separation processes -...

68
SEPARATION PROCESSES 2018 1

Upload: dinhque

Post on 27-Jul-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

SEPARATION PROCESSES

2018

1

Page 2: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

2

Contact details:

Pavel Hasal

Building B, 1st floor, room: B143

[email protected], tel. 22044 3167

Page 3: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

3

AIM OF THE COURSE:

i. The aim of the course is to teach students principles of chosen separation

processes most frequently used in chemical and similar technologies. The

arrangements of separation processes will be generally described and then

their mathematical description will be presented.

ii. The students would acquire knowledge necessary for both verbal and

mathematical description of selected separation processes. Students will

know principles of mass and energy transport phenomema, phase

equilibria and material and energy balancing of separation processes.

iii. The students will be able to describe principles of separation processes,

will know their applications and will be able to set-up their mathematical

models.

iv. The students will know how to solve numerically the problems concerning

separation processes and to design basic dimensions of a separation

equipment.

Page 4: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

COURSE OUTLINE:1) Introduction to separation processes. Material and energy

balances.

2) Basic numerical methods in chemical engineering

3) Basics of fluid mechanics

4) Heat and mass transfer fundamentals

5) Separation processes – rate and equilibria

6) Adsorption processes

7) Membrane separation processes

8) Ionic exchange and electrophoretic separation

9) Membrane process design

10) Gas permeation, reverse osmosis

11) Ultrafiltration, dialysis

12) Pervaporation

13) Crystallization

4

Page 5: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

5

ASSESSMENT CRITERIA• Homework: solution of individual problems (max 100

points).

• Final test in week 14 (the last one): a simple problem solution (max. 100 points). Repetitions possible, only the best result is considered.

• Oral examination max. 100 pts.

• Weights:

Individual problems 1/3

Final test 1/3

Oral exam 1/3

Points(total)

100 -90 89 -80 79– 70 69 – 60 59 – 50 49 - 0

Grade A B C D E F

Page 6: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

6

LITERATURE: (SHR)

• J. D. Seader, E. J. Henley, D. K. Roper: SEPARATION PROCESS PRINCIPLES. Chemical and Biochemical Operations. (Third Ed.), John Wiley & Sons, Inc., 2011. (ISBN 978-0-470-48183-7)

Page 7: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

7

Page 8: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

8

On May 3rd there will be Tuesday schedule! No Separation Processes!

Page 9: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Material and energy balances in chemical

engineering applications

9

Page 10: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Outline

• Balances – principles and nomenclature• Mass and molar balances without chemical reactions• How to solve balance problems – recommended

procedure• Energy balances• Examples

10

Page 11: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

System• Part of universe with real or fictitious boundaries that can

communicate with surroundings systems (pot, membrane module, chemical reactor, chemical plant, bank account …)

• Systemso Open – mass and energy exchange

o Closed – energy exchange

o Isolated – no exchange

o Adiabatic – no heat exchange

• Systemso Homogeneous – single phase

o Heterogeneous – two or more phases

• Systemso Steady state – no change in time

o Dynamical state – properties of the system change in time

• System communicates with surroundings by streamso Streams = flows of mass, energy, volume, cash or other extensive quantities

11

Page 12: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Chemical engineering systems -examples

12

a) Open complex system with fictitious boundaries

b) Fictitious differential cube – a part of chemical reactor

c) Chemical reactor. The system boundaries coincide with the reactor

walls – real boundaries.

Page 13: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Nodes – parts of complex systems

13

Process node Mixer

Bypass Reflux

Complex system consisting of 5 nodes

Page 14: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Processes taking place in systems

• Mechanicalo Grinding, crushing, milling, sieving, sorting ...

• Hydromechanicalo Gas or liquid flow, filtration, stirring, sedimentation, fluidization ...

• Heat transfero Heat exchangers, evaporators, cooling towers ...

• Mass transfero Distillation, extraction, rectification, membrane processes, drying, adsorption,

absorption ...

• Chemical processes (reactions)o Batch, PFR, CSTR, and other reactors with chemical or biochemical processes

• Biological processeso Systems containing living organisms

14

Page 15: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Physical quantities• Extensive quantities (EQ)

o EQ can be summed over parts of a system

o EQ express amount of some quantity

o EQ may be balanced

• examples: mass, molar amount, volume, energy, enthalpy, momentum, money

• Intensive quantities (IQ)o IQ cannot be summed over parts of a system

o IQ describe physical properties of systems

o IQ cannot be balanced

• examples: temperature, pressure, velocity, radioactivity, color...

