seu tolerance of different register architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m...

52
June 03 V th Int. Meeting on Frontend Electronics Snowmass, CO 1 Fermilab SEU Tolerance of Different Register Architectures in a 0.25m CMOS Process Jim Hoff (a) , William Wester (a) , Brad Hall (a) , Paul Rubinov (a) , Suen Hou (b) , P.K. Treng (b) (a) Fermilab, P.O. Box 500, Batavia, IL (b) Institute of Physics, Academia Sinica, Taipei, Taiwan

Upload: others

Post on 12-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

1

Fermilab

SEU Tolerance of DifferentRegister Architectures in a

0.25µm CMOS Process

Jim Hoff(a), William Wester(a), BradHall(a), Paul Rubinov(a), Suen Hou(b),

P.K. Treng(b)

(a) Fermilab, P.O. Box 500, Batavia, IL(b) Institute of Physics, Academia Sinica, Taipei, Taiwan

Page 2: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

2

Fermilab

Focus – head-to-head comparisons•Commercial 0.25um process (TSMC)•Only Total Dose Tolerant designs

–Enclosed Geometry FETs•Limited transistorW/L ratios

•Minimum W/Lratio

•“Weak” transistorsdifficult to make

Page 3: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

3

Fermilab

Focus – head-to-head comparisons•Commercial 0.25um process (TSMC)•Only Total Dose Tolerant designs

–Enclosed Geometry FETs–Unsuccessful use of MoRT Transistors (IEEE Trans.

Nucl Sci, Vol 49, No 4, p. 1829 (2002))

Page 4: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

4

Fermilab

Focus – head-to-head comparisons•Commercial 0.25um process (TSMC)•Only Total Dose Tolerant designs

–Enclosed Geometry FETs

–Excludes Liu Cell (IEEE Trans. Nucl Sci, Vol 39, No 6, p. 1670 (1992))

–Introduces a new Fermilab-developed, SEU-tolerant cell

–Unsuccessful use of MoRT Transistors (IEEE Trans.Nucl Sci, Vol 49, No 4, p. 1829 (2002))

Page 5: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

5

Fermilab

Consistency• Each register

type is arrangedinto a 1x100shift register

Page 6: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

6

Fermilab

Consistency• Each register

type is arrangedinto a 1x100shift register

• Each register is apositive-edge-triggered D-ff

Page 7: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

7

Fermilab

Consistency• Each register

type is arrangedinto a 1x100shift register

• Each register is apositive-edge-triggered D-ff

• Each D-ff consistsof master and slavelatches enabled byClk signalsgeneratedinternally.

Page 8: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

8

Fermilab

Registers Tested

• A Normal flip-flop• The Hit Cell by Velazco, Bessot, et al• The Dice Cell by Calin, Nicolaidis, et al• The Seuss Cell developed at Fermilab

– Laid out in two different ways• The TRed Cell, a triply-redundant

extrapolation of the Seuss Cell

Page 9: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

9

Fermilab

The “Normal” Register

Page 10: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

10

Fermilab

The “Normal” Register20.1µm

21.5µm1rst

ClkInv

2nd

ClkInv

MasterCell

SlaveCell

Page 11: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

11

Fermilab

The “Normal” Register66.9µm

21.5µm1rst

ClkInv

2nd

ClkInv

MasterCell

SlaveCell

Page 12: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

12

Fermilab

The Hit Cell

•Hit or “Heavy IonTolerant” Cell•D. Bessot, R. Velazco, “Designof SEU-Hardened CMOSMemory Cell”, RADECS ’93,p. 563, 1993 INSPEC 4744705•R. Velazco, et al., “TwoCMOS Memory ells Suitablefor the Design of SEU-TolerantVLSI Circuits”, IEEE Trans.Nucl. Sci. Vol. 41, No. 6, p.2229, 1994

Page 13: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

13

Fermilab

The Hit Cell

22.5µm 21.5µm

1rst

ClkInv

2nd

ClkInv

MasterHitCell

DrivingInv

SlaveHitCell

DrivingInv

Page 14: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

14

Fermilab

The Hit Cell

102µm 21.5µm

1rst

ClkInv

2nd

ClkInv

MasterHitCell

DrivingInv

SlaveHitCell

DrivingInv

Page 15: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

15

Fermilab

The DICE Cell•DICE or Dual InterlockedStorage Cell

•T. Calin, M. Nicolaidis, R.Velazco, IEEE Tran. Nucl. Sci.Vol 43, No. 6, p. 2874 (1996

