sergey sedov, svetlana sycheva, victor targulian, teresa ... › articles › 62 › 44 › 2013 ›...

15
Last Interglacial paleosols with Argic horizons in Upper Austria and Central Russia – pedogenetic and paleoenvironmental inferences from comparison with the Holocene analogues Sergey Sedov, Svetlana Sycheva, Victor Targulian, Teresa Pi, Jaime Díaz How to cite: Sedov, S., Sycheva, S., Targulian, V., Pi, T., Díaz, J. (2013): Last Interglacial paleosols with Argic horizons in Upper Austria and Central Russia – pedogenetic and paleoenvironmental inferences from comparison with the Holocene analogues. – E&G aternary Science Journal, 62 (1): 44–58. DOI: 10.3285/eg.62.1.05 Abstract: e paleosols of the Last Interglacial are presented in many loess sequences of the European temperate zone by soils with Argic horizon, that are considered to be the pedological response to the bioclimatic conditions of that period. We studied micromor- phological, physical/chemical (bulk chemical composition, texture and dithionite-extractable iron) and mineralogical character- istics of two profiles – an Eemian Luvisol in Upper Austria (Oberlaab) and a Mikulino Albeluvisol in Central Russia (Alexandrov arry near Kursk) to compare them with recent analogous soils and to make further paleoecological and chronological infer- ences. Both profiles showed a set of characteristics indicative for weathering of primary minerals, clay transformation illu- viation and surface redoximorphic (stagnic) processes. Paleosols demonstrate more advanced development than the Holocene analogues manifested however in different pedogenetic characteristics. e Eemian Luvisol in Upper Austria is characterized by stronger clay illuviation manifested in higher clay content and abundance of illuvial clay pedofeatures in the Bt horizon. Mikulino Albeluvisol in Central Russia is more strongly affected by eluvial and stagnic processes evidenced by deeper and more intensive accumulation of bleached silty material and clay depletion. We suppose that the properties of parent material are responsible for these differences. Russian Albeluvisol is formed on the Dnepr loess poor in weatherable minerals and hav- ing limited capacity for buffering acidity and clay formation. e higher development status of the Last Interglacial paleosols compared to the Holocene soils having however same type pedogenesis implies longer soil formation period, that agree with some of the paleobotanical proxies and could include besides MIS 5e part of MIS 5d; the warmer and moister paleoclimate dur- ing MIS 5e could also account for more advanced paleosol development Several phases of clay illuviation interrupted by frost structuring and deformation are detected in the Eemian Bt horizon in Upper Austria. It suppose even longer development that could extend to the Early Würmian interstadials (late substages of MIS5) Letztinterglaziale Paläoböden mit Bt-Horizonten in Oberösterreich und Zentral-Russland: pedogenetische und paläoum- weltbezogene Schlussfolgerungen im Vergleich mit den holozänen Analogen Kurzfassung: In vielen Löss-Paläoboden-Sequenzen der gemäßigten Breiten Europas ist das letzte Interglazial (dt.: Eem, russ.: Mikulino) durch einen Bt-Horizont (Argic horizon nach WRB) repräsentiert, der als pedologisches Resultat entsprechender bioklimatischer Be- dingungen dieser Zeit gedeutet wird. Wir untersuchten mikromorphologische, physikalische/chemische (Gesamtelementzusam- mensetzung, Korngrößenverteilung und dithionitlösliches Eisen) und mineralogische Charakteristika im Profilabschni des Eem- Luvisols in Oberösterreich (Oberlaab) und des Mikulino-Albeluvisols in Zentralrussland (Alexandrov Grube nahe Kursk). Aus dem Vergleich der Paläoböden mit entsprechenden rezenten Böden ergeben sich paläoökologische und chronologische Schlussfol- gerungen. Beide Profile zeigen eine Reihe von Charakteristika, die auf Verwierung primärer Minerale und Tonminerale sowie Tonverlagerung und redoximorphe Prozesse hinweisen. Die Paläoböden zeigen jeweils eine weiter fortgeschriene Entwicklung im Vergleich zu entsprechenden holozänen Böden, jedoch anhand unterschiedlicher pedogenetischer Merkmale. Der Eem-Luvisol in Oberösterreich weist ein höheres Maß an Tonverlagerung auf, was durch einen höheren Tongehalt und zahlreiche Toncutane im Bt-Horizont gezeigt wird. Der Mikulino-Albeluvisol in Zentralrussland ist stärker von Auswaschung und Stauwasser betroffen, was sich in tieferer und stärkerer Ansammlung von gebleichtem schluffigem Material und Tonverarmung zeigt. Wir nehmen an, dass das Ausgangsmaterial diese unterschiedliche Entwicklung hervorruſt. Der russische Albeluvisol bildete sich auf Dnjepr-Löss, welcher im Vergleich zu den Riss-Lössen Oberösterreichs ärmer an leicht verwierbaren Mineralen ist und daher eine geringere Kapazität Säure zu puffern sowie Ton neu zu bilden aufweist. Das fortgeschrienere Entwicklungsstadium des letztinterglazialen Bodens im Vergleich zu holozänen Böden, die allgemein demselben Bodentyp entsprechen, spricht für eine längere Bodenentwick- lungsphase, was mit paläobotanischen Ergebnissen in Einklang steht. Einerseits könnte der letztinterglaziale Paläoboden neben dem MIS 5e auch Teile des MIS 5d umfassen, andererseits könnte eine intensivere Paläobodenentwicklung durch das wärmere und feuchtere Paläoklima während der Interglazialphase des MIS 5e verursacht werden. Mehrere Phasen der Tonverlagerung, unterbro- chen durch frostdynamische Strukturierung und Deformation sind im eemzeitlichen Bt-Horizont in Oberösterreich nachweisbar. Die noch weiter reichende Entwicklung könnte bis in noch jüngere Frühwürm-Interstadiale gereicht haben. Keywords: Last Interglacial, paleosol, Argic horizon, paleoclimate Adresses of authors: S. Sedov*, T. Pi, J. Díaz, Instituto de Geología, UNAM. Circuito de la Investigación Científica, 04510, México DF, Mexico; S. Syeva, V. Targulian, Institute of Geography, RAS. Staromonetny 29, Moscow, 119017. Russia; *corresponding author: sergey@ geologia.unam.mx 44 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License E & G Quaternary Science Journal Volume 62 / Number 1 / 2013 / 44–58 / DOI 10.3285/eg.62.1.05 www.quaternary-science.net GEOZON SCIENCE MEDIA ISSN 0424-7116

Upload: others

Post on 08-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Last Interglacial paleosols with Argic horizons in Upper Austria and Central Russia – pedogenetic and paleoenvironmental inferences from comparison with the Holocene analogues

    Sergey Sedov, Svetlana Sycheva, Victor Targulian, Teresa Pi, Jaime Díaz

    How to cite: Sedov,S.,Sycheva,S.,Targulian,V.,Pi,T.,Díaz,J.(2013):LastInterglacialpaleosolswithArgichorizonsinUpperAustriaandCentralRussia–pedogeneticandpaleoenvironmentalinferencesfromcomparisonwiththeHoloceneanalogues.–E&GQuaternaryScienceJournal,62(1):44–58.DOI:10.3285/eg.62.1.05

    Abstract: ThepaleosolsoftheLastInterglacialarepresentedinmanyloesssequencesoftheEuropeantemperatezonebysoilswithArgichorizon,thatareconsideredtobethepedologicalresponsetothebioclimaticconditionsofthatperiod.Westudiedmicromor-phological,physical/chemical(bulkchemicalcomposition,textureanddithionite-extractableiron)andmineralogicalcharacter-isticsoftwoprofiles–anEemianLuvisolinUpperAustria(Oberlaab)andaMikulinoAlbeluvisolinCentralRussia(AlexandrovQuarrynearKursk)tocomparethemwithrecentanalogoussoilsandtomakefurtherpaleoecologicalandchronologicalinfer-ences.Bothprofilesshowedasetofcharacteristics indicativeforweatheringofprimaryminerals,claytransformationillu-viationandsurfaceredoximorphic(stagnic)processes.PaleosolsdemonstratemoreadvanceddevelopmentthantheHoloceneanaloguesmanifestedhoweverindifferentpedogeneticcharacteristics.TheEemianLuvisolinUpperAustriaischaracterizedbystrongerclayilluviationmanifestedinhigherclaycontentandabundanceofilluvialclaypedofeaturesintheBthorizon.MikulinoAlbeluvisol inCentralRussia ismorestronglyaffectedbyeluvialandstagnicprocessesevidencedbydeeperandmoreintensiveaccumulationofbleachedsiltymaterialandclaydepletion.Wesupposethatthepropertiesofparentmaterialareresponsibleforthesedifferences.RussianAlbeluvisolisformedontheDneprloesspoorinweatherablemineralsandhav-inglimitedcapacityforbufferingacidityandclayformation.ThehigherdevelopmentstatusoftheLastInterglacialpaleosolscomparedtotheHolocenesoilshavinghoweversametypepedogenesisimplieslongersoilformationperiod,thatagreewithsomeofthepaleobotanicalproxiesandcouldincludebesidesMIS5epartofMIS5d;thewarmerandmoisterpaleoclimatedur-ingMIS5ecouldalsoaccountformoreadvancedpaleosoldevelopmentSeveralphasesofclayilluviationinterruptedbyfroststructuringanddeformationaredetectedintheEemianBthorizoninUpperAustria.ItsupposeevenlongerdevelopmentthatcouldextendtotheEarlyWürmianinterstadials(latesubstagesofMIS5)

    Letztinterglaziale Paläoböden mit Bt-Horizonten in Oberösterreich und Zentral-Russland: pedogenetische und paläoum-weltbezogene Schlussfolgerungen im Vergleich mit den holozänen Analogen

