shear viscosity and thermal fluctuations in heavy-ion ... · pdf filereferencesi. l. d....

18
Shear viscosity and thermal fluctuations in heavy-ion collisions Clint Young with Joseph Kapusta University of Minnesota June 18, 2014 1 / 18

Upload: hoangkhue

Post on 13-Mar-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Shear viscosity and thermal fluctuations in heavy-ioncollisions

Clint Young with Joseph Kapusta

University of Minnesota

June 18, 2014

1 / 18

Page 2: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Fluctuation-dissipation and the importance of noiseThermal noise in heavy-ion collisionsWhere does thermal noise come from?

Fluctuation-dissipation and the importance of noiseThe relations between Green functions

Fluctuating hydrodynamical variables in BES-IIThe shape of second-order noiseThe variance of momentum eccentricity of centralAu+Au

√sNN=19.6 GeV

Conclusions

2 / 18

Page 3: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Thermal noise in heavy-ion collisions

Kapusta, Muller, Stephanov: Thermal noise exists in viscous relativisticfluids, represented by Sµνheat and Sµνvisc. (in the Eckart frame) and Sµν andIµ in the (Landau-Lifshitz frame).

K (∆η) ∝⟨dNdη (η + ∆η)dNdη (η)

⟩−⟨dNdη

⟩2, the two-particle correlation as a

function of rapidity gap, has a contribution from thermal noise.

Analytical calculations possible for the Bjorken expansion of anultrarelativistic gas.

3 / 18

Page 4: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Thermal noise in ultrarelativistic gases

0 1 2 3 4 5 6-0.5

0.0

0.5

1.0

1.5

2.0

2.5

KHD

ΗL

4 / 18

Page 5: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

The relations between Green functions

The effect of perturbations on every physical quantity is determined by aspecific Green function:

I Given δH(t) =∫

d3xj(x, t)φ(x, t),⟨δφ⟩

=∫

d4x ′GR(x − x ′)j(x ′),

where GR(x) ≡ −iθ(t)⟨

[φ(x), φ(0)]⟩

.

I For the same δH(t), transition rates determined with

G>(t) ≡ −i∫

dt⟨φ(t) ˆφ(0)

⟩≡ G<(−t).

I Variances determined with GS(t) ≡ 12

⟨{φ(t), φ(0)}

⟩.

In x and t, several Green functions exist, each with their own domain ofapplicability.

5 / 18

Page 6: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

The relations between Green functions

Relationships become clearer in Fourier space:

ImGR(ω) = − i

2

[−i

∫dt θ(t)e iωt

⟨[φ(t), φ(0)]

⟩−i

∫dt θ(t)e−iωt

⟨[φ(t), φ(0)]

⟩∗ ]= −1

2

[ ∫dt θ(t)e iωt

⟨[φ(t), φ(0)]

⟩+

∫dt θ(t)e−iωt

⟨[φ(0), φ(t)]

⟩]= −1

2

∫dt e iωt

⟨[φ(t), φ(0)]

⟩= −1

2(1− e−ω/T )

∫dt e iωt

⟨φ(t)φ(0)

⟩= − i

2(1− e−ω/T )G>(ω).

Hermiticity and the KMS relation lead to algebraic relations betweenGreen functions in Fourier space.

6 / 18

Page 7: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

The relations between Green functions

Going between coordinate and momentum space relates physics to factsfrom complex analysis:

Coordinate space Momentum spaceCausality Analyticity of GR(ω) in the upper-half plane

KMS relation Detailed balance

Fluctuation-dissipation GS(ω) = −(1 + 2nB(ω))ImGR(ω)

In particular the correlation function GS ≡ 12

⟨{φ(t), φ(0)}

⟩(fluctuations)

have an easy relationship to ImGR(ω) (the dissipation) in momentumspace.

7 / 18

Page 8: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Viscosity and thermal noise

“Why didn’t I notice thermal noise in liquids before?”

12

⟨{δui

T (x), δujT (0)}

⟩≈ T

e+p

(π(e+p)η|t|

)3/2exp

(− (e+p)|x|2

4η|t|

)23δ

ij :

For non-relativistic gases, e + p ≈ ρ, making T/ρ tiny.

For ultrarelativistic gases, 4η|t|e+p often small compared to length scales of

interest.

In heavy-ion collisions, length and time scales ∼ 1 fm ∼ 1T , e ∼ p ∼ T 4,

s ∼ T 3: no mass scale exists to suppress the importance of fluctuations,only the smallness of η/s can.

8 / 18

Page 9: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Noise and observables

Now Tµν = Tµνav. + δTµν :

Each solution for a given δTµν corresponds to one event at a heavy-ioncollider. The ensemble of δTµν is approximated by a data set. Mostobservables are averages of these sets.

〈δTµν〉 = 0 → hydrodynamical noise has no effect on one-particleobservables dN/dpT , dN/dy , averaged over many events.⟨δTµνδTαβ

⟩6= 0 → noise affects two-particle correlations even after

averaging over events.

δTµν 6= 0 → noise drives non-trivial variance of all observables, within acentrality class.

9 / 18

Page 10: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

The shape of second-order noise

The Israel-Stewart formalism of the hydrodynamical equations

∂µ(Tµνideal + ∂µW µν) = 0

∆µα∆ν

β(u · ∂)W αβ = − 1

τπ(W µν − Πµν),

where Πµν = η∆µuν + ∆νuµ − 23 (∂ · u)∆µν is the first-order viscous

energy-momentum and τπ is the relaxation time. What is the correlationfunction for thermal noise here?