15

Page 16: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Composition of a mass within a system

• To be balanced, all components have to be identified in the system

• The contents of components are expressed as concentrations or fractions

• Mass (𝜚𝑖), molar (𝑐𝑖)or volume (𝜑𝑖) concentrations

16

𝑚𝑖 - mass of a component in the system𝑛𝑖 - molar amount of a component in the system𝑉𝑖 - volume of a component in the system𝑉 - total volume of the system

Page 17: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Composition of mixtures• Mass (𝑤𝑖) and mole (𝑥𝑖) fractions

• Relative mass (𝑊𝑖) and relative (𝑋𝑖) mole fractionso are used in processes with inert components (amount of inert component does not

change within the system)

• Each identified component in the system can be balanced we can formulate n linearly independent balances for ncomponents

This is not valid in simple dividers and mixers (compositions of all inlets and outlets are identical)

17

𝑚 – total mass of the system𝑛 - total molar amount in the system

𝑚𝑖′- mass of an inert component𝑛𝑖′- molar amount of an inert component

Page 18: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Principles of balancing

• Inputs – BQ that comes into the system through boundaries

• Outputs - BQ that leaves the system through boundaries

• Sources – internal formation or extinction of BQo Positive – interests, formation of a component by chemical reaction

o Negative – transaction fees, decay of a chemical component

• Accumulation – the difference between final and initial amounts of BQ within the system

18

Inputs + Sources = Outputs + Accumulation

Bank account

salary

rente

flat etc.

shopping

Page 19: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Balancing

• Sources and accumulation can be treated as fictitious inputs or outputso Positive sources = fictitious inputs

o Negative sources = fictitious outputs

o Accumulation

• Initial amount of a quantity in the system – fictitious input

• Final amount of a quantity in the system – fictitious output 19

Inputs + Fictitious Inputs = Outputs + Fictitious Outputs

Bank account

salary

rente

rent

shopping

initial value

final value

interests

transaction fees

Page 20: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Material balances

20

Stream #1

Stream #4

Stream #2

Stream #3

Three chemical components: A, B, C

𝑚𝐴1 +𝑚𝐴2 = 𝑚𝐴3 +𝑚𝐴4

𝑚1𝑤𝐶1 +𝑚2𝑤𝐶2 = 𝑚3𝑤𝐶3 +𝑚4𝑤𝐶4

𝑚1𝑤𝐵1 +𝑚2𝑤𝐵2 = 𝑚3𝑤𝐵3 +𝑚4𝑤𝐵4

𝑚1𝑤𝐴1 +𝑚2𝑤𝐴2 = 𝑚3𝑤𝐴3 +𝑚4𝑤𝐴4

𝑚1 +𝑚2 = 𝑚3 +𝑚4

𝑤𝐴1 +𝑤𝐵1 + 𝑤𝐶1 = 1

𝑤𝐴2 +𝑤𝐵2 + 𝑤𝐶2 = 1

𝑤𝐴3 +𝑤𝐵3 + 𝑤𝐶3 = 1

𝑤𝐴4 +𝑤𝐵4 + 𝑤𝐶4 = 1

Mass balance of a component

Can be rewritten by means of mass fractions

Four balances obtained – three of them are linearly independent

Sum of all mass fractions in a stream is always 1

One nodeFour streams

Process node

Page 21: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Material balances – recommended procedure

1) Draw flowsheet – nodes, streams.2) Identify all (chemical) components in the system to be balanced.3) Choose an extensive quantity to be balanced (BQ) – mass, molar

amount, volume, …4) Evaluate/identify compositions of streams (whenever possible).5) Compose an input matrix.6) When no extensive quantity is given (e.g., mass of a stream or

mass of a component in a stream), then an extensive quantity is chosen/defined for one chosen stream.

7) Determine number of unknowns in the input matrix = Degrees ofFreedom Analysis (DOF).

8) Set-up balance equations.9) Set-up auxiliary equations, number of independent equations is

equal to the number of unknowns (DOF).10) Solve the set of equations = algebraic problém.

21

Page 22: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

22

DoF Analysis(Degrees of Freedom)

• useful tool to assess solvability of a balance problem• assessment of number of unknowns to be evaluated vs. number of equations

and data

DoF vars eqnsN N N

number of allvariablesdescribing theproblem

number of allindependent equations

number ofDegrees ofFreedom = number ofdata that havebe specified

Ex.: A single-phase stream with C components.NDoF = C + 1 + 1 + 1 = C + 3

concentrations T P amount

SHR:

Page 23: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Xylene, styrene, toluene and benzene are to be separated with the array of distillationcolumns shown in figure (right), where F, D, B, D1, B1, D2 and B2 are the molar flow rates(mol/min). Concentrations are given in molar%.

