sensitivity to new physics scenarios in invisible higgs

28
Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC K. Mekala, A.F. ˙ Zarnecki in collaboration with M. Iglicki and B. Grzadkowski Faculty of Physics, University of Warsaw Work carried out in the framework of the CLICdp collaboration Research supported by 31.10.2019 International Workshop on Future Linear Colliders LCWS 2019 K. Mekala, A.F. ˙ Zarnecki Faculty of Physics, University of Warsaw Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 1 / 22

Upload: others

Post on 18-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sensitivity to new physics scenarios in invisible Higgs

Sensitivity to new physics scenarios in invisibleHiggs boson decays at CLIC

K. Mekala, A.F. Zarnecki

in collaboration with M. Iglicki and B. Grzadkowski

Faculty of Physics, University of Warsaw

Work carried out in the framework of the CLICdp collaboration

Research supported by

31.10.2019International Workshop on Future Linear Colliders

LCWS 2019K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 1 / 22

Page 2: Sensitivity to new physics scenarios in invisible Higgs
Page 3: Sensitivity to new physics scenarios in invisible Higgs

Compact Linear Collider (CLIC)

First stage @ 380 GeV⇒ focus on studying Higgs boson and top-quark properties

Higgs production

0 1000 2000 3000

[GeV]s

1−10

1

10

210

HX

) [fb

]→ - e+

(eσ

eνeνH

-e+He

ZH

ZHH

Htt

eνeνHH

Higgs couplings to SM particles tested at % levelWhat about couplings (decays) to BSM states?

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 3 / 22

Page 4: Sensitivity to new physics scenarios in invisible Higgs

Signal

SM(-like) Higgs boson decay to invisible states (Dark Matter ?)

Signature of invisible Higgs decay:

two jets consistent with hadronic Z decay higher statistics

missing energy-momentum consistent with production ofinvisible massive state of 125 GeV

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 4 / 22

Page 5: Sensitivity to new physics scenarios in invisible Higgs

Background processes considered

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 5 / 22

Page 6: Sensitivity to new physics scenarios in invisible Higgs

Simulation framework

event samples generated with Whizard 2.7.0

Non-Higgs background: qq, ll , qqqq, qqll , qqlν, qqννSM Higgs boson production: H + qq, H + ll , H + νν

(with 100% SM decays)Signal: H + qq production with Higgs defined as stable

CLIC energy spectra for 380 GeV

CLIC integrated luminosity of 1000 fb−1 (unpolarised)

detector simulation and event reconstruction with Delphes,using modified1 CLICdet Stage1 cards

Two jets reconstructed with VLC algorithm (R = 1.5, β = γ = 1)

1required to make Higgs invisible in the detectorK.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 6 / 22

Page 7: Sensitivity to new physics scenarios in invisible Higgs

Signature of e+e− → HZ → jj + inv

Two-jet events without electrons, muons, or isolated photons...

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 7 / 22

Page 8: Sensitivity to new physics scenarios in invisible Higgs

Preselection

Preselection cuts were used to select events with proper signatureand kinematics consistent with invisible Higgs boson decay:

Remove events with isolated electrons, muons or photonswith energy above 2 GeV, 3 GeV and 5 GeV respectively

Energy “lost” in jet clustering below 10 GeV

Two-jet topology: y23 < 0.01 and y34 < 0.001

Jet invariant mass: 80 < Mjj < 100 GeV (Z mass)

Dijet emision angle: | cos Θjj | < 0.8 (Z direction)

