe detectors:

• four crystals pulled from deplGe material at Canberra,

Oakridge, US

• first two deplBEGe detectors working

Phase II detectors

MPIK HeidelbergMarik Barnabé Heider

See poster 138 24

Page 25: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

25

MPIK HeidelbergMarik Barnabé Heider

• Summer/autumn ‘09: Integration test of Phase I detector

string, FE, lock, DAQ

• Nov/Dec.’09: Liquid argon filling

• Apr/May’10: Installation of 1-string lock in the GERDA

cleanroom

• May ’10: Deployment of FE & detector mock-up, followed

by first deployment of a of non-enriched detector

• June ‘10: Water tank filling

• June ‘10: Commissioning run with natGe detector string

GERDA status

Page 26: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

228Th calibration spectrum

GERDA status MPIK HeidelbergMarik Barnabé Heider

26

Page 27: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

• One month run with natGe

detector string to measure:

– background

– stability (weekly calibration)

• Subsequently

– operation of enriched

detector strings

GERDA ScheduleMPIK HeidelbergMarik Barnabé Heider

27

Page 28: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

28

SummaryThree semiconductor based 0 experiments

• COBRA: 16 CdZnTe detector run at LNGS completed

Upgrade to 64 detectors in near future

R&D on background reduction (pixellisation)

• MAJORANA: 1st natGe detectors for Demonstrator acquired

Cu electroforming in DUSEL (4000 m.w.e. deep)

First cryostat with natGe running in 2011

• GERDA: Construction completed in LNGS Hall A

Cryostat and water tank filled

Since June 2, first natGe detector string

operating in LAr

enrGe detector deployment in near future

Phase I physics result in 2011

MPIK HeidelbergMarik Barnabé Heider

Page 29: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Active

cooling

3/6 cm copper shield

4.2 m 8.9

m

• 65 m3 volume for LAr

• 200 W measured thermal loss

• active cooling with LN2

• internal copper shield

• detailed risk analysis of

cryostat in ‘water bath’

GERDA cryostat

GeMPI-II

@ LNGS

Screening of all

stainless steel sheet

batches by

underground

-spectroscopy at

MPI-HD and LNGS

prior construction

MC cryostat + copper shield + LAr

<2 · 10-4 cts / (keV٠kg٠y)

NIM A593 (2008) 448, NIM A606 (2009) 790 29

Page 30: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Measurements of Rn emanation (a) at various

fabrication/installation steps with MoREx(b)

after 1./2. cleaning 23±4 / 14±2 mBq

after copper mount 34±6 mBq

after 3. cleaning 31±2 mBq

after cryogenics mount 55±4 mBq**

(a) Uniform 222Rn distribution of 8 mBq

implies b = 10-4 cts/(keV kg y) in

phase I.

(b)Appl.Rad.Isot. 52(2000) 691

**evidence: 222Rn concentrated in neck!

Rn shroud: 30 μm copper

Ø 0.8m , 3 m height

to prevent convective transport

of Rn from walls/copper to Ge

diodesB ~ 1.5 10-4 cts / (keV٠kg٠y)

Cryostat: Rn emanation

30

Page 31: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

Background summary in a nutshell

Source B [10-3 cts/(keV

kg y)]

Ext. from 208Tl (232Th) <<1

Ext. neutrons <0.05

Ext. muons (veto) <0.03

Int. 68Ge (t1/2= 270 d) 12

Int. 60Co (t1/2= 5.27 y) 2.5

222Rn in LN/LAr <0.2

208Tl, 238U in holder <1

Surface contam. <0.6

180 days exposure

after enrichment + 180

days underground

storage

30 days exposure after

crystal growing

Target for phase II: B 10-3 cts/(keV kg y)

additional bgd. reduction techniques

derived from measurements and MC simulations

Muon veto

31

Page 32: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

R&D long-term stability of phase I detectors in

LAr/LN2

Apparent problem* of ‘Limited long-term stability

of naked detectors in liquid nitrogen as result of

increasing leakage current’ resolved by GERDA:

• operated 3 HPGe detectors in LN/LAr

• 2 years of experience, >50 cycles

► with proper procedure no problem in

contradiction to claim*

* Klapdor-Kleingrothaus & Krivosheina, NIM A566 (2006)

472

10 pA

no deterioration after 1 year of operation in LAr

M. Barnabé-Heider, PhD thesis ‘09

No passivation in groove (choosen design)

With passivation layer in groove

32

Page 33: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

33

Broad-Energy Germanium Detector (BEGe)

we

igh

ing

po

ten

tia

l

e− h+

p-type Ge

n+ contact

small - area p+ contact

excellent multi-site / single-site event discrimination

avoids external background from multiple contacts

also: excelent energy resolution and low-energy threshold

GERDA Phase II:

active background rejection capability

Candidate: BEGe single-site

event

multi-site

event

Time [10 ns]

Time [10 ns]

Imax

Imax

33

Page 34: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

R&D for Phase II/III: the GERDA-LArGe test

stand at LNGSFirst (& yet preliminary) results of a bare BEGe detector operated

with liquid argon veto and pulse shape discrimination

Lock: Can house up to 3

strings (9 detectors)

Cryostat: Volume: 1000 liter

Shield:Cu 15cm, Pb 10cm, Steel 23cm, PE 20cm

reflector foil & wavelength shifter

9 PMTs: For the detection of Ar-scintillation

128 nm

~450 nm

PMT

VM2000 + WLS

Ar scintillation

34

Page 35: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

228Thsource

50 cm

0.8 kg

BEGe

Survival

prob. @ Q:

~1%

35

Page 36: Semiconductor-based experiments for 0 decay search · See poster 138 24. 25 Marik Barnabé Heider MPIK Heidelberg •Summer/autumn ‘09: Integration test of Phase I detector string,

CSA Based on Commercial CMOS OPAMP

Architecture: external JFET + CMOS OPAMP and Rf,Cf

•Reduced PCB Size (38 mm x 50 mm)

•15 MeV guaranteed energy dynamic range

• 50 W drive capability with 10 m long cables

• Power consumption < 140 mW (down to 100

mW for 10 Mev dynamic range)

• Rise time < 55 ns with 50 Ohm terminated,

long cables and energy up to 15 Mev

• Cross-talk : < 0.1%

• Mechanical Stability (4 distributed holes:

M25)

• Reduced Connector Pin Number (11 vs 14)

• Eliminated Feedback and Test Capacitors

(implemented with PCB copper traces)

~ 40 cm from 1st

detector (+15 cm

2nd, +15 cm 3rd)

36