Evaluate all unknown component concen-trations and fluxes.

There is:

7 streams 7 (4+1) = 35 variables

6 unknown flow rates (B, D, B1, D1, B2, D2)8 unknown concentrations (streams B and D)=====================================14 unknowns

35 - 14 = 21 d.o.f. – we have to provide 21 values

21 values specified in the schema

☺23

Page 24: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

24

Page 25: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

25

Page 26: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

26

Page 27: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

27

Page 28: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

28

Page 29: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Example: Natural gas composed of CH4 and C2H6 is combusted with excess amount of the air. The amounts of H2O and CO2 in combustion gasses are in molar ratio 9:1. After removing of these two components the composition of resulting gas is: 8.3 mol.% of CO, 6.5 mol.% of 02 and 85,2 mol.% of N2. Calculate: a) composition of the natural gas (in mol. %), b) amount of the combustion gasses evolved by combustion of 1 mole of

the natural gas,c) what was the per cent excess of the oxygen?Hint: Consider these three reactions taking place within the burner:

2CH4 + 3O2 2CO + 4H2O2C2H6 + 5O2 4CO + 6H2O

2CO + O2 2CO2

Results: a) Composition of natural gas: 85.5 mol.% of CH4 and 14.5 mol.% of C2H6, b) 13,3 mole of combustion gasses per 1 mole of natural gas, c) Excess of the oxygen: 11.7 %

Page 30: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

CH4 A

C2H6 B

O2 C

N2 D

CO E

CO2 F

H2O G

Reaction # Imaginary streams

2 CH4 + 3 O2 2 CO + 4 H2O (1) 5,6

2 C2H6 + 5 O2 4 CO + 6 H2O (2) 7,8

2CO + O2 2CO2(3) 9,10

BURNER

1

2

3

4

natural gas

air

CO2 + H2O

CO + O2+ N2

5

6

7

8

9

10

Page 31: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

n [mol] 1 ? ? ? ? ? ? ? ? ?

xA CH4 ? --- --- --- --- 2/5 --- --- --- ---

xB C2H6 ? --- --- --- --- --- --- 2/7 --- ---

xC O2 --- 0.21 --- 0.065 --- 3/5 --- 5/7 --- 1/3

xD N2 --- 0.79 --- 0.852 --- --- --- --- --- ---

xE CO --- --- --- 0.083 2/6 --- 4/10 --- --- 2/3

xF CO2 --- --- ? --- --- --- --- --- 1 ---

xG H2O --- --- ? --- 4/6 --- 6/10 --- --- ---

There are 13 unknowns we need 13 equations

We can formulate:2x sum of molar fractions for streams #1 and #33x ratios of molar amounts of imaginary streams (given by reaction stoichiometries)7x balance equations1x ratio of molar fractions in stream #3: xG3/xF3 = 9

The problem is solvable as there is 13 equations for 13 unknowns.

DoF vars eqns 13 13 0N N N

Page 32: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

n [mol] 1 11.78 2.384 10.927 2.564 2.137 0.726 0.5085 0.2384 0.3575

xA CH4 0.8547 --- --- --- --- 2/5 --- --- --- ---

xB C2H6 0.1453 --- --- --- --- --- --- 2/7 --- ---

xC O2 --- 0.21 --- 0.065 --- 3/5 --- 5/7 --- 1/3

xD N2 --- 0.79 --- 0.852 --- --- --- --- --- ---

xE CO --- --- --- 0.083 2/6 --- 4/10 --- --- 2/3

xF CO2 --- --- 0.1 --- --- --- --- --- 1 ---

xG H2O --- --- 0.9 --- 4/6 --- 6/10 --- --- ---

RESULTS

Ratio of amount of combustion gases to amount of natural gas: (n3+n4)/n1 = 13.31

Excess of the oxygen:excess=(xC2 n2 -(xC6 n6 + xC8 n8 + xC10 n10))/(xC6 n6 + xC8 n8 + xC10 n10) = 0.40

oxygen entering with

stream #2

oxygen necessary to burn al methane and

all ethane

Page 33: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Problem #1:

Mass balance of a crystallizer

1000 kg/h of 10 w% sodium carbonate solution in water is mixed with a recyclestream. The obtained mixture is continuously introduced into an evaporator,where 30 w% sodium carbonate solution is produced. This solution is then ledinto a crystallizer where crystals of sodium carbonate dodecahydrate areproduced together with 20 w% sodium carbonate solution. Certain part of thissolution is recycled. The other part is withdrawn from the system. Yield of theprocess is 90 %, i.e. 90 % of sodium carbonate introduced into the system isobtained in the form of crystals. Determine mass flow rate of the reflux stream.