Page 16: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

16

Fermilab The DICE Cell16.8µm

46.5µm

1rst

ClkInv

2nd

ClkInv

MasterDICE Cell

DrivingInv

SlaveDICE Cell

DrivingInv

Page 17: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

17

Fermilab The DICE Cell 61.5µm

46.5µm

1rst

ClkInv

2nd

ClkInv

MasterDICE Cell

DrivingInv

SlaveDICE Cell

DrivingInv

Page 18: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

18

Fermilab

The Seuss Cell

• Reduce power consumption• Have inputs drive gates not sources and drains.

– Eliminate need for “weak” transistors– Eliminate “back-drive”

• Increase design flexibility without compromisingSEU tolerance

• Use minimum size transistors; Eliminate the needto scale and redesign every time we changeprocesses

• End Result – An SEU tolerant SR-flip-flop

Page 19: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

19

Fermilab

Seuss Benefits - Flexibility•The S-R flip-flop is thefundamentalBuilding blockof sequentiallogic.•You can buildanything withit.

Page 20: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

20

Fermilab

Seuss Benefits - Flexibility•The S-R flip-flop is thefundamentalBuilding blockof sequentiallogic.•You can buildanything withit.

Page 21: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

21

Fermilab

Seuss Benefits - Flexibility•The S-R flip-flop is thefundamentalBuilding blockof sequentiallogic.•You can buildanything withit.

Page 22: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

22

Fermilab

Seuss Benefits - Flexibility•The S-R flip-flop is thefundamentalBuilding blockof sequentiallogic.•You can buildanything withit.

Page 23: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

23

Fermilab

Seuss Benefits - Flexibility•The S-R flip-flop is thefundamentalBuilding blockof sequentiallogic.•You can buildanything withit.

Page 24: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

24

Fermilab

Seuss Benefits – Dynamic Power

1 0 1 0

10

•Does the input haveenough drive capacityto change the state?•How much powerwill be consumedwhile the cell ischanging state?•Transistor sizingcompromises

Page 25: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

25

Fermilab

Seuss Benefits – Dynamic Power

•Regardless of the direction of state change, andregardless of the size of the input drivers andregardless of the size of the SEUSS transistors, thestate change is guaranteed.

Page 26: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

26

Fermilab

Seuss in the Rad Test Chip

Page 27: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

27

Fermilab

Seuss in the Rad Test Chip23.2um 21.46um

MasterSeuss Cell

1rst

ClkInv

2nd

ClkInv

SR to DLogic

SlaveSeuss Cell

SR to DLogic

Page 28: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

28

Fermilab

Seuss in the Rad Test Chip42.5um 21.46um

MasterSeuss Cell

1rst

ClkInv

2nd

ClkInv

SR to DLogic

SlaveSeuss Cell

SR to DLogic

Page 29: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

29

Fermilab

Seuss in the Rad Test Chip

102.42um21.46um

MasterSeuss Cell

1rst

ClkInv

2nd

ClkInv

SR to DLogic

SlaveSeuss Cell

SR to DLogic

Page 30: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

30

Fermilab

Seuss in the Rad Test Chip

46.32um

13.2um

MasterSeuss Cell

1rst

ClkInv

2nd

ClkInv

SR to DLogic

SlaveSeuss Cell

SR to DLogic

Page 31: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

31

Fermilab

Seuss in the Rad Test Chip

46.32um

23.5um

MasterSeuss Cell

1rst

ClkInv

2nd

ClkInv

SR to DLogic

SlaveSeuss Cell

SR to DLogic

Page 32: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

32

Fermilab

Seuss in the Rad Test Chip

46.32um

58.3um

MasterSeuss Cell

1rst

ClkInv

2nd

ClkInv

SR to DLogic

SlaveSeuss Cell

SR to DLogic

Page 33: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

33

Fermilab

The TRed Cell

• A simple demonstration of Seuss flexibility.• A triple-redundant implementation with self

correction using registers that are alreadySEU tolerant.

• Box Torture Redundancy.