    Kurzfassung: InvielenLöss-Paläoboden-SequenzendergemäßigtenBreitenEuropasistdasletzteInterglazial(dt.:Eem,russ.:Mikulino)durcheinenBt-Horizont(ArgichorizonnachWRB)repräsentiert,deralspedologischesResultatentsprechenderbioklimatischerBe-dingungendieserZeitgedeutetwird.Wiruntersuchtenmikromorphologische,physikalische/chemische(Gesamtelementzusam-mensetzung,KorngrößenverteilungunddithionitlöslichesEisen)undmineralogischeCharakteristikaimProfilabschnittdesEem-LuvisolsinOberösterreich(Oberlaab)unddesMikulino-AlbeluvisolsinZentralrussland(AlexandrovGrubenaheKursk).AusdemVergleichderPaläobödenmitentsprechendenrezentenBödenergebensichpaläoökologischeundchronologischeSchlussfol-gerungen.BeideProfilezeigeneineReihevonCharakteristika,dieaufVerwitterungprimärerMineraleundTonmineralesowieTonverlagerungundredoximorpheProzessehinweisen.DiePaläobödenzeigenjeweilseineweiterfortgeschritteneEntwicklungimVergleichzuentsprechendenholozänenBöden,jedochanhandunterschiedlicherpedogenetischerMerkmale.DerEem-LuvisolinOberösterreichweisteinhöheresMaßanTonverlagerungauf,wasdurcheinenhöherenTongehaltundzahlreicheToncutaneimBt-Horizontgezeigtwird.DerMikulino-AlbeluvisolinZentralrusslandiststärkervonAuswaschungundStauwasserbetroffen,wassichintiefererundstärkererAnsammlungvongebleichtemschluffigemMaterialundTonverarmungzeigt.Wirnehmenan,dassdasAusgangsmaterialdieseunterschiedlicheEntwicklunghervorruft.DerrussischeAlbeluvisolbildetesichaufDnjepr-Löss,welcherimVergleichzudenRiss-LössenOberösterreichsärmeranleichtverwitterbarenMineralenistunddahereinegeringereKapazitätSäurezupuffernsowieTonneuzubildenaufweist.DasfortgeschrittenereEntwicklungsstadiumdesletztinterglazialenBodensimVergleichzuholozänenBöden,dieallgemeindemselbenBodentypentsprechen,sprichtfüreinelängereBodenentwick-lungsphase,wasmitpaläobotanischenErgebnisseninEinklangsteht.EinerseitskönntederletztinterglazialePaläobodennebendemMIS5eauchTeiledesMIS5dumfassen,andererseitskönnteeineintensiverePaläobodenentwicklungdurchdaswärmereundfeuchterePaläoklimawährendderInterglazialphasedesMIS5everursachtwerden.MehrerePhasenderTonverlagerung,unterbro-chendurchfrostdynamischeStrukturierungundDeformationsindimeemzeitlichenBt-HorizontinOberösterreichnachweisbar.DienochweiterreichendeEntwicklungkönntebisinnochjüngereFrühwürm-Interstadialegereichthaben.

    Keywords: Last Interglacial, paleosol, Argic horizon, paleoclimate

    Adresses of authors: S.Sedov*,T.Pi,J.Díaz,InstitutodeGeología,UNAM.CircuitodelaInvestigaciónCientífica,04510,MéxicoDF,Mexico;S.Sycheva,V.Targulian,InstituteofGeography,RAS.Staromonetny29,Moscow,119017.Russia;*corresponding author:[email protected]

    44 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    E&G Quaternary Science Journal Volume 62 / Number 1 / 2013 / 44–58 / DOI 10.3285/eg.62.1.05www.quaternary-science.net GEOZON SCIENCE MEDIAISSN 0424-7116

    http://www.quaternary-science.net

  • 45E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    1 Introduction

    Theperspectiveofglobalclimatechangeincreasedtheinter-esttothepaleoecologyofearlierwarmerperiods,inpar-ticulartotheQuaternaryinterglacials.Thelastinterglacial(knownintheregionalstratigraphiesasRiss-Würm,Eemi-an,Mikulino,Sangamonian)drewspecialattentionasfarasthecorrespondinggeologicalobjectsandmaterialsarefrequentandwellpreserved.Duringthelastdecadesasig-nificantprogresswasachievedindefiningthedurationofthiswarmphaseanditspaleoenvironmentalcharacteristicsbasedon thecorrelationsbetweenmarineand terrestrialrecords(Shackletonetal.2003;Sieretal.2011).

    Paleosols of loess-paleosol sequences are among themostimportantterrestrialrecordsofinterglacialenviron-ments, especially since these sequences were thoroughlycorrelatedwiththedeepseaisotoperecord(Kukla1977;Brongeretal.1998).Inthecontemporarytemperatezoneof Europe the paleosols of the last interglacial are oftenrepresented by soil bodies with strong clay illuviation(Haesaerts&Mestdagh2000),whichwereconsideredtobe,withcertainlimitations,themostsignificantresponseof pedogenesis to the interglacial bioclimatic conditions(Stephan 2000). The examples are the Ipswichain paleo-argillic soils in England (Catt 1996), Rocourt Luvisol inFrance (Antoineetal.1999)andBelgium(Haesaertsetal.1999;Vandenhauteetal.2003;Vancampenhoutetal.2008),ErbacherBoden–Luvisol/Alfisol/ParabraunerdeinGermany(Mahaneyetal.1993;Antoineetal.2001;Ter-horstetal.2001),lowerLuvisolofthePK3pedocomplexinCzechia(Demek&Kukla1969;Frechenetal.1999)andNietuliskoI-GJ1pedocomplexinPoland(Jary2009,2011),“brown-podzolic soil” of Pryluky-Kaydaky pedocomplexinUkraine(Rousseauetal.2001;Gerasimenko2006)andSalynpaleosol,theLuvisolofMezinpedocomplexinCen-tralRussia(Velichko1990;Yakimenko1995;Velichkoetal.2006).

    Onlyinareaswithdriercontinentalclimatethelastinter-glacialpaleosolsdonotshowclayilluviation:inLowerAus-

    tria(Fink1956;Bronger1976;Peticzka2009;Sprafkeetal.2013,thisvolume)itisrepresentedbyCambisols,whereasinthesouth-easternpartoftheEastEuropeanPlain(Rutteretal.2003)andtheCarpatianBasin(Bronger1976;Marko-vicetal.2008)thelastinterglacialsoilscorrespondtoCher-nozems.Infact,intheEuropeantemperatezoneLuvisolsoccupiedalargerarealintheEemiansoilcoverthantheydointheHolocene.

    Thisareadiffersespecially in theEastEuropeanPlainwhere the zone of forest soils was much broader duringtheEemianandoccupiedalargeportionofthepresentdaysteppezone(Morozova1981;Morozovaetal.1998).InanumberofsitesinCentralRussianandUkrainiansteppere-gionsonecanseeastrikingdifferencebetweenHoloceneChernozemonthesurfaceandburiedMikulinoLuvisol,sep-aratedbyValdayloess,allexposedinthesamecut(thisisalsothecaseinAlexandrovquarryexposure).

    In thepresentday temperatehumid forestareasboth,last interglacialandHolocenesoilsshowclay illuviation.However,theyareoftenclearlydistinguishedquantitatively:strongerdevelopmentofthelastinterglacialArgichorizonscomparedtotherecentoneswasreportedinanumberofcasestudies(Boardmann1985;Bullock&Thompson1985;Mahaneyetal.1993).Thereasonsforthisdistinctionarenotsoobvious:differencesinbioclimaticconditionsaswellasindurationofpedogenesiscouldbeinvolved.

    Wehavetoconcludethatbothpaleoecologicalandchron-ologicalaspectsofthelastinterglacialLuvisolsdevelopmentarefarfrombeingclear.Concerningthepaleoenvironmen-talsettingtheassumptionthattheBthorizonisareliablesignofinterglacialconditions“definedbythereturnofthetemperatedeciduouswoods”(Stephan2000)couldbetooambitious:weknowthatinthepresentdaysoilcoverthesehorizonsoccurinamuchbroaderspectrumofecosystems.IntheclassiczonalsequenceoftheEasternEuropesoilswithstrongclayilluviationareformedonloamysubstratesfromthebroadleafforestsandforest-steppetillborealconiferousnortherntaiga(Gerosimovaetal.1996).InfactwithintheEurasianforestbeltonlyintheregionswithdrierextra-con-tinentalclimateandpermafrostinMiddleandEasternSi-beriaclayilluviationishampered(Gerosimovaetal.1996).

    BroadecologicallimitsoftherecentArgichorizonforma-tionhaveimplicationsfordeterminingitstiminginEurope.In the courseof soil evolutionduringandafterLastLateGlacial,clayilluviationisdetectednotonlyintheHolocenebutalsointhelateMIS2interstadials(Kühn2003).SomeauthorsattributethedevelopmentofArgichorizonsintheEuropeanLuvisolsmostlytothelateglacial(Bølling)bo-realpaleoenvironment(vanVlietLanoë1990).

    Thus the possibility should be considered that also inMikulino/Eemian paleosols the Luvisol pedogenesis oc-currednotonlyduringtheinterglacialsensustrictobutalsointransitionalphasesofcolderforestorforest-steppeeco-systemsbeforeandafterit.Infact,thisscenariohasbeenalreadyproposedbyvariousresearcherswhodetectedsev-eralclayilluviationphasesintheEemiantoEarlyWurmi-anpedocomplexesinBelgium(Haesaertsetal.1999;Hae-saerts&Mestdagh2000)andGermany(Antoineetal.2001;Terhorstetal.2001).AlltheseauthorscoincidedindiscriminatingbetweenforestLuvisoldevelopmentcorre-spondingtothewarmhumidinterglacialandforest-steppe

    Fig. 1: Geographical situation of the studied profiles. O – Oberlaab, A – Alexandrov.

    Abb. 1: Geographische Lage der untersuchten Profile. O – Oberlaab,

    A – Alexandrov.

  • 46 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    GreyForestSoilsattributedtocoolercontinentalclimateoftheEarlyWeichselianinterstadials.ThisapproachrevivestheearlierideasofBoardmann(1985)aboutlongerpedo-genesisofthePleistoceneinterglacialpaleosolscomparedtotheHolocene.

    However,inmostworksonloessstratigraphy,chronologyandpaleoecologytheinformationonpaleosolpedogenesisisratherlimited:theconclusionsaremostlybasedonfieldmorphologicalobservations,grainsizeandmagneticsuscep-tibilitydistribution.Deeperunderstandingofpaleoenviron-mentalsignificanceofthepaleosolofthelastinterglacialinEuroperequiresmoredetaileddataaboutthetypesandsuc-cessionofpedogeneticprocesses–whichcanbeprovidedbydetailedmicromorphologicalandclaymineralogicalinves-tigationaccompaniedbysoilchemicalanalyses(Bronger1976;Bronger&Heinkele1990;Kemp1999).

    SuchdetailedstudyoftheburiedLuvisolspromisetobeeffectivealsoconcerningtheircomparisonwithmodernsur-facesoils.Temperateforestsoilswithclayilluviationareprovidedwithoneofthemostvariableanddetaileddata-setsofmorphological,physical/chemicalandmineralogicalcharacteristics.Infact,thesesoilswereoneofthemain“ex-perimentalpolygons”ofpedologytorconstructscenariosofpedogenesis(includingpolygeneticmodels)basedonthesecomplexdatasets(e.g.Targulianetal.1974a,b;Kühnet

    al.2006).Thus,theactualisticapproachtowardspaleosolin-terpretationwasexpectedtobemostfruitfulincaseoftheLuvisols.

