semisynthetic enzymes for organic synthesis 赵峰 2014.3.22 1

33
Semisynthetic Enzymes for Organic Synthesis 赵赵 2014.3.22 1

Upload: lizbeth-freeman

Post on 21-Dec-2015

257 views

Category:

Documents


0 download

TRANSCRIPT

Semisynthetic Enzymes for Organic Synthesis

赵峰

2014.3.22

1

Introduction

Homogeneous Enzymatic

Enantiomers easy access challenging

Solvent tolerance mostly organic mostly aqueous

Substrate scope large narrow

Optimization chemical genetic

Turnover number limited large

Metals involved any metal limited (biorelevant)

Features of Homogeneous and Enzymatic Catalysis

Ward, T. R. Acc. Chem. Res. 2011, 44, 47-57 2

Combination——Semisynthetic Enzymes

Mcat

M=metal M=molecue

Mcat

For Selectivity Mcat For Catalytic Activity

3

Content

• Artificial Metalloenzymes– Covalent Strategies and applications

– Supramolecular Strategies and applications

• Nonmetal-Containing Systems– Covalent Strategies and applications

• Conclusion

4

Content

• Artificial Metalloenzymes– Covalent Strategies and applications

– Supramolecular Strategies and applications

• Nonmetal-Containing Systems– Covalent Strategies and applications

• Conclusion

5

Mcat

First coordination sphere:defines Mcat reactivity

Scend coordination sphere:substrate binding, steric, electronic, hydrophobic,H-bonding, and othereffects conveyed to Mcat

Vacant space forsubstrates andcatalyst (Mcat)

M=metal

XY

Mcat Mcat

Colvalent anchoring Supramolecular anchoring

protect Mcat,scaffold binding, etc.

General Structure of Artificial Metalloenzymes

6

Covalent Anchoring Strategies

R SH

cysteine

X Y X Y

R' Br

R'X

O

R'S

SOO

NO

O

R'

N

N

R'

O

N

O

O

NHNH2

O

then

R' CHO

R S

R S

R S

R S

R S

R S

R'

R'

O

SR'

NO

O

R'

R'

O

N

O

O

NHN

O

R'2

2

H2NHC C OH

CH2

SH

O

Lewis, J. C. ACS Catal. 2013, 3, 2954-2975

XY

McatX

YMcat

Conditions

7

Covalent Anchoring Strategies

R NH2

lysine

X Y X Y

R OH

RN3

serine

p-azidophenylalanine

S NH2then R'

X

OR

HN

S

NH2

R'

O

3

R'P pNP

O

OAk/pNP

R OP

O

R'OAk/pNP

R' R'N

NN

R

H2NOH

O

NH2

HO OH

O

NH2

Ph OH

O

NH2

Lewis, J. C. ACS Catal. 2013, 3, 2954-29758

Representative Cofactors

N N

HNI

O

N

O

O

O

O

2

N N

t-Bu

t-Bu

O OMn

Cl

N

N

NM

OO

N N

O OMn

Cl

SX

O

XS

X=SO2Me

N N

Ru

NH

Br

MesMes

i-PrO

ClCl

O

Ph2PN

P

O O

pNPpNP32

P

O

EtOPNp

L

L

ML MNMe2 PtClSPh PdBrSMe PdBr

N

N

NM

O O

OH

HO

O

O

OO

OO

Rh Rh

O

O

OO

9

Reactions by Covalent Anchoring AME

10

N

N

NH

OI

ALBP-SH

N

N

NH

OSALBP

85%-95%

ALBP-Phen

H2O

PIPES buffer, PH 6.1, 25C

ALBP-Phen-Cu(II)

ROR'

O

NH2

ROH

O

NH2

+ R' OH

Distefano,M. D. J. Am. Chem. Soc. 1997 , 119, 11643-11652

N

NCuH2N

OR

OR'HO-

N

NCuH2N

OR

O+ R'OH

Reactions by Covalent Anchoring AME

11Hilvert, D. Chem. Commun., 2011, 47, 12068–12070

N

Ts catalyst

45C, 12hN Ts

12

Reactions by Covalent Anchoring AME

Roelfes, G. Angew. Chem. Int. Ed. 2012, 51, 7472 –7475

N

O

R

LmrR-1-Cu (3mol%)

