session 14 hydropower

16
T. Ferguson, University of Minnesota, Duluth. 2008 Session 14 - Hydropower Manitoba Hydro’s 1340 MW Limestone Generating Station

Upload: albania-energy-association

Post on 18-Dec-2014

180 views

Category:

Education


1 download

DESCRIPTION

hydropower

TRANSCRIPT

Page 1: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Session 14 - Hydropower

Manitoba Hydro’s 1340 MW Limestone Generating Station

Page 2: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Hydro’s Role in Renewables

Page 3: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Countries with Most Dams

• China (~24,000 dams, about 45% of total)

• United States (6600)

• India (4300)

• Japan (2700)

• Spain

• Canada

Countries with Most Hydro Generation•China 145 GW•Canada 89•United States 80•Brazil 69•Russia 45•India 34•Japan 27•Norway 27•France 25

Sources: Sustainable Energy, Wikipedia

Page 4: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Hydroelectric Production

• North America 743,000 GWh/yr1

• Europe 647,000

• Asia 555,000

• South America 471,000

• Africa 59,000

• Australia 39,000

1Sustainable Energy, Tester, p. 522.

Page 5: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Largesse of Installations

Three Gorges DamYangtze River, China

23,000 MW

Grand Coulee DamColumbia River, US

6,500 MW

Page 6: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Energy Conversion Principles

Power available from 1 cubic meter of waterfalling through 1 meter every second:

P = Energy per unit of Time

= mgh= 1000 kg X 9.8 m/s2 X 1 m/ 1 s= 9800 Joules/s= 9800 W= 9.8 kW

So, for every cubic meter of water per meter ofDrop per second,

9.8 kW of power is available

Page 7: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Energy Conversion Principles

Impoundment (e.g. Grand Coulee)

      

             

      

                   

      

                    

      

                  

                    

                         

      

                    

      

                  

      

             

                    

                               

Pond orReservoir

Discharge orTailrace

Z = head = 160 m

1. Cubic meter of Water (ρ= 1000 kg/m3 or 62.4 lb/ft3)

2. PE = mghor PE/m3 = ρgZ

3. For Grand Coulee,PE/m3 = 1000 kg/m3

X 9.8 m/s2

X 160 m= 1.6 E 6 J 4. For a flowrate of 5000 m3/s,

Power = Potential Energy X Volume/Time X Efficiency= (1.6 E 6 J) X (5000 m3) X (s-1) X (0.8)= 6.4 E 9 J/s = 6400 MW

Page 8: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Energy Conversion Principles

Run of River (e.g. Limestone Station, MHEB)

Z = 27.6 m

1. Flow rate through station matches natural flow rate of river (5100 m3/s)

Forebay

2. Minimal static head: PE = 1000 kg/m3X 9.8 m/s2X 27.6 m= 2.7 E 5 J

PowerPE = PE X Flowrate X Eff= 1.1 E 9 J/s = 1100 MW

3. Nameplate capacity= 1340 MW

Page 9: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Construction Sequence

http://www.hydro.mb.ca/corporate/facilities//build_gen_station/constr_sequence.htm

Page 10: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Page 11: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Grand Coulee Powerhouse Cross-section

1. Excavation2. Penstock3. Trashracks4. Vert. Axis5. Turbine Runner

Page 12: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Turbine-Generator

1. Typical clearance of runner to scroll case wall < 1 mm2. Wicket gates3. Stator/Rotor4. Reaction turbine

Source: SustainableEnergy, p 539.

Page 13: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Manitoba HydroLimestone

Rectifier

Inverter

~AC

AC (EasternInterconnection)

Bipole 1+ 450 kVDC Bipole 2

+ 500 kVDC

1. Length = 900 km2. 18,432 thyristors (BP2)3. 4 cm diameter cable

Source: Manitoba Hydro

Page 14: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

R&D

Page 15: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Future in US is Uncertain

Page 16: Session 14   hydropower

T. Ferguson, University of Minnesota, Duluth. 2008

Hydroelectric in Developing Countries

• Western Uganda: 60 kW run of river system for US$15,000 ($250/kW)

• Uganda planning more microhydros• Primary source today is 200 MW hydro; only 5%

of population served; drought afflicted• Microhydros: <100 kW; $200-$500/kW; impulse

turbines• China has ~ 42,200 microhydros (28 GW)

Source: IEEE Spectrum, May 2007, pp 32-37.