33

Page 34: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

34

Problem #2:Pyrite calcination

1000 kg of pyrite composed of 85 mass % of FeS2 and 15 mass % of rubbish is calcined with 100 % excess of the air. The calcination is described by chemical reaction

4 FeS2 + 11 O2 = 2 Fe2O3 + 8 SO2

The rubbish does not react with the oxygen and does not release any gasses.The solid material (waste) after calcination contains 2 mass % of FeS2.

Calculate:

a) concentration of Fe in solid waste, b) volume of air (at 20 oC and 0.0981 MPa) required for the calcination, c) volume of the gas evolved by calcination (at 300 oCand 0.0981 MPa) and its composition in mole fractions.

Results:

a) the waste contains 54.9 mass % of Fe, b) 4610 m3 of air, c) volume of evolved gasses is 8760 m3 and its composition : 7.7 mol.% SO2, 11.0 mol.% O2 and 81.3 mol.% N2.

Page 35: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

35

Components:A ... pyriteB ... rubbishC ... O2

D ... N2

E ... Fe2O3

F ... SO2

1

2

3

4

5

6

pyrite

air

gaseousproducts

solid products

2 Fe2O3 + 8 SO2

4 FeS2 + 11 O2

HINTS:

Page 36: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

36

Problem #3:Sulphur is combusted with stoichiometric amount of air in a furnace and sulphurdioxide is produced. SO2 is then partly oxidized with the excess amount of dry air to SO3 in the first catalytic chamber. The sulphur trioxide is completely removed from the gas phase in the first absorber. Resulting gas containing 3.3 mol.% of SO2

and 8.3 mol.% of O2 is conveyed to the second catalytic chamber and the second absorber. In the second chamber all SO2 is oxidized to SO3. All SO3 is removed from the gas in the second absorber.Calculate:a) what fraction of the sulphur entering the process was converted to SO3 in the

first chamber, b) b) what is the excess of oxygen used for sulphur combustion, c) c) composition of the gas phase leaving the second absorber (volumetric per

cent).

Results:a) 70.5 % of total sulphur, b) b) excess of oxygen is 39.5 %, c) c) gas phase consists of 7 vol.% of O2 and 93 vol.% of N2

Page 37: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

37

HINTS:

furnace catalytic chamber I

catalytic chamber II

absorber I absorber II1

2

3 5

6

7 9

10

11

16 17 12 13 14 15

S +

O2

SO2

2 SO

3

2 SO

3

2 SO

2 +

O2

2 SO

2 +

O2

Components: A ... sulphur, B ... O2, C ...N2, D ... SO2, E ... SO3

Page 38: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

38

Computer (algorithmic) solution of materialbalances – example in Mathematica

Page 39: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

39

ENTHALPY BALANCING

Page 40: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

INTERNAL ENERGY• The first law of thermodynamics

o U – internal energy

o Q – heat

o 𝑊 – work

• The internal energy represents energy of the system that can be transformed into heat or work.

• Absolute/total value of internal energy of systems isunknown. We can, however, determine its changes.

• Change of the internal energy (dU) is equal to the heat (dQ) and work (dW) delivered into system

40

System

dUdQ dW

d d d dU Q W dQ p V

Page 41: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

ENTHALPY• There are volume, electric, magnetic and other works (W) that can be delivered to

or produced by the system

• Volume work is given by a volume change - compression or expansion

• We can define a new extensive quantity – enthalpy

• Total differential of enthalpy reads

• After substitution from the first law of thermodynamics, we obtain

• In isobaric systems (dp = 0), change of the enthalpy is equal to heat delivered to or removed from the system

41

Page 42: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

ENTHALPY BALANCING

42

Enthalpy of Material

Inputs

Material Stream #1

Material Stream #4

Material Stream #2

Material Stream #3Processnode - H

Heat sourceQs

Heat loss Ql

𝐻1 + 𝐻2 + 𝑄𝑠 − 𝑄𝑙 = 𝐻3 + 𝐻4 + ∆𝐻𝑠

Accumulation

Heat Sources

Enthalpy of MaterialOutputs

Enthalpy Accumulationwithin System

+ +=

Page 43: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Specific/molar enthalpy

