session 10a

50
Session 10a

Upload: hall

Post on 24-Feb-2016

68 views

Category:

Documents


0 download

DESCRIPTION

Session 10a. Overview. Forecasting Methods Exponential Smoothing Simple Trend (Holt’s Method) Seasonality (Winters’ Method) Regression Trend Seasonality Lagged Variables. Forecasting. Analysis of Historical Data Time Series (Extrapolation) Regression (Causal) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Session 10a

Session 10a

Page 2: Session 10a

Decision Models -- Prof. Juran

2

OverviewForecasting Methods • Exponential Smoothing

– Simple– Trend (Holt’s Method)– Seasonality (Winters’ Method)

• Regression– Trend– Seasonality– Lagged Variables

Page 3: Session 10a

Decision Models -- Prof. Juran

3

Forecasting1. Analysis of Historical Data

• Time Series (Extrapolation)• Regression (Causal)

2. Projecting Historical Patterns into the Future

3. Measurement of Forecast Quality

Page 4: Session 10a

Decision Models -- Prof. Juran

4

Measuring Forecasting Errors• Mean Absolute Error• Mean Absolute Percent Error• Root Mean Squared Error• R-square

Page 5: Session 10a

Decision Models -- Prof. Juran

5

Mean Absolute Error

MAE n

n

ii1

Page 6: Session 10a

Decision Models -- Prof. Juran

6

Mean Absolute Percent Error

MAPE *%100nY

n

i i

i1

Or, alternatively *%100nY

n

i i

i1 ˆ

Page 7: Session 10a

Decision Models -- Prof. Juran

7

Root Mean Squared Error

RMSE

n

n

ii

1

2

nSSE

Page 8: Session 10a

Decision Models -- Prof. Juran

8

R-Square

2R TSSSSR

TSSSSE1

Page 9: Session 10a

Decision Models -- Prof. Juran

9

Trend Analysis• Part of the variation in Y is believed

to be “explained” by the passage of time

• Several convenient models available in an Excel chart

Page 10: Session 10a

Decision Models -- Prof. Juran

10

Example: Revenues at GMGM Revenue

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 11: Session 10a

Decision Models -- Prof. Juran

11

Right-click on the data seriesSuperimpose a trend line on the graph:

Page 12: Session 10a

Decision Models -- Prof. Juran

12

GM Revenue - Linear Trend

y = 340.23x + 31862R2 = 0.6618

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 13: Session 10a

Decision Models -- Prof. Juran

13

GM Revenue - Logarithmic Trend

y = 5162.3Ln(x) + 24937R2 = 0.6601

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 14: Session 10a

Decision Models -- Prof. Juran

14

GM Revenue - Polynomial Trend

y = -5.6121x2 + 604x + 29752R2 = 0.6872

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 15: Session 10a

Decision Models -- Prof. Juran

15

GM Revenue - Power Trend

y = 26532x0.1372

R2 = 0.6783

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 16: Session 10a

Decision Models -- Prof. Juran

16

GM Revenue - Exponential Trend

y = 32044e0.0088x

R2 = 0.6505

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 17: Session 10a

Decision Models -- Prof. Juran

17

You can also show moving-average trend lines, although showing the equation and R-square are no longer options: GM Revenue - 4-Period Moving Average

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 18: Session 10a

Decision Models -- Prof. Juran

18

GM Revenue - 3-Period Moving Average

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 19: Session 10a

Decision Models -- Prof. Juran

19

GM Revenue - 2-Period Moving Average

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 20: Session 10a

Decision Models -- Prof. Juran

20

Simple Exponential Smoothing

B asi ca l l y , th i s m eth o d u ses a f o r eca st f o r m u l a o f th e f o r m : ktF tL

F o r eca s t “ k ” p er i o d s i n th e fu tu r e = C u r r en t “ L ev el ”

= W ei g h ted C u r r en t O b ser v ed V a lu e + W ei g h ted P r ev i o u s L ev el

11 tt LY N o te th a t th e w ei g h ts m u st a d d u p to 1 .0.