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 8 / 22

Page 9: Sensitivity to new physics scenarios in invisible Higgs

Preselection cut example

Di-jet invariant mass distribution with preselection cut indicated

40 50 60 70 80 90 100 110 120 130 140, GeVdijetm

2−10

1−10

1

10

210

Norm

aliz

ed e

vents

num

ber

No H

SMH+qqinvH

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 9 / 22

Page 10: Sensitivity to new physics scenarios in invisible Higgs

Preselection

Efficiency of preselections cuts

Event class EfficiencyNon-higgs background 0.37%

including qqνν 23%qqlν 0.68%qq 0.087%

SM Higgs decays 1.70%including H + νν 4.60%

H + qq invisible decays 47.0%

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 10 / 22

Page 11: Sensitivity to new physics scenarios in invisible Higgs

Preselection

Recoil mass distribution after preselection cutsFor 1000 fb−1 collected at 380 GeV assuming BR(H→inv) = 10%

50 100 150 200 250 300recoil mass, GeV

10

210

310

410

# e

vent

s

SM background

inv→H

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 11 / 22

Page 12: Sensitivity to new physics scenarios in invisible Higgs

Selection

Final event selection based on the multivariate analysis.Variables used as input for Boosted Decision Tree (BDT):

1 αjj – angle between two jets in LAB frame2 mjj – dijet invariant mass3 mmiss – missing mass4 Ejj – dijet energy5 pmiss

t – missing transverse momentum

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 12 / 22

Page 13: Sensitivity to new physics scenarios in invisible Higgs

Selection

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2BDT response

0

1

2

3

4

5

6

7dx

/ (1

/N)

dN

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.004 (0.002)

U/O

-flo

w (

S,B

): (

0.0,

0.0

)% /

(0.0

, 0.0

)%

TMVA overtraining check for classifier: BDT

Highest significance for invisible Higgs decays for BDT cut ∼ 0.06K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 13 / 22

Page 14: Sensitivity to new physics scenarios in invisible Higgs

Results

95% C.L. limit expected for 1000 fb−1 collected at 380 GeV:

BR(H → inv) < 0.86%

Assuming no excess above predicted SM background is observedCLICdp preliminary

Result consistent with the old study:BR(H → inv) < 0.94% expected for 500 fb−1 collected at 350 GeVM. A. Thomson, The European Physical Journal C, 76(2):72

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 14 / 22

Page 15: Sensitivity to new physics scenarios in invisible Higgs

Interpretation

In Higgs-portal models, new scalars fields φ coupling to darkmatter particles can mix with the SM Higgs field h resulting in twomass eigenstates:(

h1h2

)=

(cosα sinα− sinα cosα

)(hφ

)

If α� 1, h1 is SM-like (the observed 125 GeV state),but it can also decay invisibly via φ component (BR ∼ sin2 α)

If h2 is also light, it can be produced in e+e− collisions in the sameway as the SM-like Higgs boson; invisible decays dominate.

We consider Vector-fermion dark matter model (VFDM) [arXiv:1710.01853]

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 15 / 22

Page 16: Sensitivity to new physics scenarios in invisible Higgs

Interpretation

Limit on the invisible decays of the 125 GeV Higgs boson (h1)can be interpreted in terms of the VFDM mixing angle limits.

0.01

0.1

0 10 20 30 40 50 60

95

%C

Llim

iton

sin(α

)

Excluded - gHZZ

Excluded - CMS

Excluded - CLIC

DM [GeV]m

Based on WHIZARD calculations assuming gX = 1.K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 16 / 22

Page 17: Sensitivity to new physics scenarios in invisible Higgs

Limits on new scalar production

Same approach can be used to search for production of h2 statein the process e+e− → Z h2 → qq + inv

50 100 150 200 250 300recoil mass, GeV

1

10

210

310

410

# e

vent

s

SM background = 150 GeVSM = 200 GeVSM = 250 GeVSM

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 17 / 22

Page 18: Sensitivity to new physics scenarios in invisible Higgs

Limits on new scalar production

Expected limits on the h2 production cross section, relative to SM,for 1000 fb−1 at 380 GeV assuming BR(h2 → inv) ≈ 100%

0

2

4

6

8

10

12

14

16

120 140 160 180 200 220 240 260 280Cro

ssse

ctio

nlim

itσ(e

+e

- ->

ZH

')/σ

SM

[%]

mh2[GeV]