NO

R

R LmrR variant conv(%) ee(%) endo/exoPh M89C, V15A 89 97 96:4m-MeOPh M89C 56 93 96:4Me M89C 97 <5

13

Reactions by Covalent Anchoring AME

N

O

R

LmrR-1-Cu (3mol%)

N

O

R LmrR variant conv(%) ee(%) i-Pr M89C 67 77 t-Bu M89C 80 84 n-pent M89C 57 67i-Pr M89C,D100A 28 <5

R

OH

Roelfes, G . Chem. Sci., 2013, 4, 3578–3582

Content

• Metal-Containing Systems– Covalent Strategies and applications

– Supramolecular Strategies and applications

• Nonmetal-Containing Systems– Covalent Strategies and applications

• Conclusion

14

Supramolecular Anchoring Strategies

15

Mcat

Mcat

binding to substituent

OH

NHO

H

HN

H S

O

Bitotin

Take advantage of the remarkable affinity of biotin for either avidin or streptavidin!

Represetative Biotinylated Cofactors

NH

O

HHNH

SR

O

N PPh2

RhL2

Ph2P

Ph2P

PPh2

Rh(COD)+

NH O

NH

PPh2

PPh2

Rh(COD)+

N PPh2

Rh(COD)+

Ph2P

O

NH

NH

SN M

NH

OO

Cl

n-CnRn n-CnRn

Ir 5-C5R5

Rh 5-C5R5

Ru 6-C6R6

Ru 6-p-cymene

N

N

Ru

Mes

MesOi-Pr

ClCl

NH

L=NBD, COD

16

COOH

NHCOCH3

1.5 atm H2, Avidin, Rh-complex

CH3CHCOOH

NHCOCH3

44%ee(S)

0.1 M Na2PO4 buffer, pH=70C, 48h

Whitesides, G. M. J. Am. Chem. Soc. 1978, 100, 306–307 17

NH

O

HHNH

SCN

OPh2P

PPh2

Rh

Tf

Rh-complex

Protein TONee%

Polarimetric NMR

None 475 <2 <2

Lysozyme 450 <1 <2

CA 50 <10

BSA 150 <5

Avidin(1equiv)

>500 41 44

Avidin.biotin 200 <4

Reactions by AME Bsed on Biotin-Avidin Technology

18

Reactions by AME Bsed on Biotin-Avidin Technology

COOH

NHCOCH3

1.5 atm H2, Rh-complex,CH3CH

COOH

NHCOCH3

(Strept)avidin 92%ee(R)(Strept)avidin S112G 96%ee(R)

0.1 M Na2PO4 buffer, pH=70C, 48h

Ward, T. R. J. Am. Chem. Soc. 2003, 125, 9030-9031

19

Reactions by AME Bsed on Biotin-Avidin Technology

NH

O

HHNH

S

HN

O

S

HN

OO

H2N

n-(CnRn)MCl]

NEt3, i-PrOH, refluxNH

O

HHNH

S

HN

O

SN

OO

NH2MCl

n-(CnRn)

Biot-q-LH n-(CnRn)M(Biot-q-L)Cl

n-(CnRn)

Ward, T. R. J. Am. Chem. Soc. 2006, 128, 8320-8328

20

Reactions by AME Bsed on Biotin-Avidin Technology

Ward, T. R. Angew. Chem. Int. Ed. 2011, 50, 3026 –3029

21

Reactions by AME Bsed on Biotin-Avidin Technology

Ward, T. R. Angew. Chem., Int. Ed. 2008, 47, 701–705

22

Reactions by AME Bsed on Biotin-Avidin Technology

Ward, T. R. Chem. Commun. 2011, 47, 12065-12067

Content

• Artificial Metalloenzymes– Covalent Strategies and applications

– Supramolecular Strategies and applications

• Nonmetal-Containing Systems– Covalent Strategies and applications

• Conclusion

23

Scend coordination sphere:substrate binding, steric, electronic, hydrophobic,H-bonding, and othereffects conveyed to Mcat

Vacant space forsubstrates andcatalyst (Mcat)

XY

Mcat Mcat

Colvalent anchoring Supramolecular anchoring(few reports)

protect Mcat,scaffold binding, etc.