Page 21: Session 10a

Decision Models -- Prof. Juran

21

Why is it called “exponential”?

tL 11 tt LY

...111 33

22

1 tttt YYYY

Page 22: Session 10a

Decision Models -- Prof. Juran

22

Example: GM RevenueGM Revenue

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 23: Session 10a

Decision Models -- Prof. Juran

23

In this spreadsheet model, the forecasts appear in column G.

Note that our model assumes that there is no trend. We use a default alpha of 0.10.

123456789

1011121314151617

A B C D E F G H I J K L MAlpha 0.100 GM_Rev SmLevel Forecast Error abs(error) abs(%error) error^2

1-91 29200 29200.0MAE 4014.376 2-91 31300 29410.0 29200.0 2100.0 2100.0 7.2% 4410000.0RMSE 4690.9738 3-91 28900 29359.0 29410.0 -510.0 510.0 1.7% 260100.0MAPE 11.148% 4-91 33600 29783.1 29359.0 4241.0 4241.0 14.4% 17986081.0

1-92 32000 30004.8 29783.1 2216.9 2216.9 7.4% 4914645.62-92 35200 30524.3 30004.8 5195.2 5195.2 17.3% 26990206.83-92 29400 30411.9 30524.3 -1124.3 1124.3 3.7% 1264075.34-92 35800 30950.7 30411.9 5388.1 5388.1 17.7% 29031838.11-93 35000 31355.6 30950.7 4049.3 4049.3 13.1% 16396895.82-93 36658 31885.9 31355.6 5302.4 5302.4 16.9% 28115204.63-93 30138 31711.1 31885.9 -1747.9 1747.9 5.5% 3055016.24-93 37268 32266.8 31711.1 5556.9 5556.9 17.5% 30879421.81-94 37495 32789.6 32266.8 5228.2 5228.2 16.2% 27334420.42-94 40392 33549.8 32789.6 7602.4 7602.4 23.2% 57796633.23-94 34510 33645.8 33549.8 960.2 960.2 2.9% 921924.04-94 42553 34536.6 33645.8 8907.2 8907.2 26.5% 79337354.0

=AVERAGE(I3:I47)=SQRT(AVERAGE(K3:K47))=AVERAGE(J3:J47)

=$B$1*E7+(1-$B$1)*F6

=F8

=E11-G11

=ABS(H13)

=ABS(H15/G15)

=H17^2

Page 24: Session 10a

Decision Models -- Prof. Juran

24

GM Revenue - Simple Smoothing (alpha 0.10)

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 25: Session 10a

Decision Models -- Prof. Juran

25

We use Solver to minimize RMSE by manipulating alpha.

After optimizing, we see that alpha is 0.350 (instead of 0.10). This makes an improvement in RMSE, from 4691 to 3653.

123456789

1011121314151617

A B C D E F G H I J KAlpha 0.350 GM_Rev SmLevel Forecast Error abs(error)abs(%error) error^2

1-91 29200 29200.0MAE 3275.989 2-91 31300 29935.9 29200.0 2100.0 2100.0 7.2% 4410000.0RMSE 3653.2722 3-91 28900 29572.9 29935.9 -1035.9 1035.9 3.5% 1073072.4MAPE 8.584% 4-91 33600 30984.1 29572.9 4027.1 4027.1 13.6% 16217616.5

1-92 32000 31340.1 30984.1 1015.9 1015.9 3.3% 1032075.02-92 35200 32692.7 31340.1 3859.9 3859.9 12.3% 14898909.33-92 29400 31538.9 32692.7 -3292.7 3292.7 10.1% 10841859.24-92 35800 33032.1 31538.9 4261.1 4261.1 13.5% 18157357.91-93 35000 33721.7 33032.1 1967.9 1967.9 6.0% 3872765.02-93 36658 34750.6 33721.7 2936.3 2936.3 8.7% 8621982.53-93 30138 33134.3 34750.6 -4612.6 4612.6 13.3% 21276434.34-93 37268 34582.8 33134.3 4133.7 4133.7 12.5% 17087842.81-94 37495 35603.3 34582.8 2912.2 2912.2 8.4% 8480779.82-94 40392 37281.4 35603.3 4788.7 4788.7 13.5% 22931441.83-94 34510 36310.2 37281.4 -2771.4 2771.4 7.4% 7680620.34-94 42553 38497.9 36310.2 6242.8 6242.8 17.2% 38972198.5