    ThisresearchintendstocontributetotheknowledgeaboutthelastinterglacialsoilevolutioninEuropebycarryingoutacomparativepedogeneticanalysisoftwoburiedpaleosolswithArgichorizonformedonloessingeographicallydistantandecologicallydissimilarregions:UpperAustria(Oberlaabsection)andCentralEuropeanRussia(AlexandrovquarrysectionnearKursk).Thefinalobjectiveistodevelopsce-nariosofpaleosolgenesisandevolutionforbothprofilesandfromthisderiveconclusionsabouttheirpaleoenvironmentalsignificanceandtiming.

    2 Materials and methods

    Twoprofilesofthelastinterglacialpaleosolsfromtheloess-paleosolsequencesweresubjectedtodetailedmorphologi-calanalysisandsamplingbeingselectedasthekeysitesfortheICSU-2003project“PolygeneticmodelsforPleistocenepaleosols”(Fig.1).TheprofileinOberlaab(UpperAustria)islocatedonthefluvioglacialterraceattributedtotheMindelglaciation,closetoitsbench(Terhorst2013,thisvolume).ThepresentdayclimateishumidprovidingconditionsforbroadleafforestvegetationandforadevelopmentofStag-nicLuvisolsasdominantmodernsoiltype.TheprofileAl-exandrovquarry(nearKursk,CentralRussianPlain)islo-catedatthewatershedpositionclosetotheslopetowardsthevalleyofriverMlodat.Themodernclimateistemper-ate semi-humid, the surface soils are Haplic Chernozemsformedundermeadow-steppevegetation.Thus,bothstudysitespresenttwomajorcasesofinterrelationbetweenlastinterglacialLuvisolsandtheHolocenesoil:theybelongtothesametypeincaseofOberlaabandtheyaregeneticallydissimilarincaseofAlexandrovsection.

    Thestratigraphic,chronological,andpaleoecologicalas-pects of both paleosol-sedimentary sequences were pub-lishedearlier.ForOberlaabthesedataareavailableinthepapersincludedinthisSpecialVolumeandsomeearlierpub-lications(Terhorst2007,2013,thisvolume;Solleiroetal.2013,thisvolume).TheEemiansoilinOberlaabistheupper-mostof5buriedpaleosols;itisseparatedfromthemodernsoilbycolluvialandloessicsedimentswithsignsofweakpedogenesis,attributedtotheWürmianglacial.AlexandrovsectionwasstudiedbySychevaandco-authorsduringthelast20years,theresultsarepresentedinseveralpapers(c.f.Sycheva1998;Golyeva&Sycheva2010;Sycheva&Sedov2012).Mikulino(Salyn)paleosolisdevelopedontheDnieper(RissianGlacial,MIS6)calcareousloess.Theimportantad-vantageofAlexandrovsectionisanextensiveanddetailedpartcorrespondingtothelast(Valday)glaciation,overlyingtheMikulinosoil.Thelowersegmentofthispartiscom-prisedbythreeEarlyValdaypaleosolsclearlyseparatedbycolluvialstrata.AbovethemtheMiddleValdaypaleosolisdeveloped(Bryansksoil).Finally,modernChernozemissep-aratedfromBryansksoilbytheLateValdayloess.

    Detailed morphological description of the last inter-glacialpaleosolprofileswas followedbysamplingof thegenetichorizons:bulksamplesforphysical,chemicalandmineralogicalcharacteristicsandblockswithundisturbedstructure for thin sections were collected.Micromorpho-

    Fig. 2: Profile morphology of the Eemian paleosol of the Oberlaab profile, with the overlying Würmian pedosediment (WP).

    Abb. 2: Eemzeitlicher Paläoboden im Profil Oberlaab mit darüber liegen-dem würmzeitlichem Bodensediment.

  • 47E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    logical observations were performed under petrographicmicroscopeandthedescriptionsfollowedtheterminologyofBullocketal.(1986).Wegavespecialattentiontothepedofeaturesrelatedtotheclayeluvial-illuvialredistribu-tion, redoximorphicprocessesaswellas the signsofag-gregation and mixing by biotic and cryogenic processes.The properties selected for paleosol laboratory analyseswerethoseindicativeofancientpedogeneticprocessesandnotsubjectedtomajordiageneticchangesafterburial.BulkchemicalcompositionwasestimatedbyX-rayfluorescenceanalysis.Grainsizedistribution–intendedtoestimateclayaccumulationduetoweatheringandilluviation–includedseparationofsandfractionsbysievingandquantificationofsiltandclaybypipettemethod.Thecontentoffreeironoxides – an important product of soil weathering – wasevaluatedbymeasuringFeinthedithionite-citrate-bicar-bonateextract(Fed).Claymineralassemblagesinthesoilswitheluvial-illuvialdifferentiationareknowntobespecif-icfordifferenthorizonsandstronglyinfluencedbypedog-eneticprocesses(Targulianetal.1974b;Tonkonogovetal.1987).WestudiedthecompositionofclayfractionbyX-raydiffractionusingaShimadzuXRD-6000diffractometerinorientedspecimensubjectedtodifferentpretreatments:air-dry,saturatedwithethylene-glycol,heatedto375 °cand500 °c.Clayspeciescontentwasestimatedinsemi-quanti-tatively,usingsimplepeakweightingfactors;forareaesti-mationweusedFityk(Wojdyr2010)program.Illite,smec-titeandmixed-layeredcomponentswereidentifiedbysep-aratingtheirpeakareas in theglycolatedXRD-traceandcalculatingtheirproportions(Moore&Reynolds1997).

    Allresultswerefurtherintegratedwithotherdatasets–morphological,geochemical,rockmagnetic,etc.publishedforOberlaabbySolleiroetal.(2013,thisvolume),forKurskbySycheva(1998),Rivasetal.(2003)andSycheva&Sedov(2012).

    Thekeyelementofinterpretationconsistedinthecom-parison of obtained results with the existing knowledgeaboutthepedogeneticcharacteristicsoftheclay-illuvialsoilsformedunderdifferentenvironmentalconditions:temperateforestofWesternandCentralEurope(Jamagneetal.1984;Kühnetal2006;Saueretal.2009),taiga(Targulianetal.1974a,b;Tonkonogovetal.1987)andforest-steppe(Mie-demaetal.1999)ecosystemsofEuropeanRussia.Referenceprofiles for comparison were modern analogues (surfacesoils)ascloseaspossibletotherespectivestudiedprofileforwhichthenecessarypedogeneticcharacteristicswereareavailable:surfaceHoloceneLuvisolforOberlaab(Solleiroetal.2013,thisvolume)andmodernAlbeluvisoloftheMos-cowregion(Targulianetal.1974a,b).

    3 Results

    Paleosol morphology from macro- to microscaleTheEemiansoilinOberlaabislocatedatadepthofabout3mbelowtheHoloceneLuvisol,formedonWürmiansedi-ments.Thelowerpart(60cm)ofthelatterdirectlyaboveEemian Bt horizon has yellow color, silty loam textureand contains ferruginous concretions. This morphologytogether with gradual wavy boundary suggests that thislayercouldbeapedosedimentthatincorporatedmaterialoftheEemianeluvialhorizon(indicatedinthetablesand

    figuresasWP–Würmianpedosediment).Theunderlying90cmthickbrownBtghorizon(subdividedintoBtg1andBtg2) isdarker,more compact and clayey than theover-lying pedosediment, with platy/subangular blocky struc-ture.Brownclaycoatingscoverpedsurfacesandfillverti-calcracks.Furthermore,fewpalecoatingsofbleachedsilt,ironconcretionsandmottlesarepresent.Clayilluvialfea-turesdecrease in theunderlyingBCtgandBCghorizons(jointthicknessabout1m),wherelargervisiblecutansarerestrictedtoveryfewbiogenicpores–channelsandcham-bers.Simultaneously,stagniccolourpatternappears–paleareas,oftenofsubhorizontallenticularshapeareneighbor-ingwithyellowmottlesofferruginouspigment.Belowfol-lowsthepalebrown-yellowhomogeneousChorizon–theloessicsedimentofRissglaciationsseparatingtheEemianprofile from the underlying Middle Pleistocene paleosol(Terhorst 2007; Solleiro et al. 2013, this volume). Thesoilwasclassified in thefieldasStagnicCutanicLuvisol(Fig.2).Underthemicroscope,thegroundmassinallho-rizons is dominated by coarse silt, having rich and vari-able mineralogical composition: besides quartz feldspars,amphibolesandmicasareabundant.Micasarerepresentedbothbycolorlessmuscoviteanddarkbrownbiotite;inthelatteratstrongermagnificationsignsofweatheringareob-served–weakinterferencecolorsandpleochroism,defor-mation,precipitationofironoxides.

    The Würmian y0pedosediment (WP) has areas withbandedfabricdemonstratingstripesofcoarsesiltandfinematerial. Frequent ferruginousnodules– rounded, circu-lar,compoundaredistributedwithinthegroundmass,fewthin clay coatings are present. Areas with banded struc-turewerealsoobservedintheBtg1horizon.Clayilluvialpedofeaturesbecomemoreabundantinthishorizon,beingpresentedbothbyundisturbedclaycoatings(mostlythinandimpure)(Fig.3a)intheporesandfragmentedandde-formedclustersofilluvialclayincorporatedintoground-mass. Ferruginous nodules and mottles, mostly with ir-regular shape and diffuse boundaries are also abundant.Ratherbiganorthiciron-claynodulesofsubangularfrag-mentedshape(Fig.3b)andcharcoalfragmentswiththetis-suestructureofaconifertreewereencountered.

    Themajorabundanceandvarietyofclayilluvialmateri-alswasfoundintheBtg2horizon.Undisturbedclaycoat-ings are present, however, they are not dominant. Frag-ments of clay illuvial pedofeatures of different size andmorphology are more frequent, some of them are largerthananyoftheundisturbedcoatings(Fig.3c).TheBtg2ho-rizon is characterized by strong fracturing giving rise toangularblockyandcoarselenticularpeds(Fig.3d)andbe-ing accompanied by displacement along the cracks. Thewalls of these cracks support thin undisturbed coatings.Bleached irregular shaped silt concentrationsdepletedofclay are very rare (Fig. 3e). Few infillings with bow-likestructureareofzoogenicorigin(Fig.3f)(Kooistra&Pul-leman2010).

    DeeperintheBCtghorizonthenumberofclayilluvialpedofeaturesdecreasesbuttheirpreservationincreases–theyaremostlyundisturbedcoatingsinvoids,someofthemlargeandlaminated(alternatinglimpidwithstronginter-ferencecolorsandimpuremicrolayers)(Fig.3g,h).FurtherdowntheprofileintheBCghorizonclaycoatingsareeven

  • 48 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    a) Impure clay coatings, Btg1 horizon, plain polarized light.

    b) Anorthic ferruginous nodule, Btg1 horizon, plain polarized light.

    c) Fragment of clay illuvial pedofeature, note strong interference colors and microlamination. Btg2 horizon, crossed polarizers.

    d) Angular blocky – lenticular structure produced by fracturing; note thin clay coatings on the aggregate surface. Btg2 horizon, plain polarized light.

    e) Concentration of bleached silt particles. Btg2 horizon, plain polarized light.

    f) Infilling with bow-shaped structure. Btg2 horizon, plain polarized light.