Noise in energy-momentum: Tµν + Ξµν :Current conservation (∂µ(Tµν + Ξµν) = 0) and the fluctuation-dissipationrelation give the autocorrelation of thermal noise (for a fluid at rest):⟨

((τπ∂tΞij(x) + Ξij(x))(τπ∂tΞ

kl(x ′) + Ξkl(x ′))⟩

=[2ηT (δikδjl + δilδjk) + 2(ζ − 2η/3)T δijδkl

]δ4(x − x ′).

10 / 18

Page 11: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Colored noise in numerical simulations

This makes the noise autocorrelation colored:⟨Ξij(x)Ξkl(x ′)

⟩=

[2ηT (δikδjl + δilδjk) + 2(ζ − 2η/3)T δijδkl

]× δ3(x − x ′)

exp(−|t − t ′|/τπ)

2τπ;

the noise decorrelates slowly in time. Numerically, it is easier to use thefirst equation to define a differential equation for Ξµν :

τπΞµν = −(Ξµν − ξµν),

where ξµν is now white noise.

11 / 18

Page 12: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

music for 3+1-dimensional viscous hydrodynamics

Noise breaks boost invariance→ (3+1)-dimensional simulationnecessary for K (∆η,∆φ).

Fluctuations related to dissipation→ viscous hydrodynamics necessary.

music (Schenke, Jeon, and Gale)solves the Israel-Stewart model ofviscous hydrodynamics in (τ, x , y , η),uses lattice EOS, determines3-dimensional freeze-out surface forhadron production.

=0.4 fm/c

-10 -5 0 5 10x [fm]

-10

-5

0

5

10

y [fm

]

0

100

200

300

400

500

600

[fm

-4]

=6.0 fm/c, ideal

-10 -5 0 5 10x [fm]

-10

-5

0

5

10

y [fm

]

0

2

4

6

8

10

12

[fm

-4]

=6.0 fm/c, /s=0.16

-10 -5 0 5 10x [fm]

-10

-5

0

5

10

y [fm

]

0

2

4

6

8

10

12

[fm

-4]

12 / 18

Page 13: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Calculating linearized fluctuations numerically

The equations for δTµνid. and δW ′µν = W µν + Ξµν can be linearized:

∂tδT tνid. = −∂iδT iν

id. − ∂µδW ′µν ,

(u ·∂)δW ′µν = − 1

τπ(δW ′µν−δSµν−Ξµν)− 4

3(∂ ·δu)W µν− 4

3(∂ ·u)δW ′µν−(δu ·∂)W µν

−δuµ((u · ∂)uα)W αν − uµ((δu · ∂)uα)W αν + (u · ∂)δuα)W αν + (u · ∂)uα)δW ′αν)

−δuν((u · ∂)uα)W αµ − uν((δu · ∂)uα)W αµ + (u · ∂)δuα)W αµ + (u · ∂)uα)δW ′αµ).

The equations are discretized: ξ(x)→ ξi = 1∆V∆t

∫d4xξ(x).

〈ξ(x)ξ(x ′)〉 ∝ δ4(x − x ′) →⟨ξiξj

⟩∝ 1

∆V∆t :

hyperbolic equations with large gradients and sources.

13 / 18

Page 14: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

music with noise

δe(x , y , τ), in a√

sNN = 19.6 GeV Au+Au collision, b = 0.

14 / 18

Page 15: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

The variance of εp in very central collisions

εp = 〈T xx−T yy 〉〈T xx+T yy 〉 and 2〈T xy 〉

〈T xx+T yy 〉 added in quadrature:

0

5

10

15

20

25

30

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

dN/d

p

p

RHIC, b = 0 fm, /s = 0.08, including noise

15 / 18

Page 16: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

Conclusions

I Hydrodynamical noise in heavy-ion collisions produces a quiet butimportant correlation in heavy-ion collisions, capable of providingindependent measurements of viscosity.

I Thermal noise contributes to event-by-event variance of v2.

I Simulations with initial and freeze-out fluctuations necessary to findsignal of hydrodynamical noise in experimental observables.

16 / 18

Page 17: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

References I

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical PhysicsPart 2, Landau and Lifshitz Course of Theoretical Physics Volume 9,1980 Pergamon Press plc.

Joseph I. Kapusta and Charles Gale, Finite Temperature Field Theory:Principles and Applications, Cambridge University Press, 2006.

B. Schenke, S. Jeon and C. Gale, Phys. Rev. C 82, 014903 (2010)[arXiv:1004.1408 [hep-ph]].

D. T. Son and D. Teaney, JHEP 0907, 021 (2009) [arXiv:0901.2338[hep-th]].

J. I. Kapusta, B. Muller and M. Stephanov, Phys. Rev. C 85, 054906(2012) [arXiv:1112.6405 [nucl-th]].

W. Rumelin, SIAM Journal on Numerical Analysis 19, No. 3 (Jun.,1982), pp. 604-613

17 / 18

Page 18: Shear viscosity and thermal fluctuations in heavy-ion ... · PDF fileReferencesI. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz

References II

B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett. 106, 042301(2011) [arXiv:1009.3244 [hep-ph]].

18 / 18