CLICdp preliminary

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 18 / 22

Page 19: Sensitivity to new physics scenarios in invisible Higgs

Limits on new scalar production

Expected limits on the h2 production cross section, relative to SM,for 2500 fb−1 at 1500 GeV assuming BR(h2 → inv) ≈ 100%

1

10

100

1000

200 400 600 800 1000 1200

Cross

sectionlim

itσ(e

+e- ->ZH')/σ

SM[%

]

mh2 [GeV]

combinedpnegppos

CLICdp preliminary

pneg:P(e−)=−80%2000 fb−1

ppos:P(e−)=+80%500 fb−1

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 19 / 22

Page 20: Sensitivity to new physics scenarios in invisible Higgs

The VFDM model

Expected limits on the production cross section can be translatedwithin the VFDM model into limits on the mixing angle α.

0.1

1

200 400 600 800 1000 1200

95%

CLlim

itonsin(α)

mh2 [GeV]

CLIC 1.5 TeV

CLIC

380 GeV

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 20 / 22

Page 21: Sensitivity to new physics scenarios in invisible Higgs

Conclusions

1 Search for invisible Higgs boson decays based on theWhizard event generation and fast simulation withDelphes.

2 CLIC running at 380 GeV can constrain the invisible decays ofthe SM Higgs boson to below 1%.

3 Results consistent with the previous study based on fullsimulation.

4 The study can be extended to search for extra scalars at CLICoperating at 380 GeV and 1.5 TeV.

5 Cross section limits can be translated to the limits on newphysics model parameters.

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 21 / 22

Page 22: Sensitivity to new physics scenarios in invisible Higgs

References

H. Abramowicz et al.

Higgs physics at the CLIC electron-positron linear collider.

Eur. Phys. J., C77(7):475, 2017.

A. Ahmed, M. Duch, B. Grzadkowski, and M. Iglicki.

Multi-component dark matter: the vector and fermion case.

The European Physical Journal C, 78(11):905, Nov 2018.

D.Azevedo, M.Duch, B.Grzadkowski, D.Huang, M.Iglicki, and R.Santos.

Testing scalar versus vector dark matter.

Phys. Rev., D99(1):015017, 2019.

M. A. Thomson.

Model-independent measurement of the e+e− → HZ cross section at afuture e+e−-linear collider using hadronic Z decays.

The European Physical Journal C, 76(2):72, 2016.

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 22 / 22

Page 23: Sensitivity to new physics scenarios in invisible Higgs

BACKUP

Results of the model-independent fit to Higgs boson measurement at CLIC.

Parameter Relative precision

350GeV + 1.4TeV + 3TeV

1ab−1 + 2.5ab−1 + 5ab−1

gHZZ 0.6 % 0.6 % 0.6 %

gHWW 1.0 % 0.6 % 0.6 %

gHbb 2.1 % 0.7 % 0.7 %

gHcc 4.4 % 1.9 % 1.4 %

gHττ 3.1 % 1.4 % 1.0 %

gHµµ − 12.1 % 5.7 %

gHtt − 3.0 % 3.0 %

g†Hgg 2.6 % 1.4 % 1.0 %

g†Hγ γ − 4.8 % 2.3 %

g†HZγ − 13.3 % 6.7 %

ΓH 4.7 % 2.6 % 2.5 %

co

up

ling

re

lativ

e t

o S

M

0.8

0.9

1

1.1

1.2

1%

5%

µ

c τ b t W Z g γ

γZ H

CLICdp

model independent

November 2018

-1350 GeV, 1 ab-1+ 1.4 TeV, 2.5 ab

-1+ 3 TeV, 5 ab

H. Abramowicz et al. Eur. Phys. J., C77(7):475, 2017.

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 1 / 6

Page 24: Sensitivity to new physics scenarios in invisible Higgs

BACKUP

Preselection cuts on jet clustering resuts

2–3 separation (− log10 y23)