    Fig. 3: Micromorphology of the Eemian paleosol in Oberlaab.

    Abb. 3: Mikromorphologie des eemzeitlichen Paläobodens in Oberlaab.

  • 49E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    g) Laminated clay coatings with limpid and impure microlayers. BCtg horizon, plain polarized light.

    h) Same as g), crossed polarizers; note high birefringence of limpid layers.

    i) Clay illuvial pedofeature with ferruginous coatings on the surface and in the cracks. BCg horizon, plain polarized light.

    j) Bleached area in the groundmass under clay coating. BCg horizon, plain polarized light.

    k) Disturbed clay illuvial pedofeature, fragments covered by a thin undis-turbed clay coating. BCg horizon, plain polarized light.

    l) Parallel orientation of elongated mineral particles, C horizon, plain polarized light.

  • 50 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    fewerandusuallycombinedwithferruginousnodulesandfilmspenetratingintoilluvialclay(Fig.3i).Frequently,claycoatingsintheporesoverlybleachedmicroareasadjacenttotheporewalls,however,theseareasalthoughlackingfer-ruginouspigmentarenotdepletedoffineclaymaterial(Fig.3j).IntheBChorizonsfewclaypedofeaturesarefragmentedbutusuallynotincorporatedintogroundmass–thefrag-mentsstayintheporesbeingonlyslightlydisplacedandcoveredbythenewgenerationofthinnercutans(Fig.3k).FinallyintheChorizonallpedofeaturesbecomelessabun-dantandprimarysedimentarystructuresaremoreevident–amongthemparallelsubhorizontalorientationoftheelon-gatedmineralparticles(Fig.3l)

    The profile of Mikulino paleosol as mentioned aboveisoverlainby6mofWaldaysedimentswithaHoloceneChernozemontop.Theprofiledemonstratesaremarkablepreservationofallhorizonsincludingthetopsoil.Itisde-limited from theoverlying laminated colluvial sedimentsbyathin(lessthan1cm)blacklayerofburnedlitter.Be-low it a grey-brown Ah horizon (8 cm thick) is located;itcontainsnumerouscharcoalparticles(havingtendencytoparallelorientation)and fewsoft ferruginousnodules,sometimesassociatedwiththecharcoal.Itisunderlainbytheverypale20cmthickEhorizonwithwell-developedmulti-order platy structure. Iron oxide nodules (soft andhard)becomemoreabundant,whereascharcoalparticlesare fewer.An importantdiagnostic feature is the typeofthelowerboundaryofthishorizon.Itisgradualwiththebleached material penetrating into the underlying layeralongporesandfissuresanditformsthinglossicfillsintheverticalcracks–knownas“albeluvictonguing”.Thedown-ward“invasion”ofbleachedsiltmaterialdefinesthe15cmthick transitional EB horizon. It still has platy structure,however,platyaggregatesarethickerandbreakintosmallsubangularblocks.Thebleachedmaterialconcentratesontheaggregatesurfacewhereas the internalpart isdarkerandcontainsmoreclay.Thisdistributionproducesaheter-ogeneouscolorpattern:thenetworkofpaleveinsisspreadamongthebrown“islands”.Iron-manganesepedofeatures

    arepresentedbysmallnodulesandfilmsmostlyassociatedwiththethinfissures.

    Theilluvialpartoftheprofile(Bt1,30cmthick–Bt2,35cmthick–Bt3,65cmthick)ismarkedbyacontrastingdif-ferenceofmainmorphologicalcharacteristics.Ithasclayeyloamytexture,subangularblockytoprismaticstructureandpredominantlybrowncolor.However,siltybleachedmate-rial is still abundant: in theBt1horizon it formsfilmsonmostpedsurfaces.Inmanycasesthesefilmsoverlybrownclaycoatings.InBt2thepalesiltcomponentdecreasesandisrestrictedmostlytothelargerverticalcracks.Aggregatesare covered with continuous clay coatings. The prismaticblockypedsbecomecoarserandclaycoatingsontheirsur-facesturnpatchyintheBt3horizon.AllArgichorizonshavealsoferruginouspedofeatures,inBt1thesearemostlysmallnodules,whereasinBt2andBt3dendriticiron-manganesespotsoccur.

    TheBChorizonshavebrighterbrown-yellowcolorandweaker pedogenic structure. Where the paleosol lies onDnieperloessweobservedaclearbandedpatterninthesehorizons:darkerclayeystripeswerealternatingwith thepale-yellowsiltybands.

    Allthesehorizonsarefreeofcarbonatesandthelatterappearonlyintheunderlyingloess,atthedepthof250cmfromtheMikulinosurface.ThepaleosolwasdefinedasHap-licAlbeluvisol(Fig.4).

    Microscopic observations reveal predominance of siltgrainsinthegroundmass.Theirmineralogicalcompositionisratherpoor–quartzisclearlydominant,K-Nafeldsparsarepresentinminorquantities,micasandheavymineralsarefew.

    TheAhorizonhascomplexmicrostructurewithcombina-tionofplatyandisometriccrumbyaggregates.Darkorganicpigmentwithheterogeneousdistributioncausesinterchang-ingofdark-coloredandlight-coloredmicro-zones.Therearefewsignsoffaunalactivity:somezoogenicchannelswithexcrementinfillingswerefound;groundmasscontainsnu-merouscharcoalparticles(Fig.5a).

    IntheEhorizondominantfineplatyaggregatesdemon-stratecleartexturaldifferentiationwithprevailingbleachedcoarsesiltintheupperpartsandclosetotheporesandfinesiltandplasmicmaterialinthecentralandlowerparts.Fre-quentcompactroundedsimpleironnodulesarewidespreadinthegroundmass,sometimescharcoalisobservedintheirnucleus(Fig.5b).Weencounteredfragmentsofclaycoatingsembeddedinthebleachedsiltymatrix(Fig.5c,d).

    TheEВhorizonalsohaswelldevelopedplatystructurewithevenstrongerintra-pedaldifferentiationofparticlesize.Finesiltandclayisconcentratedinsidetheplates,whiletheperiphericalpartsconsistofbleachedsilt.Ironpedofeaturesarefrequentandvariable:weobservedroundednodulesandincrustationofplatyaggregatesmainlyonthebottomside(fig.5e).

    TracesofplatyaggregationarestillobservedintheBt1horizonbutplatesarefrequentlyneighbouringsubangularblocks(Fig.5f).Theporeshavecommonbleachedsiltycoat-ingsaswellasinfillings,whereasdeformedandfragmentedilluviatedclaypedofeatureswerefoundintheinteriorofthepeds(Fig.5g).Undisturbedclayilluvialpedofeaturesstillre-latedtotheporeswerenotobserved.Smallferruginousnod-ulesarefoundboth,inthegroundmassandsiltyinfillings.

    Fig. 4: Profile morphology of the Mikulino paleosol in Alexandrov: position in the sequence, eluvial-illuvial differentiation, detail of the Bt1 morphol-ogy, showing bleached areas related to the pores.

    Abb. 4: Morphologie des Mikulino Paläobodens in Alexandrov: Lage im Profil, Differenzierung von Eluvial- und Illuvialbereichen, Detailaufnahme Bt1-Horizont mit gebleichten Bereichen, die im Zusammenhang mit Poren stehen.

  • 51E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    OnlytheВt2andВt3horizonshaveundisturbedlayeredilluvialclaycoatingsontheporewalls(Fig.5h).However,bleachedsiltconcentrationsarestillpresentandconcentrat-edmainlyinfissuresandlargechannels.Theyhaveabruptboundariestothegroundmass,andsometimestheyarejux-taposedontheclaycoatingsoroccur intheneighboringpores(Fig.5i,j).

    InthethinsectionsofthebandedBChorizonsweob-servedaclearlaminarstructurewithalternatingbandsen-richedincoarsesiltandfineclaymaterials.Eveninthesehorizonsweobservedfewthinclaycoatings,whichshowednoclearpreferenceforspecificbands.

    Physical and chemical characteristicsBulkchemicalcompositiondemonstratessimilartendenciesofprofiledifferentiationintermsofelementconcentrations.TheuppereluvialhorizonshavehigherquantitiesofSiattheexpenseofAlandalsoFeandMg.However,itshouldbenotedthatabsolutevaluesarequitedifferentinthetwostudiedprofiles:thematerialofMikulinopaleosolinAlex-androvhasmuchhigherSicontent(80–85%)thanthatoftheEemiansoilinOberlaab(70–76%),whereasthelatterismorerichinAl,Feaswellasalkalineandalkalineearths(exceptKthathassimilarconcentrationsinbothpaleosols)(Tab.1).

    Clay content shows a clear and similar distributiontrendinbothprofiles:themaximumisobservedintheBthorizons,whereaslowervaluesarefoundintheeluvialEhorizoninAlexandrovandupperWürmianpedosedimentinOberlaab (in the latter–with contrastingfluctuationsbetweenupperandlowerparts).Thehighestvaluesofthedithionite extractable ironalso correspond to the illuvialpartofbothprofiles.However,ironandclaymaximadonotcoincide:ironcontentishighestintheupperBt1horizons,

    whereasclayhasitsmaximumbelowintheBt2horizons.Again, both clay and Fed contents although having verysimilar distribution tendencies in both profiles, demon-stratedifferentabsolutevalues.ForbothcomponentstheyareconsiderablyhigherintheOberlaabprofile(Tab.2).

    Claymineral assemblages showverycleardifferentia-tion in both studied profiles. Interlayered illite-smectitewithvariableproportionofbothcomponents–(1.4–1.5nmpeak,shiftingtosmalleranglesonglycolation)decreasesstronglyintheeluvialEhorizonsandismuchhigherintheilluvialstratumandparentmaterial. In theEemianLuvi-solofOberlaabthistendencyisratherweakandexpressedmostlyindifferentproportionsofsmectite-richandsmec-tite-poormixedlayeredcomponents.Thelatterincreaseintheupperpartoftheprofile. IntheMikulinoAlbeluvisolof Alexandrov this tendency is much stronger: all smec-titiccomponentsdecreaseintheeluvialpart,whereasonthecontrary, illiteandkaolinite (respectively1.0nmand0.7nmpeak,thelatterdisappearingafter550°cheating)aremoreabundant(seeTable3andFig.6).Onlyinthepedo-sediments,eluvialandupperilluvialhorizons(EBandBt1)we found mixed-layered minerals with chloritic compo-nent(“shoulder”of1.0nmpeaktowardssmalleranglesaf-terheatingindicatingincompletecontractionof1.4–1.5nmmaximum),whichweidentifywiththehydroxyl-interlay-eredvermiculiteandsmectite(HIVandHIS)(Bamhisel&Bertsch1989).