M=molecue

Mcat

General Structure of Nonmetal-Containing Systems

24

Colvalent Anchoring Strategy

NH3+ SO3

-

NMe3+

ONH3

+

NH3+

NH3+

NH3+

COOH

HOOC COOH

COOH

COOHHOOC OHHO

H

H

OH

COOH

COOH

Subtilisin SH SCH3SO2SSR

Subtilisin S RpH 9.5

R=

Jones, J. B. J. Am. Chem. Soc. 1997, 119, 5265-5266

Jones, J. B. Bioorg. med. Chem.. 1999, 7, 1381 25

Colvalent Anchoring Strategy

N

SS

N

NH2

OH

ALBP SH +

NH

S

S

N

NH2

OH

ALBP S

+

Distefano, M. D. J. Am. Chem. Soc., 1996, 118, 10702-10706

N

N

NH

N

H3C

Br

O

O

R

Papain SH +

N

N

NH

N

H3C

O

O

R

Papain S

R=CH2(CHOAc)3CH2OAc, CH3

Kaiser, E. T. Biochem. Biophys. Res. Commun. 1977, 76, 64-70

Subtilisin OHPMSF

Subtilisin OSO2CH2PhNaSeH

Subtilisin SeH

Hilvert, D. J. Am. Chem. Soc. 1989, 111, 4513-4514

Papain SH + Papain S

R=C6H5CH2, CH3

N

S

BrR

N

S

R

Suckling, C. J. Bioorg. Med. Chem. 1993, 3, 531-534

26

N

N

NH

N

H3C

Br

O

O

R

Papain SH +

N

N

NH

N

H3C

O

O

R

Papain S

R=CH2(CHOAc)3CH2OAc, CH3

N

N

NH

N

O

O

CH3

N

N

NH

N

O

O

CH3

N

N

NH

N

O

O

CH3

Br

O

Br

O BrO

Kaiser, E. T. Biochem. Biophys. Res. Commun. 1977, 76, 64-7027

Reactions by Nonmetal Artificial Enzymes

N

R

HH

NH2

OFlavopapains

O2 N

R

NH2

OH

Reactions by Nonmetal Artificial Enzymes

Papain SH + Papain S

R=C6H5CH2, CH3

N

S

BrR

N

S

R

O O O+

OO

O OH

Artificial enzyme

28%yield

60%yield15%yield no enzyme

Suckling, C. J. Bioorg. Med. Chem. 1993, 3, 531-534

28

Reactions by Nonmetal Artificial Enzymes

Subtilisin OHPMSF

Subtilisin OSO2CH2PhNaSeH

Subtilisin SeH

Hilvert, D. J. Am. Chem. Soc. 1989, 111, 4513-451429

N

O

+ Subtilisin-SeH

Se-Subtilisin

O

H2Obutylamine

NH

O

C4H9

OH

O

Reactions by Nonmetal Artificial Enzymes

30

N

SS

N

NH2

OH

ALBP SH +

NH

S

S

N

NH2

OH

ALBP S

+

N

R'NH2

OH+

R

O

O

OH

N

R'O

OH+

R

NH2

O

OH

R'=Protein

0~94%ee

Distefano, M. D. J. Am. Chem. Soc., 1996, 118, 10702-10706

Content

• Artificial Metalloenzymes– Covalent Strategies and applications

– Supramolecular Strategies and applications

• Nonmetal-Containing Systems– Covalent Strategies and applications

• Conclusion

31

Conclusion• A lot of AMEs have been synthesized, and some of them have

been successfully applied to organic synthesis.

• Construction of AMEs can be complicated to get host Protein and guest motif ready for conjunction at the same time

• The reaction scope is still narrow, and selectivity is not very good

• Further research work is desired to enlarge the number of AME family and find new applications of them

32

33