1 2 3 4 5 6 7 8 9

23y

10-log

3−10

2−10

1−10

1

10

210

310

Norm

aliz

ed e

vents

num

ber

No H

SMH+qqinvH

3–4 separation (− log10 y34)

1 2 3 4 5 6 7 8 9

34y

10-log

3−10

2−10

1−10

1

10

210

310

Norm

aliz

ed e

vents

num

ber

No H

SMH+qqinvH

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 2 / 6

Page 25: Sensitivity to new physics scenarios in invisible Higgs

BACKUP

Preselection cuts on di-jet final state (Z boson)

Di-jet invariant mass

40 50 60 70 80 90 100 110 120 130 140, GeVdijetm

2−10

1−10

1

10

210

Norm

aliz

ed e

vents

num

ber

No H

SMH+qqinvH

Di-jet emission angle

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1)θcos(

1−10

1

10

210

310

410

Norm

aliz

ed e

vents

num

ber

No H

SMH+qqinvH

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 3 / 6

Page 26: Sensitivity to new physics scenarios in invisible Higgs

BACKUP

Input variables for multivariate analysis, for invisible decays of 125 GeV Higgs

0.5 1 1.5 2 2.5 3

data.Angle

0

0.5

1

1.5

2

2.5

3

3.5

0.06

81

/ (1

/N)

dN

SignalBackground

U/O

-flo

w (

S,B

): (

0.0,

0.0

)% /

(0.0

, 0.0

)%

Input variable: data.Angle

100− 50− 0 50 100 150 200 250 300

P4_miss.M()

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

10.6

/

(1/N

) dN

U/O

-flo

w (

S,B

): (

0.0,

0.0

)% /

(0.0

, 0.0

)%

Input variable: P4_miss.M()

100 120 140 160 180 200 220

P4_dijet.Energy()

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

3.56

/

(1/N

) dN

U/O

-flo

w (

S,B

): (

0.0,

0.0

)% /

(0.0

, 0.0

)%

Input variable: P4_dijet.Energy()

20 40 60 80 100 120 140 160 180 200

P4_miss.Pt()

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

4.99

/

(1/N

) dN

U/O

-flo

w (

S,B

): (

0.0,

0.0

)% /

(0.0

, 0.0

)%

Input variable: P4_miss.Pt()

82 84 86 88 90 92 94 96 98 100

P4_dijet.M()

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.51

2 /

(1/N

) dN

U/O

-flo

w (

S,B

): (

0.0,

0.0

)% /

(0.0

, 0.0

)%

Input variable: P4_dijet.M()

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 4 / 6

Page 27: Sensitivity to new physics scenarios in invisible Higgs

BACKUP

Signal significance as a function of the BDT cutassuming BR(H→inv) = 1%

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2

Cut value applied on BDT output

0

0.2

0.4

0.6

0.8

1

Eff

icie

ncy

(P

uri

ty)

Signal efficiency

Background efficiency

Signal puritySignal efficiency*purity

S+BS/

For 386 signal and 129601 background isS+Bevents the maximum S/

1.9085 when cutting at 0.0574

Cut efficiencies and optimal cut value

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sig

nif

ican

ce

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 5 / 6

Page 28: Sensitivity to new physics scenarios in invisible Higgs

BACKUP

Final state Efficiency Npre

Background

qqνν 23,00% 72135

qqlν 0,68% 37588

qq 0,087% 19234

qqll 0,043% 593

qqqq 0,0010% 51

In total: 0,37% 129601

SM Higgs decays

HSM + νν 4,60% 2515

HSM + ll 0,017% 3

HSM + qq 0,0057% 47

In total: 1,70% 2565

Invisible Higgs boson decays

Hinv + qq 47,00% 38557

K.Mekala, A.F. Zarnecki Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC 6 / 6