    4 Discussion

    Pedogenesis of paleosols – comparison with the region-al modern analoguesThequestiontobeansweredbeforesoilformingprocessesinthepaleosolcanbeassessedishowcompleteistheirprofile

    HorizonTotal element concentrations, %

    SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O

    Eemian paleosol (Oberlaab, Austria)

    WP upper 74.14 1.12 14.86 4.95 1.03 0.81 0.97 1.94

    WP lower 74.46 1.12 14.75 4.68 1.01 0.85 1.00 1.92

    Btg1 76.16 1.03 13.15 4.66 1.09 0.66 0.94 2.11

    Btg2 70.26 0.94 16.49 6.38 1.60 0.67 0.79 2.60

    BCtg 70.58 0.95 16.02 6.30 1.63 0.81 0.88 2.58

    BCg 71.37 0.94 15.33 6.01 1.59 0.91 1.04 2.56

    C 71.48 0.96 15.47 5.86 1.55 0.93 1.03 2.45

    Mikulino paleosol (Alexandrov quarry, Russia)

    A 82.30 0.90 9.44 2.68 0.61 0.81 0.65 2.34

    E upper 85.37 0.90 7.69 1.88 0.43 0.62 0.56 2.38

    E lower 83.72 0.94 8.54 2.33 0.55 0.58 0.64 2.52

    EBt 81.97 0.95 9.30 3.14 0.71 0.60 0.58 2.62

    Bt1 81.30 0.92 9.70 3.40 0.73 0.62 0.55 2.63

    Bt2 81.01 0.81 10.23 3.44 0.78 0.64 0.53 2.37

    Bt3 80.67 0.79 10.49 3.45 0.76 0.67 0.59 2.39

    BC 82.17 0.77 9.60 3.02 0.64 0.68 0.49 2.43

    WP – Würmian pedosediment

    Tab. 1: Bulk chemical composition: selected major elements .

    Tab. 1: Ergebnisse der Elementaranalysen: Aus-gewählte Hauptelemente.

  • 52 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    a) Pore with the excremental infilling, charcoal particle. A horizon, plain polarized light.

    b) Ferruginous nodule with charcoal in the center. E horizon, plain polarized light.

    c) Fragment of clay coating surrounded by bleached silt. E horizon, plain polarized light.

    d) Same as c), crossed polarizers; note strong interference colors and undu-lating pattern of extinction.

    e) Platy structure, fissures between the plates are filled with bleached silt, ferruginous hypocoatings are located on the lower surfaces of the plates. EBt horizon, plain polarized light.

    f) Platy and blocky aggregates, pores are filled with bleached silt, intra-pedal matrix enriched with fine material. Bt1 horizon, plain polarized light.

    Fig. 5: Micromorphology of the Mikulino paleosol in Alexandrov.Abb. 5: Mikromorphologie des Mikulino Paläobodens in Alexandrov.

  • 53E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    andtowhatextenditisaffectedbypost-burial(diagenetic)processes.

    IntheOberlaabprofilethelayerdirectlyabovetheEemi-anBthorizonhasclearsignsofsedimentationandmixing.Thesesignsarestrongerintheupperpartofthishorizon,wheregrainsizefluctuationsmarkalithologicaldiscontinu-ity;inthislayerfewthinclaycoatingsaremostprobablythelowermosttracesofclayilluviationfromtheHoloceneLuvi-sol.However,stagnicferruginouspedofeaturesandpresenceofthespecificclaycomponent–hydroxylinterlayeredver-miculitesandsmectitessuggestthatmaterialoftheeluvialhorizon,althoughredepositedispresentinthislayer.Minorsignsofdisturbance(anorthiciron-claynodules,charcoal)arepresentevenintheBt1horizon,andthepaleosolissup-posedtobeintactonlybelowtheBt1(Terhorstetal.2003).

    IncaseofAlexandrovquarrythegradeofpreservationishigh:acompletesequenceofgenetichorizonsincludingtheburnedlitterispresent.OnlytheAhorizonhassignsofre-deposition:orientedcharcoalparticles.Moreover,noeffectsofposteriorpedogenesisaredetectedinthispaleosol,duetoitsprotectionbyathickoverlyingsedimentlayer.

    Inbothprofilesasimilarsetofpedogeneticprocessesisdetected.Clayilluviationisevidencedbyclaycoatings(ob-servedbothonmacro-andmicroscale)aswellasamaxi-mumofclaycontentintheBthorizoncomparedbothtotheunderlyingCandoverlyingEhorizon(insituorredepos-

    ited).Clearmicromorphologicalsignsofsilicateweatheringareobservedinthebiotiteparticles.Increaseofdithioniteextractableiron,whichmostlyincludesfineoxidesproducedbyweatheringisanimportantanalyticalindicator.Anen-hancedSicontentintheeluvialhorizonsofLuvisolsisofteninterpretedasaresultofdecayofallunstablesilicates(in-cludingpartofclayminerals)andresidualaccumulationofquartz(Targulianetal.1974b).Lossofsmectitesinthesamehorizonsisalsoconsideredtobearesultofselectivedestruc-tionofthemostunstableclaycomponents(Tonkonogovetal.1987).However,itshouldbetakenintoaccountthatclayilluviationcouldalsocontributetotheseproperties.RemovalofclayfromEhorizonalsocouldcauseanincreaseofSi,duetorelativeaccumulationofcoarsecomponentsricherinthiselement.Smectitesaremostfineanddispersablecompo-nents,thatcouldbepreferentiallymobilizedbysuspensiontransportandremovedfromtheeluvialhorizons(vanRanstetal.1982).Thus,geochemicalandmineralogicalindicatorsgiveamixedsignalfrombothprocesses,afactthatunfor-tunatelyisrarelytakenintoaccountwhenelementalcom-positionofloess-paleosolsequencesisinterpretedthroughvarious“weatheringindices”.

    More clear evidence of clay mineral transformationisprovidedbytheHIVaccumulationintheupperpartofthepaleosols.Thiscomponentisknowntobeformedfrom2:1claymineralswithlabilestructureduetosynthesisof

    g) Fragmented and deformed clay illuvial pedofeatures incorporated into groundmass. Bt1 horizon, plain polarized light.

    h) Continuous undisturbed clay coating in the pore. Bt3 horizon, plain polarized light.

    i) Bleached silt (left) and limpid clay coating (right) in the neighboring pores. Bt3 horizon, plain polarized light.

    j) Same as i), crossed polarizers, note strong interference colors of the clay coating.

  • 54 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    fragmentaryAl-hydroxyllayerbetweenthe2:1stacks.ThisprocesstakesplaceinacidsoilenvironmentandAlforitisprovidedbyhydrolyticalterationofsilicates–primary,orthesameclaycomponents(Bamhisel&Bertsch1989).Presenceofthesecomponentsintheeluvialhorizons(insituinAlexandrovandredepositedinOberlaab)pointtoacidweatheringinbothinterglacialpaleosols.However,theal-ternative explanationofhigher contentof chloritic com-ponentintheupperhorizonsofacidforestsoilsonloessalsoexists.Jamagneetal.(1984)supposethattheseminer-alsarenotformedthroughthesynthesis,butratherbysim-plebreakdownandpartialdegradationofprimarychloritesfromsiltfractions.

    Surfaceredoximorphic(stagnic)processesproducedfer-ruginous pedofeatures throughout the profile, but mostabundantandvariableintheeluvialandupperBthorizons.Theretheyarepresentedbynodulesaswellasbycoatingsandincrustations,indicativeofironmigration(Bronnik-ovaetal.2000).Besidesintra-horizontalshort-distancere-distributionwesupposecertaineluvial-illuvialtransportofironfromEtoEBandupperBthorizonsduetothisproc-ess.DithioniteextractableironisdepletedinEhorizonsandhasitsmaximumintheBt1;alsotheabundanceofthefer-ruginouspedofeaturesismaximalintheEBandBt1hori-zons.InterestinglymagneticsusceptibilityalsodemonstratesmaximainEB(Alexandrovquarry)(Rivasetal.2003)andBt1(Oberlaab)(Solleiroetal.2013,thisvolume)thatcouldalsoberelatedtotheincreaseofpedogenicironoxides.Itshouldbe taken into account that surface redoximorphicprocessescouldalsocontributetoacidweatheringandHIVneoformationthroughtheprocessofferrolysis(Brinkman1970).

    Beingsimilarregardingthesetofthepedogeneticproc-esses the studiedpaleosolsdiffergreatly in their relativedevelopment. The Austrian paleosol demonstrates muchstrongerclayilluviationintheBthorizon,whereastheRus-sianprofilehasmuchstrongerevidencesofeluvialandsur-faceredoximorphicprocesses.Thistendencybecomesevenclearerbycomparisonwiththemodernsoils.TheEemiansoilinOberlaabhashigherclaycontentandmoreabundantclayilluvialpedofeaturesthantheoverlyingHoloceneLuvi-sol(Solleiroetal.2013,thisvolume).TheMikulinoAlbelu-visolinAlexandrovquarrycomparedtothelocalHolocenesoil,aHaplicChernozem,showscontrastingqualitativedif-ferencesinthesetofkeypedogeneticprocesses.TheCher-nozemischaracterizedbyhighaccumulationofdarkhumusanddevelopmentofcoprogenicgranularstructureresultinginthedevelopmentofMollictopsoilhorizon.Below,intheBkhorizonabundantneoformedcarbonatesareobserved.Morphologicalfeaturesofclaytranslocationareveryfew(ifany),claycontentisratheruniformthroughouttheprofileshowingnotendencytowardseluvial-illuvialdifferentiation(Gerasimovaetal.1996;Bronger2003).Thissetofpedog-enetispropertiestypicalforsteppepedogenesisunderUsticsoilmoistureregime(Bronger2003)providesundoubtedevidencethatonthelocalscaletheHoloceneclimatehasbeendrierthanthatofthelastinterglacial–inagreementwiththeabovementionedreconstructionforEasternEu-ropebyMorozova(Morozova1981;Morozovaetal.1998).ForcurrentresearchitisinterestingtocomparethestudiedMikulinoprofilewiththenearestanaloguehavingsimilarprofileorganization, toassess changes in theAlbeluvisolpedogenesisontheregionalscale.TheMikulinoAlbeluvisolinAlexandrovquarrycomparedtotheHoloceneAlbeluvi-soloftheMoscowregion(Targulianetal.1974b),doesnotshowstrongerclayaccumulation,whichiscontrarytothecasestudyinLowAustria.However,itdemonstratesma-joradvanceofeluvialandstagnicprocesses–bleachingandclaydepletionbesidesEandEBhorizonsaffectedthewholeBthorizon,“attacking”theareaofearlierclayilluviation.FreshilluvialpedofeaturespointingtoactiveclayilluviationappearonlyinthelowerBt2andBtChorizons.InprofilesofHoloceneAlbeluvisols(Kühnetal.2006)andGreyForestSoils(Miedemaetal.1999)this“aggression”ofeluviationagainstdegradingilluvialareasisalsoobservedbutusuallyisnotsodeep.ItisstronginEBthorizonanddecreasesintheupperpartofBthorizons,whereitisrepresentedmostlybydeepthinbleachedtongues(albeluvictonguing),whereastheareasbetweenthetonguesaremuchlessaffected(Spiri-donovaetal.1999;Saueretal.2009).Thus,inbothcaseslastinterglacialpaleosolspresenthighergradeofdevelop-mentthananalogousHoloceneprofilesintheregion,how-ever,theparticularmodeofthistendencyisdifferent.