Page 26: Session 10a

Decision Models -- Prof. Juran

26

GM Revenue - Simple Smoothing (alpha 0.35)

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 27: Session 10a

Decision Models -- Prof. Juran

27

Exponential Smoothing with Trend:

Holt’s Method

Weighted Current TrendWeighted Current Observation

Weighted Current Level

ktF tt kTL

1111 11 tttttt TLLkTLY

Page 28: Session 10a

Decision Models -- Prof. Juran

28

123456789

1011121314151617

A B C D E F G H I J K L M NSmoothing constant(s) GM_Rev SmLevel SmTrend Forecast Error abs(error)abs(%error) error^2Level (alpha) 0.266 1-91 29200 29200.000 0.000Trend (beta) 0.048 2-91 31300 29757.957 26.659 29200.000 2100.0 2100.0 7.2% 4410000.0

3-91 28900 29549.579 15.429 29784.616 -884.6 884.6 3.0% 782545.7MAE 3094.683 4-91 33600 30637.081 66.652 29565.008 4035.0 4035.0 13.6% 16281159.9RMSE 3568.391 1-92 32000 31048.143 83.108 30703.733 1296.3 1296.3 4.2% 1680308.2MAPE 8.01% 2-92 35200 32212.293 134.760 31131.251 4068.7 4068.7 13.1% 16554716.2

3-92 29400 31564.039 97.348 32347.053 -2947.1 2947.1 9.1% 8685120.14-92 35800 32760.991 149.887 31661.387 4138.6 4138.6 13.1% 17128119.61-93 35000 33465.944 176.407 32910.877 2089.1 2089.1 6.3% 4364433.22-93 36658 34443.591 214.690 33642.352 3015.6 3015.6 9.0% 9094133.33-93 30138 33457.270 157.306 34658.282 -4520.3 4520.3 13.0% 20432945.14-93 37268 34585.269 203.686 33614.577 3653.4 3653.4 10.9% 13347499.71-94 37495 35507.934 238.038 34788.955 2706.0 2706.0 7.8% 7322680.12-94 40392 36980.394 297.019 35745.973 4646.0 4646.0 13.0% 21585567.43-94 34510 36542.128 261.887 37277.413 -2767.4 2767.4 7.4% 7658572.14-94 42553 38331.485 334.869 36804.015 5749.0 5749.0 15.6% 33050827.6

=$B$2*E4+(1-$B$2)*(F3+G3)

=$B$3*(F6-F5)+(1-$B$3)*G5

=F7+G7

=E10-H10

=ABS(I12)

=ABS(I14/H14)

=I16^2

Page 29: Session 10a

Decision Models -- Prof. Juran

29

Holt’s model with optimized smoothing constants. This model is slightly better than the simple model (RMSE drops from 3653 to 3568).

GM Revenue - Holts Method (Smoothing with Trend)

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 30: Session 10a

Decision Models -- Prof. Juran

30

Exponential Smoothing with Seasonality:

Winters’ MethodT h i s m e t h o d i n c l u d e s a n e x p l i c i t t e r m f o r s e a s o n a l i t y , w h e r e M i s t h e n u m b e r o f p e r i o d s i n a s e a s o n . W e w i l l u s e M = 4 b e c a u s e w e h a v e q u a r t e r l y d a t a .

L e v e l : tL 111

ttMt

t TLSY

T r e n d : tT 11 1 ttt TLL

S e a s o n a l i t y : tS Mtt

t SLY

1

N o w , f o r a n y t i m e k p e r i o d s i n t h e f u t u r e , t h e f o r e c a s t i s g i v e n b y : ktF Mkttt SkTL

N o t e t h a t t h e t r e n d t e r m i s a d d i t i v e , a n d t h e s e a s o n a l i t y t e r m i s m u l t i p l i c a t i v e .

