sic - コンピュータ・グラフィックスyaoki/cg/cg2008-10.pdf3 computer graphics 5...

24
1 24 JUNE コンピュータ・グラフィックス 2008年度版 Computer Graphics 慶応義塾大学理工学部 電子工学科 准教授 [email protected]

Upload: others

Post on 07-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

1

24 JUNE

コンピュータ・グラフィックス

青 木 義 満

2008年度版

Computer Graphics

慶応義塾大学理工学部 電子工学科 准教授

[email protected]

Page 2: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

2

Computer Graphics 3

 レンダリング(4章 p.95~)

  シェーディング   シェーディング基礎   シェーディングモデル

  環境,拡散,鏡面反射   完全鏡面反射,透過,屈折   散乱,減衰   スムースシェーディング

  大域照明モデル   ラジオシティ法

Computer Graphics 4

  写実的表現のための技法   シェーディング

  物体表面の濃淡を光の当たり具体に基づき計算して表示

  シャドウイング(影付け)   他の物体や面によって光が遮られた領域(影)を計算して表示

Page 3: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

3

Computer Graphics 5

  光の量(測光量),明るさなどを規定するための基本用語

  光束   単位時間にある面を通過する放射エネルギー:放射量   放射束を眼の感度のフィルタ(視感度)に通して見た量:光束   単位はルーメン(lm)

  光度   点光源のある方向への光度:光源位置を頂点とする単位立体角内に放射される光束

  単位はカンデラ(cd)   光源の空間に対する光度分布を表現→配光特性

立体角とは・・・

・ある面積Aを一点から見たときの全周に対する広がり度合い ・半径1の単位給への投影面積Ω ・立体角の単位[sr](ステラジアン) ・単位球の表面積4π = 立体角の最大値

Computer Graphics 6

  光の量(測光量),明るさなどを規定するための基本用語

  照度   単位面積あたりに入射する光束.単位はルクス(lx)   点光源の場合,点光源から距離rの球面上のあらゆる点での照度

  傾いた面上の照度

E =ΦA

=4πI4πr2

=Ir2

Eθ =ΦcosθA

= En cosθ

Page 4: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

4

Computer Graphics 7

  光の量(測光量),明るさなどを規定するための基本用語

  輝度   光源のθ方向への見かけの面積当たりの光度 (=眼で見たときに感じられる明るさ)

  単位は[cd/m2](カンデラ毎平方メートル)

  ランバートの余弦則   どの方向から見ても輝度の等しい表面を完全拡散面といい, 以下の関係式が成立 €

Lθ =dIθd ′ S

=dIθ

dScosθ

dIθ = dIn cosθ

dIn: 法線方向の光度   dIθ : θ方向の光度

Computer Graphics 8

  シェーディングモデル=照明モデル=ライティングモデル   光源の種類や特性,物体の反射特性を考慮し,どのような物理モデルを用いて光源によって照らされた物体を表示するか?を決定する

  局所照明モデル   直接光に関して物理的なモデルに基づいて照明計算を行う

  大域照明モデル   直接光だけでなく,間接光までを含めて物理的なモデルに基づき照明計算を行う

Page 5: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

5

Computer Graphics 9

  シェーディングモデルを構成する要素   物体を照射する光源の種類と特性   光と物体の相互作用(直接光,反射光)   物体の性質:反射,透過,屈折特性

Computer Graphics 10

  物体を照射する光   直接光

  平行光源:太陽光   点光源:電灯,スポットライト   大きさを持つ光源(線光源,面光源):蛍光灯、間接照明

  間接光   環境光

被照面の反射光:拡散反射成分+鏡面反射成分

環境光反射成分

基本的なシェーディングモデル

 → この3つの反射成分を加え合わせることにより,面の明るさを計算するモデル

Page 6: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

6

Computer Graphics 11

各画素の輝度=環境光反射成分+拡散反射成分+鏡面反射成分

Computer Graphics 12

  環境光   壁などで反射を繰り返して空間中を一様に照らす,間接光を近似値したもの

  陰や影の部分にもある程度の明るさを与える   間接光を大まかに近似した光

  ラジオシティ法:精密な間接光(相互反射)

環境光に対する物体面の反射光の強さ

ka: 環境光に対する反射率, Ia : 環境光の強さ

I = kaIa

Page 7: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

7

Computer Graphics 13

  どの方向から見ても物体面の輝度が一定となる反射   視点位置による物体表面上の輝度変化はなし

  入射光が物質内の浅い部分で多重散乱後,表面から放射された光

  拡散反射のみの面=完全拡散面(鏡面反射なし)

  物体面の輝度は以下のものに依存   光源の位置・方向   面の向き   面の反射率 視点に依存しない!