    These differences could be explained when linked totheclassicevolutionschemeforforestsoilformationun-dertemperatehumidclimate(Pédroetal.1978).FollowingthisschemeintensiveclayilluviationdevelopsafterinitialleachingphaseandresultsintheformationofArgichorizon.However,itissucceededbythesubsequent“degradation”stageoffurtheracidification,surfaceredoximorphicproc-essesand(possibly)ferrolysis.Atthisstageclayilluviationishamperedandpartofaccumulatedclayislostduetoacidweathering.WesupposethatEemianLuvisolinOberlaab

    Horizon Grain size fractions, % Fed, %

    sand silt clay

    Eemian paleosol (Oberlaab, Austria)

    WP upper 5.4 68.5 26.1 0.69

    WP lower 8.2 69.8 22.0 0.65

    Btg1 10.1 66.7 23.2 0.98

    Btg2 6.3 55.9 37.8 0.73

    BCtg 4.6 60.9 34.5 0.61

    BCg 4.3 64.4 31.3 0.37

    C 5.7 65.4 28.9 0.50

    Mikulino paleosol (Alexandrov quarry, Russia)

    A 1.4 81.8 16.8 0.49

    E upper 1.4 88.7 9.9 0.22

    E lower 1.2 86.5 12.3 0.32

    EBt 1.1 79.3 19.6 0.43

    Bt1 1.0 78.2 20.8 0.51

    Bt2 1.2 70.3 28.5 0.45

    Bt3 1.5 76.1 22.4 0.43

    BC 1.2 80.0 18.8 0.37

    WP – Würmian pedosediment

    Tab. 2: Grain size distribution and dithionite extractable iron content.

    Tab. 2: Korngrößenzusammensetzung und dithionitlöslicher Eisengehalt.

  • 55E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    stilldevelopedwithinthestageofpredominantclayforma-tionandilluviation,whereasMikulinoAlbeluvisolinAlex-androvquarryalreadyreachedthestageof“degradation”.

    Thisdifferenceintheevolutionarystatusismostprob-ablyrelatedtothecompositionofthepaleosolparentmate-rial.TheRissloessinAustriaisricherinweatherableminer-als(includingphyllosilicateslikebiotite),hasmoreclayeytexture,isenrichedinbasesandhaslowerSicontent.Thisincreasesthepotentialforneutralizingexcessiveacidityaswellasfortheneoformationofclayandironoxides.TheDnieperloessinmuchpoorer,stronglyenrichedinquartz,thusbufferingandclaygeneratingcapacitiesarelower.

    Chronological and paleoecological background of the advanced Eemian/Mikulino paleosol developmentOnthelocalscale,especiallyintheborderregions,quali-tativedifferencesbetweenMikulino/EemianpaleosolandmodernsoilprofileareclearlyrelatedtoclimaticshiftasshownbythecaseofAlexandrovexposure.Thequestionarises,whatarethereasonswhylastinterglacialpaleosolsdemonstratemore advanceddevelopment thanHolocenesoilsbelonging,however,tothesametypeofpedogenesis(provenbysimilarityofhorizonation,mainmacro-andmi-cromorphologicalcharacteristics,claymineralassociationetc.)?Wesupposethatinmanycasesthedurationofpedo-genesisratherthan“stronginterglacialpaleoclimatesrela-tivetothepresent-dayclimate”(assupposedbyMahaneyetal.1993)couldaccountforthesedifferences.ComparisonwiththeEuropeanpaleobotanicalrecordswithhigh-reso-lutionchronologicalscaleprovidesinsightintothisprob-lem.DetailedcorrelationwiththedeepseaisotoperecordsandestablishingtheprecisepositionofBlakepaleomagneticeventallowedreliabledatingofthemainpaleobotanicphas-esofEemianestablishedearlierinthepollenspectrafromterrestrial (mostly lacustrine) sediments (Zagwijn 1996;Turner2002a).EarlierthelastinterglacialwasassociatedwiththeMarineIsotopeStage(MIS)5e(Shakleton1969).Recently,itwasshownthatthespreadofforestvegetationinEuropepostdatedtheonsetofMIS5ebutontheotherhand

    extendedintothesubsequentstage5ddespitethebeginningofglobalcooling,increaseoficevolume,anddropofsealevel(Shakletonetal.2003;Sieretal.2011).Thisextensionconcernsinparticularthelast“post-temperate”paleobotani-calphaseofborealforests.Thus,althoughthedurationofthelastinterglacialsensustrictoissupposedbymanyauthorstobeabout11000yr(similartothatoftheHolocene)(Casp-persetal.2002;Turner2002b),thetotalsuccessionoftheEemianforestvegetationphasesintheWesternandCentralEuropecouldreach20,000yr-nearlytwicelongerthantheHolocene(Kuklaetal.2002).

    Itshouldbestressedthatallphasesofhumidforesteco-systemsincludingthelastoneoftheborealforestsprovideconditions for clay illuviation and development of Argichorizonsonloess-likesediments.Thus,thescenariooflong-termclayilluviationduringthecompletesuccessionofdif-ferentforestphasesduringMIS5explainsmoreadvanceddevelopment of Eemian/Mikulino paleosols compared tothe Holocene analogues. Rather cold climatic conditionsduringthelaststagesofAlbeluvisolprofiledevelopmentinCentralRussiaare confirmedbymicromorphologicalob-servations.Typicalfeaturesofeluvial-illuvialprocessesarecombinedwithdeepfrosteffectsintheupperpartoftheprofile.Lenticularstructurewiththemicroscalegrainsizedifferentiationisrelatedtoicelensing(vanVliet-Lanoë2010), iron incrustations of the platy aggregates are alsocharacteristicforseasonallydeeplyfrozensoils(Fedorova&Yarilova1972).

    Anevenmorecomplexscenarioforinteractionofilluvi-alandfrostprocessesisrequiredfortheEemianLuvisolinOberlaab.Here,theilluvialandfrostfeaturesnotonlyco-existbutshowcomplexinteraction.Frostfracturingpropa-gatesintotheBthorizondisruptingtheoldergenerationofthe clay illuvial pedofeatures and generating blocky-len-ticularstructure,whereastheyoungergenerationofclaycoatings covers these aggregates. The clay translocationprocessitselfwasheterogeneousasevidencedbyvariablecomposition of illuvial pedofeatures. Impure dusty andcoarse clay coatings (“mud cutans”) are attributed to the

    Horizons Types of clay minerals

    Smectite/ illite Illite / smectite

    Chloritised 2:1 minerals

    Illite Kaolinite

    Eemian paleosol (Oberlaab, Austria)

    WP upper - xxx x xxx xx

    WP lower - xxxx xx x x

    Btg 1 - xxxx xx x x

    BCtg xxxx xx - x x

    BCg xxxxx x - xx x

    C xxxxx x - xx x

    Mikulino paleosol (Alexandrov quarry, Russia)

    E upper - xxx xx x xx

    E lower - xx xx xx xxx

    EBt - xx xx xx xx

    Bt2 xxxx xx - x x

    C xxxxx - - x x

    Tab. 3: Clay mineral composition.

    Tab. 3: Tonmineralogische Zusammensetzung.

    WP – Würmian pedosedimentxxxxx – dominantxxxx – abundantxxx – frequentxx – fewx – traces- - not detected

  • 56 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    fastpercolationof suspensions after snowmelt in freeze-thaw soils (van Vliet-Lanoë 2010). The laminated claycoatings(whichweobservedinthelowerpartoftheEemi-anLuvisolofOberlaab)wherepurelimpidandimpuresiltymicrolayersarejuxtaposed,couldbeinterpretedasalter-nationof“normal”illuviationduetoslowpercolationandfastdeposition fromsnowmelt suspensions (Kühnetal.2010).

    ThissuggeststhatclayilluviationintheOberlaabpro-filewaspolygeneticanddiscontinuous,interruptedbythestagesofdeepfrostprocesses.SuchinterplayoffeaturesiswellknownforQuaternaryBthorizonsandcouldbeusedforpedostratigraphicinferences(summarizedbyvanVli-et-Lanoë2010)

    Concerningpossiblechronologicalandpaleoecologicalimplicationsweshouldtakeintoaccountthatnopaleosols

    orpedosedimentsclearlycorrespondtotheEarlyWürmianinterstadials.Thus,wecouldsupposethatthepedogenesisofthesewarmerstagescouldcontributetotheformationofthe“Eemian”profileinOberlaab.InseveralprofilesofEu-ropethesoilsoftheseinterstadialsarecharacterizedbydarkhumusaccumulationandcorrespondtosteppeenvironment(e.g.MosbacherHumuszoneninGermany,KrutitsasoilinRussia,etc.).Fromsuchtypeofpedogenesisonewouldnotexpect contribution to theclay illuviation.However, thistypeofsoilandlandscapeconditionsseemstobenotsoleduringtheEarlyWürmianinterstadials.ForestecosystemshavebeenalsoregisteredbyvariousEuropeanpaleoecologi-calproxies(Bibusetal.2002).Thewarmerclimateandrefor-estationcouldprovideconditionsforLuvisolpedogenesis,althoughinterruptedbycoldphasesoftheearlyglacial.Ear-lyWürmianBthorizonsclearlyseparatedfromtheEemian

    Fig. 6: X-ray diffraction patterns of oriented air-dry specimens of clay frac-tions from selected paleosol horizons; a) Oberlaab profile, b) Alexandrov profile.

    Abb. 6: Röntgenbeugungsdiagramme von orientierten luftgetrockneten Proben der Tonfraktion aus ausgewählten Horizonten der Paläoböden; a) Profil Oberlaab, b) Profil Alexandrov.

  • 57E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    LuvisolandcorrelativetoMosbacherHumuszonenwerere-portedintheRhineArea(Leser1970).Asmentionedabove(see‘Introduction’)severalauthorsdescribedsuperimposingoftheEarlyWürmianclayilluviation(associatedwithGreyForestSoilformation)overthepre-existingEemianLuvisolproducingapedocomplex.