Page 31: Session 10a

Decision Models -- Prof. Juran

31

tS Mtt

t SLY

1

Weighted Current Seasonal Factor

Weighted Seasonal Factor from Last Year

Page 32: Session 10a

Decision Models -- Prof. Juran

32

Winters’ model with optimized smoothing constants. This model is better than the simple model and the Holt’s model (as measured by RMSE).

123456789101112131415

A B C D E F G H I J K L MSmoothing constant(s) GM_Rev SmLevel SmTrend SmSeason Forecast Error abs(error) abs(%error) error^2Level (alpha) 0.312 1-91 29200 29200.000 0.000 1.000Trend (beta) 0.037 2-91 31300 29855.671 24.178 1.000Seasonality (gamma) 0.202 3-91 28900 29573.917 12.897 1.000

4-91 33600 30839.828 59.102 1.000MAE 2670.440 1-92 32000 31242.711 71.779 1.005 30898.931 1101.1 1101.1 3.6% 1212353.7RMSE 3233.995 2-92 35200 32527.642 116.515 1.017 31314.491 3885.5 3885.5 12.4% 15097181.1MAPE 6.82% 3-92 29400 31631.252 79.164 0.986 32644.157 -3244.2 3244.2 9.9% 10524553.4

4-92 35800 32987.284 126.249 1.017 31710.415 4089.6 4089.6 12.9% 16724701.71-93 35000 33649.376 146.008 1.012 33275.398 1724.6 1724.6 5.2% 2974252.42-93 36658 34502.621 172.088 1.026 34355.316 2302.7 2302.7 6.7% 5302351.43-93 30138 33394.029 124.862 0.969 34181.443 -4043.4 4043.4 11.8% 16349433.84-93 37268 34492.750 160.774 1.030 34095.266 3172.7 3172.7 9.3% 10066242.91-94 37495 35401.921 188.371 1.022 35069.261 2425.7 2425.7 6.9% 5884208.42-94 40392 36772.011 231.948 1.040 36509.418 3882.6 3882.6 10.6% 15074445.5

=$B$2*(E8/H4)+(1-$B$2)*(F7+G7)

=$B$3*(F10-F9)+(1-$B$3)*G9

=$B$4*(E12/F12)+(1-$B$4)*(H8)

=(F13+G13)*H10

Page 33: Session 10a

Decision Models -- Prof. Juran

33

GM Revenue - Winters Method (Smoothing with Trend and Seasonality)

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 34: Session 10a

Decision Models -- Prof. Juran

34

Forecasting with Regression

123456789

10111213141516171819

A B C D E F G HGM_Rev GM_EPS Trend 1Q 2Q 3Q

1-91 29200 -1.28 1 1 0 02-91 31300 -1.44 2 0 1 03-91 28900 -1.88 3 0 0 14-91 33600 -4.25 4 0 0 01-92 32000 -0.53 5 1 0 02-92 35200 -1.18 6 0 1 03-92 29400 -1.86 7 0 0 14-92 35800 -1.25 8 0 0 01-93 35000 0.42 9 1 0 02-93 36658 0.92 10 0 1 03-93 30138 -0.49 11 0 0 14-93 37268 1.28 12 0 0 01-94 37495 1.86 13 1 0 02-94 40392 2.23 14 0 1 03-94 34510 0.4 15 0 0 14-94 42553 1.74 16 0 0 01-95 43285 2.51 17 1 0 02-95 42204 2.39 18 0 1 0

Page 35: Session 10a

Decision Models -- Prof. Juran

35

Page 36: Session 10a

Decision Models -- Prof. Juran

36

65666768697071727374757677787980818283

B C D E F GRegression Statistics

Multiple R 0.8852R Square 0.7835Adjusted R Square 0.7624Standard Error 2736.1392Observations 46

ANOVAdf SS MS F Significance F

Regression 4 1111067275.3109 277766818.8277 37.1026 0.0000Residual 41 306944777.4065 7486457.9855Total 45 1418012052.7174

Coefficients Standard Error t Stat P-valueIntercept 33286.7628 1101.4629 30.2205 0.0000Trend 335.8508 30.4091 11.0444 0.00001Q -1289.9144 1142.5337 -1.1290 0.26552Q 423.4015 1142.1290 0.3707 0.71283Q -4582.6038 1167.0899 -3.9265 0.0003

Page 37: Session 10a

Decision Models -- Prof. Juran

37

The most reasonable statistic for comparison is probably RMSE for smoothing models vs. standard error for regression models, as is reported here:

The regression models are superior most of the time (6 out of 10 revenue models and 7 out of 10 EPS models).