• Enthalpy of material stream H (heat contained in material) can be expressed as a product of mass/molar amount (m/n) and specific enthalpy/molar enthalpy (hm/hn)

43

𝐻 = 𝑚ℎ𝑚

𝐻 = 𝑛ℎ𝑛

hm or hn are given in [J/kg] or [J/mol]

In the following slides, we will make use of single symbol h for both specific and molar enthalpies (hm/hn) – (the meaning of h will result from the context)

Page 44: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Enthalpy of mixtures• Specific enthalpy of a mixture is given by mass contributions

of all chemical components forming the mixture:

• ℎ𝑖 is specific enthalpy of the component i

• ∆ℎ𝑚𝑖𝑥 is specific enthalpy of mixing (values can be found in tables for particular mixtures)

• ∆ℎ𝑚𝑖𝑥=0 for an ideal mixture

44

ℎ =

𝑖

𝑤𝑖ℎ𝑖 + ∆ℎ𝑚𝑖𝑥

Page 45: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Enthalpy of a chemical component

• There is no absolute value of enthalpy

• Enthalpy value is always related to the reference state

• Reference state can be chosen arbitrarily

• We evaluate/study an increase or a decrease of enthalpy with respect to the reference state

• The enthalpy increase or decrease are equal to the amount ofheat consumed by the system or released from the system

• Change of the enthalpy = „How much heat I have to deliver to the system or to remove from the system“

45

Page 46: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Reference state• The reference state: enthalpy of a chemical component equals

zero at the reference state

• The reference state is defined by stating:o Temperature of the reference state

o State of matter (g,l,s) for each chemical component

• Proper selection of the reference state may significantly simplify the solutions of the problems:

o The reference temperature would be chosen as a temperature in the studied system, e. g., temperature of a stream,

o The state of matter of a chemical component would be the same as one state of the component in the system,

o Availability of physical and chemical data has to be taken into account.

46

Page 47: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

• Change of specific/molar enthalpy with temperature is called specific/molar heat capacity

• Specific/molar heat capacity tells us how much heat has to be supplied in order to warm one kilo/mole of the component by 1 Kelvin

• Specific/molar heat capacity depends on temperature

• Change of enthalpy can be evaluated as the integral of a polynomial

• For engineering estimation of enthalpy, specific/molar heat capacity is considered to be a constant evaluated at the mean temperature 𝑇

Enthalpy as function oftemperature

47

Page 48: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Enthalpy as a function of the state of matter

• Change of state of matter is always accompanied with a largechange of enthalpy value

• This enthalpy change depends on temperature and can usually be found in tables etc.

• The most common changes of state of the matter are:o Vaporization – condensation

o Sublimation – desublimation

o Melting - freezing

48

∆ℎ𝑖,𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 = ℎ𝑖,𝑛𝑒𝑤 𝑝ℎ𝑎𝑠𝑒 − ℎ𝑖,𝑜𝑙𝑑 𝑝ℎ𝑎𝑠𝑒 = −∆ℎ𝑖,𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒

∆ℎ𝑖, 𝑣𝑎𝑝 = ℎ𝑖,𝑔 − ℎ𝑖,𝑙 = −∆ℎ𝑖,𝑐𝑜𝑛𝑑

∆ℎ𝑖, 𝑠𝑢𝑏 = ℎ𝑖,𝑔 − ℎ𝑖,𝑠 = −∆ℎ𝑖,𝑑𝑒𝑠𝑢𝑏

∆ℎ𝑖, 𝑚𝑒𝑙𝑡 = ℎ𝑖,𝑔 − ℎ𝑖,𝑠 = −∆ℎ𝑖,𝑓𝑟𝑒𝑒𝑧

Page 49: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Dash-dotted line route

Dashed line route

boiling

Solid line route

Combined dependencies of enthalpy on temperature and state of matter (vaporization as an example) – enthalpy is state variable

49

Point A reference state, a liquid at temperature 𝑇𝑟𝑒𝑓

Point B – vapor at temperature 𝑇

The total enthalpy change between A and B does not depend on the routefrom the point A to the point B.

boilboil boil

vap

vap

boilboil

Page 50: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

Enthalpy balance of a process mixer

10 kg of water at 25 °C has been mixed with 3 kg of ice at 0 °C with 5 kg of water at 100 °C. What is temperature of the obtained mixture? Is there some ice in the resultingmixture? Consider specific heat capacity of water to be approximately constant within the relevant temperature interval.