    WesupposethatEarlyWürmianclayilluviationcoulddevelopinthe“Eemian”ArgichorizoninterruptedbyfrostprocessesimposedbythecoldstadialsinOberlaab.Thus,itsmorphologicalandanalytical(claycontent,geochemicaldifferentiation)characteristicscouldbeanintegraloflongerLuvisolpedogenesisincludingEemianInterglacialsensulato(MIS5eandpartofMIS5d)andEarlyWürmianinterstadials(correlativetoMIS5candMIS5a).SuchcumulativeeffectcouldbepresentinanumberoftheEemianLuvisolpro-fileswhereEarlyglacialsedimentationwasnotsufficienttoseparateinterglacialandinterstadialsoilbodies.InthiswaywereturntotheearlierideasofBoardman(1985)whostat-ed:“Geologicalandpalynologicalevidencefromterrestrial,midlatitudesitessuggeststhattemperateconditionscondu-civetosoilformationexistedforperiodsgreatlyinexcessof10,000yrduringthemiddleandlatePleistocene.Avail-abledataonsoilsformedduringthisintervalfromWesternEuropeandmidwesternUnitedStatesarebestexplainedbyrelativelylonginterglaciationsorthedevelopmentofcom-positesoilsoveranumberoftemperateperiods”.

    Acknowledgements

    Wewouldliketothankallcolleagues–scientistsandstu-dentsfromAustria,Germany,MexicoandRussiawhotookpartinthefieldandlaboratoryresearchoftheICSU2003project “Polygenetic models for Pleistocene paleosols”and generated a productive and friendly atmosphere oftheproject sessions.Wearegrateful to the InternationalCouncil of Science (ICSU) whose funding made possiblethis wonderful experience of intensive interdisciplinaryandinternationalcollaboration.SpecialthanksareforProf.WinfriedBlumwhoencouragedusat the initial stageofthe ICSUProjectdevelopmentandprovidedvaluablead-vicesandsupport.

    We would also like to express our gratitude to Direc-ciónGeneraldeAsuntosdePersonalAcadémico,UNAM(DGAPAUNAM)forfundingthesabbaticalstayofS.Se-dovintheUniversityofWürzburg,allowingtofinalizethisresearchandtopreparetheresultsforpublication.

    References

    Antoine,P.,Rousseau,D.D.,Lautridou, J.P.&Hatté,C. (1999):LastInterglacial-Glacial climatic cycle in loess-palaeosol successions ofnorth-westernFrance.–Boreas,28:551–563.

    Antoine.P.,Rousseau,D.,Zöller,L.,Lang,A.,Munaut,A.V.,Hatté,C.&Fontugne,M.(2001):High-resolutionrecordofthelastInterglacial–GlacialcycleintheNusslochloess–palaeosolsequences,UpperRhineArea,Germany.–QuaternaryInternational,76(77):211–229.

    Bamhisel,R.I.&BertschP.M.(1989):Chloritesandhydroxy-interlayeredvermiculiteandsmectite.–In:Dixon,J.B.,&Weed,S.B.(eds):Miner-alsinSoilEnvironments:729–788;Madison,Wisconsin(SoilScienceSocietyofAmerica).

    Bibus,E.,Rahle,W.&Wedel,J.(2002):Profilaufbau,MolluskenführungundParallelisierungsmöglichkeitdesAltwürmabschnittesimLössprofilMainz-Weisenau.–EiszeitalterundGegenwart,51:1–14.

    Boardman,J.(1985):ComparisonofsoilsinMidwesternUnitedStatesand

    WesternEuropewiththeinterglacialrecord.–QuaternaryResearch,23:62–75.

    Brinkman,R.(1970):Ferrolysis,ahydromorphicsoilformingprocess.–Geoderma,3:199–206.

    Bronger,A.(1976):ZurquartärenKlima-undLandschaftsgeschichtedesKarpatenbeckens auf paläopedologischer und bodengeographischerGrundlage.–KielerGeographischeSchriften,45:1–268.

    Bronger,A. (2003):BodengeographiederWaldsteppenundSteppen.–In:Blume,H.P.,Felix-Henningsen,P.,Fischer,W.R.,Frede,H.G.,Horn,R.&Stahr,K.(eds):HandbuchderBodenkunde,1–6;Lands-berg/Lech(Ecomed).

    Bronger,A.&Heinkele,T.(1990):Mineralogicalandclaymineralogicalaspectsofloessresearch.–QuaternaryInternational,7–8:37–51.

    Bronger,A.,Winter,R.&Heinkele,T.(1998):PleistoceneclimatichistoryofEastandCentralAsiabasedonpaleopedologicalindicatorsofloess–paleosolsequences.–Catena,34:1–17.

    Bronnikova,M.A.,Sedov,S.N.&Targulian,V.O.(2000):Clay,iron–clay,andhumus–claycoatingsintheeluvialpartofSoddy-Podzolicsoilsprofile.–EurasianSoilScience,33(6):577–585.

    Bullock,P.,Fedoroff,N.,Jongerius,A.,Stoops,G.,Tursina,T.&Babel,U.(1985):Handbookforsoilthinsectiondescription.–152p.,Wolver-hampton,UnitedKingdom(WaineResearchPublications).

    Bullock,P.&Thompson,M.L.(1985):MicromorphologyofAlfisols.-In:Douglas,L.A.&Thompson,M.L.(eds):Soilmicromorphologyandsoilclassification,SoilScienceSocietyofAmericaSpecialPublication,15:17–47;Madison.

    Caspers,G.,Freund,H.,Merkt,H.,Merkt,J.&Müller,H.(2002):TheEemianinterglaciationinnorthwesternGermany.–QuaternaryRe-search,58:49–52.

    Catt,J.A.(1996):RecentworkonQuaternarypaleosolsinBritain.–Qua-ternaryInternational,3436:183–190.

    Demek,J.&Kukla,J.(eds.)(1969):Periglazialzone,LössundPaläolithicumderTschechoslowakei.–158p.,Brno(TschechoslowakischeAkademiederWissenschaften,GeographischesInstitut).

    Fedorova,N.N.&Yarilova,E.A.(1972):Morphologyandgenesisofpro-longedseasonallyfrozensoilsofwesternSiberia.–Geoderma,7:1–13.

    Fink,J.(1956):ZurKorrelationderTerrassenundLösseinÖsterreich.–Ei-szeitalterundGegenwart,7:49–77.

    Frechen,M.,Zander,A.,Cilek,V.&LoŽek,V.(1999):LoesschronologyoftheLastInterglacial/GlacialcycleinBohemiaandMoravia,CzechRepublic.–QuaternaryScienceReviews,18:1467–1493.

    Gerasimenko,N.P.(2006):UpperPleistoceneloess-palaeosolandvegeta-tionalsuccessionsintheMiddleDnieperArea,Ukraine.–QuaternaryInternational,149:55–66.

    Gerasimova,M.I.,Gubin,S.V.&Shoba,S.A.(1996):SoilsofRussiaandad-jacentcountries:GeographyandMicromorphology.–204p.;Moscow-Wageningen (MoscowStateUniversity&WageningenAgriculturalUniversity).

    Golyeva,A.&Sycheva,S.(2010):Soils,plantsandclimateoftheEemianInterglaciallocallandscapesoftheRussianPlainonbaseofbiogenicsilicaanalysis.–EurasianSoilScience,,43,13:1569–1573.

    Haeserts,P.,Mestdagh,H.&Bosquet,D.(1999):ThesequenceofRemi-court(Hesbaye,Belgium):newinsightsofthepedo-andchronostratig-raphyoftheRocourtSoil.–GeologicaBelgica,2:5–27.

    Haeserts,P.&Mestdagh,H.(2000):PedosedimentaryevolutionofthelastinterglacialandearlyglacialsequenceintheEuropeanloessbeltfromBelgiumtocentralRussia.–GeologieenMijnbouw/NetherlandsJournalofGeosciences,79(2/3):313–324.

    Jamagne,M.,DeConinck,F.,Robet,M.&Maucorps,J.(1984):Mineral-ogyofclayfractionsofsomesoilsonloessinnorthernFrance.–Geo-derma,33:319–342.

    Jary,Z.(2009):PeriglacialmarkerswithintheLatePleistoceneloess-pal-aeosolsequencesinPolandandwesternpartofUkraine.–QuaternaryInternational,198:124–135.

    Jary,Z.(ed.)(2011):Closingthegap–NorthCarpathianloesstraverseintheEurasianloessbelt.–InternationalWorkshop,6thLoessSeminarinWrocław,May16–21, 2011,Abstractandfieldguidebook,80p.;Wrocław(InstituteofGeographyandRegionalDevelopment,Univer-sityofWrocław).

    Kemp,R.A.(1999):Micromorphologyofloess-palaeosolsequences:arecordofpalaeoenvironmentalchange.–Catena,35(2–4):179–196.

    Kooistra,M.J.&Pulleman,M.M.(2010):Featuresrelatedtofaunalactiv-ity.–In:Stoops,G.,Marcelino,V.&Mees,F.(eds):InterpretationofMicromorphologicalFeaturesofSoilsandRegoliths.Chapter18:397–418;Amsterdam(Elsevier).

    Kühn,P.(2003):MicromorphologyandLateGlacial/Holocenegenesisof

  • 58 E&G / Vol. 62 / No. 1 / 2013 / 44–58 / DOI 10.3285/eg.61.2.05 / © Authors / Creative Commons Attribution License

    LuvisolsinMecklenburg–Vorpommern(NE-Germany).–Catena,54:537–555.

    Kühn,P.,Billwitz,K.,Bauriegel,A.,Kühn,D.&Eckelmann,W.(2006):DistributionandGenesisofFahlerden(Albeluvisols)inGermany.–JournalofPlantNutritionandSoilScience,169:420–433.

    Kühn,P.,Aguilar,J.&Miedema,R.(2010):Texturalpedofeaturesandre-latedhorizons.–In:Stoops,G.,Marcelino,V.&Mees,F.(eds):Inter-pretationofMicromorphologicalFeaturesofSoilsandRegoliths.Chap-ter11:217–250;Amsterdam(Elsevier).

    Kukla,G.J.(1977):Pleistoceneland-seacorrelationsI.Europe.–Earth-Sci-enceReviews,13(4):307–374.

    Kukla,G.J.,Bender,M.L.,DeBeaulieu,J.L.,Bond,G.,Broecker,W.S.,Cleveringa, P., Gavin, J.E., Herbert, T.D., Imbrie, J., Jouzel, J.,Keigwin,L.D.,Knudsen,K.L.,McManus,J.F.,Merkt,J.,Muhs,D.R.,Muller,H.,Poore,R.Z.,Porter,S.C.,Seret,G.,Shackleton,N.J.,Turner,C.,Tzedakis,P.C.&Winograd,I.J.(2002):Lastinterglacialclimates.–QuaternaryResearch,58:2–13.