Revenue Mattel McD Lilly GM MSFT ATT Nike GE Coke Ford Regression $99.37 $112.23 $109.22 $2,736.14 $154.25 $12,836.41 $279.45 $1,164.02 $164.20 $969.14 Winters' $76.44 $84.92 $135.33 $3234.00 $103.91 $14,622.26 $191.94 $1,184.06 $258.02 $1,648.61

EPS

Regression $0.0874 $0.0205 $0.3727 $1.3882 $0.0687 $0.6879 $0.2080 $0.6591 $0.0164 $0.4988 Winters' $0.1327 $0.0295 $0.5285 $1.2603 $0.0635 $0.5719 $0.2687 $0.7587 $0.0228 $1.3475

Which Method is Better?

Page 38: Session 10a

Decision Models -- Prof. Juran

38

For GM , a regression model seems best for forecasting revenue, but a Winters model seems best for earnings:

GM Revenue - W inters M ethod (Sm oothing with Trend and Seasonality)

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

GM Revenue - Regression

0

10000

20000

30000

40000

50000

60000

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

GM EPS - W inters M ethod (Sm oothing with Trend and Seasonality)

-5

-4

-3

-2

-1

0

1

2

3

4

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

GM EPS - Regression

-5

-4

-3

-2

-1

0

1

2

3

4

1-91 1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02

Quarters

Rev

enue

Page 39: Session 10a

Decision Models -- Prof. Juran

39

For N ike, the W inters model is better for revenue, and the regression model is best for earnings.

Nike Revenue (Winters)

0

500

1000

1500

2000

2500

3000

3500

1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02 1-03

Quarters

Rev

enue

Nike Revenue (Regression)

0

500

1000

1500

2000

2500

3000

3500

1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02 1-03

Quarters

Rev

enue

Nike EPS (W inters)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02 1-03

Quarters

Rev

enue

Nike EPS (Regression)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-92 1-93 1-94 1-95 1-96 1-97 1-98 1-99 1-00 1-01 1-02 1-03

Quarters

Rev

enue

Page 40: Session 10a

Decision Models -- Prof. Juran

40

Time series characterized by relatively consistent trends and seasonality favor the regression model.If the trend and seasonality are not stable over time, then Winters’ method does a better job of responding to their changing patterns.

Page 41: Session 10a

Decision Models -- Prof. Juran

41

Lagged Variables• Only applicable in a causal model• Effects of independent variables

might not be felt immediately• Used for advertising’s effect on

sales

Page 42: Session 10a

Decision Models -- Prof. Juran

42

Example: Motel Chain123456789

101112131415161718192021

B C D E F G H ISales Quarter Adv Adv-Lag1 Qtr_1 Qtr_2 Qtr_31200 1 30 * 1 0 0880 2 20 30 0 1 0

1800 3 15 20 0 0 11050 4 40 15 0 0 01700 5 10 40 1 0 0350 6 50 10 0 1 0

2500 7 5 50 0 0 1760 8 40 5 0 0 0

2300 9 20 40 1 0 01000 10 10 20 0 1 01570 11 60 10 0 0 12430 12 5 60 0 0 01320 13 35 5 1 0 01400 14 15 35 0 1 01890 15 70 15 0 0 13200 16 25 70 0 0 02200 17 30 25 1 0 01440 18 60 30 0 1 04000 19 80 60 0 0 14100 20 50 80 0 0 0