Page 34: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

34

Fermilab

The TRed Cell

Page 35: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

35

Fermilab

The TRed Cell

Page 36: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

36

Fermilab

The TRed Cell

Page 37: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

37

Fermilab

69.1um

172.34umThe TRed Cell

Page 38: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

38

Fermilab

The Full Chip

Page 39: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

39

Fermilab

Experiment

• To test for possible total dose correlation toSEU, one board was irradiated to 20MRad(Co60 ) at INER in Taiwan.

• SEU tests performed at the IndianaUniversity Cyclotron Facility inBloomington, IN. (200MeV protons).– Total fluence = 1.3e15 ≅ 75 Mrads.– Total exposure time = 10 hours.

Page 40: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

40

Fermilab

Register Board at Steel drawer.

Ready for Irradiation.

Power cable.

Thickness : 2mm

Does rate: 6KGray/h

Gamma-ray test at INER

Page 41: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

41

Fermilab

SEU Tests

100’ Ethernet

30’RibbonCable

Beam

Test Control

Test Monitor

DevicesUnderTest

•7 boards•1 chip per board•100x1 Shift Register ofeach type on each board

Page 42: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

42

FermilabSEU Tests

Device Under Test (1 of 7)Test Control

Page 43: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

43

FermilabSEU Tests

In the BeamNot in the Beam

Clock

Data

Page 44: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

44

Fermilab

SEU Exposures

4 hours

4 hours

2 hours

30 min

30 min

ExposureTime

50 MHz5.1x1014E

50 MHz4.9x1014D

50 MHz2.4x1014C

12 kHz5.0x1013B

25 MHz1.0x1013A

ClockFrequency

FluenceRun

Page 45: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

45

Fermilab

Raw Results

110100SeussB

23000TRed

1020501SeussA

18000Dice

12000Hit

1461577872Normal

EDCBARunType

Page 46: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

46

FermilabBeam Penetration?

Error Count in Normal Registers

25192817191919E21332620211323D

Board7

Board6

Board5

Board4

Board3

Board2

Board1

Beam

Page 47: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

47

Fermilab

SEU Analysis

ϑσ

cosNFU=

UERR 1=

The statistical error margin of a measurement.•U is the number of upsets

The SEU cross section.•U is the number of upsets•N is the number of registers of a particular type

in the beam (in this case, 700)•F is the Fluence of the beam (in this case, 1.24e15)•θ is the angle of incidence (90°, therefore cos θ = 1)

Page 48: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

48

Fermilab

SEU Results (50 MHz)

4.6 ±2.3.5041.521.12HIT5.8 ±2.6.4558.3N/ATRed9.2 ±3.2.35821.8DICE

13.8 ±4.0.29121.882.5/1.42SeussB40.3 ±6.9.17351.532.11/1.15SeussA440 ±22.0538211Normal

σERRUpsets(U)

AreaReg

AreaCell

Register

bitcm10

218

Page 49: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

49

Fermilab

Discussion and Conclusions• Circuit design may be a science,

but layout is an art.• Layout (especially size) has a dramatic effect on

SEU tolerance.– Somewhat less significant, but still important, is the

effect of clock edge control.

• Each technique improved SEU tolerance by atleast a factor of 10 and all of them survived 75 to100 Mrads of total dose without failing.

Page 50: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

50

Fermilab

Discussion and Conclusions• For pure SEU tolerance and area efficiency,

the HIT Cell wins.– Back drive is significant.

• For design flexibility with SEU tolerance,consider using the Seuss Cells.

Page 51: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

51

Fermilab

Future Work

• MoRT Transistors in TSMC• Low frequency tests• SEU consequences of asynchronous resets• Repeat for 0.13um? Repeat for another

process?

Page 52: SEU Tolerance of Different Register Architectures in a 0.25 m … · 2005. 1. 11. · 0.25∝ m CMOS Process Jim Hoff(a), William Wester(a), Brad Hall(a), Paul Rubinov(a), Suen Hou(b),

June 03 Vth Int. Meeting on Frontend ElectronicsSnowmass, CO

52

Fermilab

Acknowledgements

• Al Dyer, Fermilab, for his flawless wire-bonding• Rodney Klein, Fermilab, for his Java

programming of the control program• Dr. P.S. Song of the Institute of Nuclear Energy

Research, Taoyuan, Taiwan, for the Co60

irradiation of our boards.• The Staff of the Indiana University Cyclotron

Facility for the 200 MeV Proton Irradiation.