50

Problem #4:

Page 51: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

51

Cooling a pipe by external flowA warm liquid is flowing through a horizontal pipe with a flow rate F (kg/s). The interaldiameter of the pipe is D and its length is L (cf. the figure). A cooling fluid is flowing aroundthe tube in a perpendicular direction. The cooling fluid has constant temperature Tw. Warm liquid enters the tube with the temperature Tini. The density and heat capacity ofthe warm liquid are and cp, respectively. The overall heat transfer coefficient betweenthe warm liquid and the cooling fluid is U (W/(m2K)).Find the temperature of the warm liquid as function of time and position within the tube, i.e., T(z,). Suppose plug-flow within the pipe and neglect heat conduction resistances in radial direction.

Problem #4:

Page 52: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

52

INTRODUCTION TO SEPARATIONS

Page 53: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

53

o Mixture: „a basic form“ of an existence ofmatter.

o Mixtures may form spontaneously but usuallyan energy input is needed and speeds-up themixture formation.

A SEPARATION of a mixture to individualcomponents or less complex mixtures requires an

energy input!

1

C

i

i

Mixture component

Page 54: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

54

Separation of a mixture to components (or to lesscomplex mixtures) represents basic task in chemical

and similar technologies

(analytical separations?)

SEPARATIONPROCESS

FEED MIXTURE

PRODUCT 1

PRODUCT 2

PRODUCT N-1

PRODUCT N

Page 55: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

55

MIXTURES AND THEIR PROPERTIES – factors affectingseparations

Single phase mixtures × multiphase mixtures

Homogeneous mixtures × heterogeneous mixtures

Molecular, thermodynamic and transport properties

Size and shape of particles

Page 56: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

56

Classification of separation methods

(a) phase creation

(b) phase addition

(c) solid barriers

(d) solid agents

(e) force field or gradient

Page 57: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

57

(a,b) phase creation or phase addition

When the feed to be separated is a single-phase then second separable phase must be developed before separation of thecomponents can be achieved.

Creation of the second phase?

Energy separating agent (ESA) or a mass-separating agent (MSA)

ESA – heat transfer to/from mixture or shaft work to-frommixture

MSA – partially or fully immiscible with one or more constituents of the mixture

Page 58: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

58

Full list of separations based on phase creation or additiongives Table 1.1 in Seader-Henley-Roper text-book:

Page 59: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

59

Page 60: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

60

Page 61: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

61

(c) solid barriersMacro-, micro- and nano-porous barriers are used forseparation according to mixture constituents properties

Components are separated either by theirselective retention by the barrier (filtrationprocesses) or due to their different rates ofpermeation through the barrier (solution-diffusion mechanism)

Liquid membranes – a modification of separations by solid barriers

Page 62: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

62

Page 63: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

63

(d) solid agents

A particulate/granularsolid agent is mixed (in a proper way) with a gas, vapour or liquid

mixture.

Mixture constituentsselectively bind to the

solid agent.

Phase equilibrium maybe achieved (contact

time vs. mass-transfer rate).

Solid agent maybe covered by a

thin layer ofselective agent (inert carrier + agent) or the

solid agent itselfbinds the

components.

Adsorption –chromatography– ion exchange.

Page 64: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

64

Page 65: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

65

(e) force field or gradient

External fields are used to separate mixture constituents dueto their various responses to applied field:

Page 66: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

68

Typically, a sequence (a combination) of separation methodshas to be used to achieve required separation and/or to meet legal regulations etc.

Heuristics:

Page 67: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

70

Selection of feasible separation method(s)

A) Feed conditions1. Composition, particularly of species to be recovered2. Flow rate3. Temperature4. Pressure5. Phase state (s, l or g)

B) Product conditions1. Required purities2. Temperatures3. Pressures4. Phases

Factors influencing selection of separation operation(s):

Page 68: Separation processes - uchi.vscht.czuchi.vscht.cz/uploads/pedagogika/sep-proc/presentations/SepProc... · • Energy balances • Examples 10. System • Part of universe with real

71

c) Property differences that may be exploited1. Molecular2. Thermodynamic3. Transport

D) Characteristics of of separation operation1. Ease of scale-up2. Ease of staging3. Temperature, pressure and phase-state requirements4. Physical size limitations5. Energy requirements

E) Economics1. Capital costs2. Operating costs