Page 43: Session 10a

Decision Models -- Prof. Juran

43

3456789

10111213141516171819202122

A B C D E F GSummary measuresMultiple R 0.9856R-Square 0.9714Adj R-Square 0.9571StErr of Est 213.2

ANOVA Tabledf SS MS F p-value

Regression 6 18515047.32 3085841.22 67.88 0.0000Residual 12 545531.63 45460.97

Regression coefficientsCoefficient Std Err t-value p-value Lower limit Upper limit

Constant 98.36 174.96 0.5622 0.5843 -282.9 479.6Quarter 41.58 13.56 3.0672 0.0098 12.0 71.1Advertising 4.53 3.25 1.3959 0.1880 -2.5 11.6Advertising_Lag1 34.03 3.13 10.8759 0.0000 27.2 40.9Qtr_1 280.62 157.66 1.7799 0.1004 -62.9 624.1Qtr_2 -491.59 145.37 -3.3817 0.0055 -808.3 -174.9Qtr_3 532.60 143.04 3.7235 0.0029 221.0 844.2

Page 44: Session 10a

Decision Models -- Prof. Juran

44

123456789

10111213141516171819202122232425

A B C D E F G H I J K L M N O P Q R SQtr Sales Quarter Adv Adv-Lag1 Qtr_1 Qtr_2 Qtr_3 Forecast Constant Quarter Adv Adv-Lag1 Qtr_1 Qtr_2 Qtr_3

1 1200 1 30 * 1 0 0 Coefficient 98.36 41.58 4.53 34.03 280.62 -491.59 532.602 880 2 20 30 0 1 0 8023 1800 3 15 20 0 0 1 15044 1050 4 40 15 0 0 0 9571 1700 5 10 40 1 0 0 19942 350 6 50 10 0 1 0 4233 2500 7 5 50 0 0 1 26464 760 8 40 5 0 0 0 7831 2300 9 20 40 1 0 0 22052 1000 10 10 20 0 1 0 7493 1570 11 60 10 0 0 1 17014 2430 12 5 60 0 0 0 26621 1320 13 35 5 1 0 0 12482 1400 14 15 35 0 1 0 14483 1890 15 70 15 0 0 1 20834 3200 16 25 70 0 0 0 32591 2200 17 30 25 1 0 0 20732 1440 18 60 30 0 1 0 16483 4000 19 80 60 0 0 1 38264 4100 20 50 80 0 0 0 38791 21 50 50 1 0 0 31812 22 50 50 0 1 0 24503 23 50 50 0 0 1 35164 24 50 50 0 0 0 3025

=$M$2+SUMPRODUCT($N$2:$S$2,D5:I5)

Page 45: Session 10a

Decision Models -- Prof. Juran

45

Simple Exponential Smoothing Forecast

-

750

1,500

2,250

3,000

3,750

4,500

5,250

6,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Quarter

ObservationForecast

Page 46: Session 10a

Decision Models -- Prof. Juran

46

Holt's Forecast

-

750

1,500

2,250

3,000

3,750

4,500

5,250

6,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Quarter

ObservationForecast

Page 47: Session 10a

Decision Models -- Prof. Juran

47

Winters' Forecast

-

750

1,500

2,250

3,000

3,750

4,500

5,250

6,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Quarter

ObservationForecast

Page 48: Session 10a

Decision Models -- Prof. Juran

48

Multiple Regression Forecast (with Lagged Advertising)

-

750

1,500

2,250

3,000

3,750

4,500

5,250

6,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Quarter

ObservationForecast

Page 49: Session 10a

Decision Models -- Prof. Juran

49

Simple Holt's Winters' MAE 769.6 766.8 708.0

RMSE 939.9 866.6 845.6 MAPE 50.5% 36.7% 47.3%

Here are measures of model fit for the non-regression models:

The regression model has a standard error of only 213, which is much better than any of the other models.

Page 50: Session 10a

Decision Models -- Prof. Juran

50

SummaryForecasting Methods • Exponential Smoothing

– Simple– Trend (Holt’s Method)– Seasonality (Winters’ Method)

• Regression– Trend– Seasonality– Lagged Variables