    Leser, H. (1970): Die fossilen Böden im Lößprofil Wallertheim (Rhein-hessischesTafel-undHügelland).–EiszeitalterundGegenwart,21:108–121.

    Mahaney, W.C., Andres, W. & Barendregt, R.W. (1993): Quaternarypaleosol stratigraphy and paleomagnetic record near Dreihausen,centralGermany.–Catena,20(1–2):161–177.

    Markovic,S.B.,Bokhorst,M.P.,Vandenberghe,J.,McCoy,W.D.,Oches,E.A.,Hambach,U.,Gaudenyi,T.,Jovanovic,M.,Zöller,L.,Stevens,T.&Machalett,B.(2008):LatePleistoceneloess-paleosolsequencesintheVojvodinaregion,NorthSerbia.–JournalofQuaternaryScience,23(1):73–84.

    Miedema,R.,Koulechova,I.N.&Gerasimova,M.I.(1999):SoilformationinGreyzemsinMoscowdistrict:micromorphologyandparticlesizedistribution.–Catena,34(3–4):315–347.

    Morozova,T.D.(1981):EvolutionofLatePleistocenesoilcoverinEurope.–282p.,Moscow(NaukaPress),inRussian.

    Morozova,T.D.,Velichko,A.A.&Dlussky,K.D.(1998):OrganiccarboncontentinthelatePleistoceneandHolocenefossilsoils(reconstructionforEasternEurope).–GlobalandPlanetaryChange,16–17:131–151.

    Moore,D.E.&Reynolds,R.C.Jr.(1997):X-Raydiffractionandtheiden-tificationandanalysisofclayminerals.–378p.,NewYork(OxfordUniversityPress).

    Pédro,G., Jamagne,M.&Bégon, J.C. (1978):Tworoutes ingenesisofstronglydifferentiatedacidsoilsunderhumid,cool-temperatecondi-tions.–Geoderma,20:173–189.

    Peticzka,R.,Riegler,D.&Holawe,F. (2009):Exkursionsführer.–28.JahrestagungdesArbeitskreisesPaläopedologiederDeutschenBod-enkundlichenGesellschaft,21.bis23.Mai2009inWien,68p.;Wien(UniversitätWien,InstitutfürGeographieundRegionalforschung).

    Rivas,J.,Ortega,B.,Sedov,S.,Solleiro,E.&Sycheva,S.(2006):RockmagnetismandpedogeneticprocessesinLuvisolprofiles:ExamplesfromCentralRussiaandCentralMexico.–QuaternaryInternational,156/157:212–223.

    Rousseau,D.D.,Gerasimenko,N.,Matviishina,Z.H.&Kukla,G.(2001):LatePleistoceneenvironmentsoftheCentralUkraine.–QuaternaryResearch,56:349–356.

    Rutter,N.W.,Rokosh,D.,Evans,M.E.,Little,E.C.,Chlachula, J.&Velichko,A.(2003):CorrelationandinterpretationofpaleosolsandloessacrossEuropeanRussiaandAsiaoverthelastinterglacial-glacialcycle.–QuaternaryResearch,60(1):101–109.

    SauerD.,Schülli-MaurerI.,SperstadR.,SørensenR.&StahrK.(2009):Albeluvisol development with time in loamy marine sediments ofsouthernNorway.–QuaternaryInternational,209(1–2):31–43.

    Scholger,R.&Terhorst,B.(2013):MagneticexcursionsrecordedintheMiddle to Upper Pleistocene loess/palaeosol sequence Wels-Aschet(Austria).–E&GQuaternaryScienceJournal,62/1,thisvolume.

    Shackleton,N.J.(1969):Thelastinterglacialinthemarineandterrestrialrecords.–ProceedingsofRoyalSocietyLondonB,174:135–154.

    Shackleton,N.J.,Sánchez-GoÑi,M.F.,Pailler,D.&Lancelot,Y.(2003):Marineisotopesubstage5eandtheEemianinterglacial.–GlobalandPlanetaryChange,36:151–155.

    Sier, M.J., Roebroeks, W., Bakels, C.C., Dekkers, M.J., Brühl, E., DeLoecker, D., Gaudzinski-Windheuser, S., Hesse, N., Jagisch, A.,Kindler,L.,Kuijper,W.J.,Laurat,T.,Mücher,H.J.,Penkman,K.E.H.,Richter,D.&vanHinsbergen,D.J.J.(2011):DirectTerrestrial-MarineCorrelationdemonstratessurprisinglylateonsetofthelastinterglacial.–QuaternaryResearch,75:213–218.

    Solleiro-Rebolledo,E.,Cabadas,H.,Sedov,S.&Terhorst,B.(2013):Paleopedologicalrecordalongtheloess-paleosolsequenceinOberlaab,Austria.–E&GQuaternaryScienceJournal,62/1,thisvolume.

    Spiridonova, I.A., Sedov, S.N., Bronnikova, M.A. & Targulian, V.O.(1999):Arrangement,composition,andgenesisofbleachedcomponentsofloamySoddy-Podzolicsoils.–EurasianSoilScience,32(5):507–513.

    Sprafke,T.,Terhorst,B.,Peticzka,R.&Thiel,C.(2013):MiddleandLatePleistocenepaleoenvironmentsreconstructedfromthecomplexloess-paleosol-sequencePaudorf.–E&GQuaternaryScienceJournal,62/1,thisvolume.

    Stephan,S.(2000):Bt-HorizontealsInterglazial-ZeigerindenhumidenMittelbreiten:Bildung,Mikromorphologie,Kriterien.–EiszeitalterundGegenwart,50:95–106.

    Sycheva,S.A.(1998):NewdataoncompositionandevolutionoftheMezinLoess-PaleosolComplexintheRussianPlain.–EurasianSoilScience,31(10):1062–1074.

    Sycheva,S.&Sedov,S.(2012):PaleopedogenesisduringMikulinointer-glacial(MIS5е)inEast-Europeanplain:buriedtoposequenceofthekey-section“Alexandrovquarry”.–BoletíndelaSociedadGeológicaMexicana,64(2):189–197.

    Targulian,V.O.,Birina,A.G.,Kulikov,A.V.,Sokolova,T.A.&Tselish-cheva,L.K.(1974):Arrangement,compositionandgenesisofsod-pale-podzolicsoilderivedfrommantleloams.Morphologicalinvestigation–10thInternationalCongressinSoilScience,47p.;Moscow(AcademyofSciencesoftheUSSR).

    Targulian,V.O.,Sokolova,T.A.,Birina,A.G.,Kulikov,A.V.&Tselish-cheva,L.K.(1974):Arrangement,compositionandgenesisofsod-pale-podzolicsoilderivedfrommantleloams.Analyticalinvestigation.–10thInternationalCongresinSoilScience.,107p.;Moscow(AcademyofSciencesoftheUSSR).

    Terhorst, B. (2007): Korrelation von mittelpleistozänen Löss-/Paläo-bodensequenzeninOberösterreichmitdermarinenSauerstoffisoto-penkurve.–E&GQuaternaryScienceJournal,56:172–185.

    Terhorst,B.(2013):AstratigraphicconceptforMiddlePleistoceneQuater-narysequencesinUpperAustria.–E&GQuaternaryScienceJournal,62/1,thisvolume.

    Terhorst,B.,Appel,E.&Werner,A.(2001):Palaeopedologyandmagnet-icsusceptibilityofaloess–palaeosolsequenceinsouthwestGermany.–QuaternaryInternational,76–77:231–240.

    Tonkonogov,V.D.,Gradusov,B.P.,Rubilina,N.Y.E.,Targulian,V.O.&ChizhikovaN.P.(1987):Differentiationofthemineralandchemicalcompositioninsod-podzolicandpodzolicsoils.–SovietSoilScience,19(4):23–35.

    Turner,C. (2002a): Formal statusandvegetationaldevelopmentof theEemianinterglacialinnorthwesternandsouthernEurope.–Quater-naryResearch,58:41–44.

    Turner,C.(2002b):ProblemsofthedurationoftheEemianinterglacialinEuropeNorthoftheAlps.–QuaternaryResearch,58:45–48.

    vanVliet-LanoË,B.(1990):ThegenesisandageoftheargillichorizoninWeichselianloessofnorthwesternEurope.–QuaternaryInternational,5:49–56.

    vanVliet-Lanoë,B. (2010):Frostaction.–In:Stoops,G.,Marcelino,V.&Mees,F.(eds):InterpretationofMicromorphologicalFeaturesofSoilsandRegoliths.Chapter6:81–10;Amsterdam(Elsevier).

    vanRanst,E.,deConinck,F.,Tavernier,R.&Langohr,R.(1982):Min-eralogyinsiltytoloamysoilsofcentralandhighBelgiuminrespectofautochtonousandallochtonousmaterials.–BulletindelaSocietébelgedegéologie,91(1):27–44.

    Vancampenhout,K.,Wouters,K.,Caus,A.,Buurman,P.,Swennen,R.&Deckers,J.(2008):Fingerprintingofsoilorganicmatterasaproxyforassessingclimateandvegetationchangesinlastinterglacialpalaeosols(Veldwezelt,Belgium).–QuaternaryResearch,69(1):145–162.

    Vandenhoute, P., Frechen, M., Buylaert, J.P., Vandenberghe, D. &Decorte,F.(2003):TheLastInterglacialpalaeosolintheBelgianloessbeltTLagerecord.–QuaternaryScienceReviews,22:985–990.

    Velichko,A.A. (1990):Loess-paleosol formationon theRussianPlain.–QuaternaryInternational,7/8:103–114.

    Velichko,A.A.,Morozova,T.D.,Nechaev,V.P.,Rutter,N.W.,Dlusskii,K.G.,Little,E.C.,Catto,N.R.,Semenov,V.V.&Evans,M.E.(2006):Loess/paleosol/cryogenicformationandstructurenearthenorthernlimitofloessdeposition,EastEuropeanPlain,Russia.–QuaternaryInternational,152(1):14–30.

    Wojdyr,M.(2010):Fityk:ageneral-purposepeakfittingprogram.–JournalofAppliedCrystallography,43:1126–1128.

    Yakimenko,E.Y.(1995):Pleistocenepaleosolsintheloessandloess-likesed-imentsofthecentralpartoftheRussianPlain.–QuaternaryScienceReviews,14:747–753.

    Zagwijn,W.H.(1996):AnanalysisofEemianclimateinwesternandcentralEurope.–QuaternarySciencesReviews,15:451–469.

    Abstract1 Introduction2 Materials and methods3 Results4 DiscussionAcknowledgementsReferences