Computer Graphics 14

  平行光線が入射角αで平面を照射する場合

平行光線に対する拡散反射光の計算法

入射角余弦の法則より, 平面に入射する光束はcosαに比例

ランバートの余弦則より, 物体面からθ方向への反射光の強度は

この面をθ方向から見た時の輝度は

I = kd Ii cosα = kd Ii

N • L ( )

平行光線で照射された場合の拡散反射光の強さI

面の輝度は視線方向に依存しない!

ka: 拡散反射率,Ii:入射光の強さ α:光の入射方向と面の法線のなす角(入射角)

Eα ∝ IidScosα

dIθ ∝ (IidScosα)cosθ€

I =dIθ

dScosθ= kd Ii cosθ

Page 8: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

8

Computer Graphics 15

  点光源:光の強度が光源からの距離の2乗に反比例

点光源に対する物体面の拡散反射光の強さ

I =kd Iq

r2cosα =

kd Iq

r2 N • L ( )

kd: 拡散反射率,Iq:点光源の光度,r:光源からPまでの距離 N: 面の法線ベクトル,L: 光線の方向ベクトル

Computer Graphics 16

配光特性の数式モデルの例

Iq θ( ) = Io 1+ cosθ( ) /2※Ioは灯軸方向の光度

Page 9: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

9

Computer Graphics 17

  線光源:蛍光灯など.点光源が直線上に並んだものとして計算

線光源に対する物体面の拡散反射光の強さ

I =kd Iqr2

cosθr20

L

∫ cosαdl

kd: 拡散反射率,Iq:線光源の単位長さ当たりの 灯軸方向の光度,L: 線光源の長さ,r:PQ間の距離

Computer Graphics 18

  面的な広がりを持つ光源に対する拡散反射   面光源,多面体光源など

(a)面光源→表面上の輝度は,点Pでの光源の立体角の正射影面積に比例 (b)多面体光源→区分求積法により計算

(a) 面光源

(b) 多面体光源 €

I = kd La ′ A

ka: 拡散反射率,La:光源の輝度 A’:点Pでの光源の立体角の正射影面積

I =kdLa2

β l cosδll=1

m

ka: 拡散反射率,La:光源の輝度,βl: PQlとPQl+1のなす角 δl:三角形PQlQl+1の法線と被照面の法線とのなす角

Page 10: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

10

Computer Graphics 19

Computer Graphics 20

  物体表面での直接反射によって生じる   光沢のあるプラスチックや金属表面上のハイライトなど   入射角=反射角の時,最も強く反射   反射光の強度は以下に依存

  光源の方向と物体面の向き,面の反射特性,視点方向

Page 11: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

11

Computer Graphics 21

  代表的な鏡面反射計算:フォンのモデル   視点方向と正反射方向のなす角γにより,鏡面反射成分を減少させる

フォンのモデルによる鏡面反射光の強さの算出

W(α)(=ks) : 拡散反射率,Ii:入射光の強さ,γ:視点方向と正反射方向のなす角 n: ハイライト特性制御パラメータ

I = W α( )Ii cosn γ = W α( )Ii

R • V ( )

n

Computer Graphics 22

  環境、拡散、鏡面反射の3要素を考慮した場合の反射光の強さ

I = kaIa + Ii kd cosα + ks cosn γ( )

環境 拡散 鏡面

nおよび反射率を変化させた場合の比較上の段はks=0.3、下の段は=0.6nは左から3, 5, 10, 100

Page 12: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

12

Computer Graphics 23

  完全鏡面反射:鏡など,正反射方向の物体が表面に映り込む   透過・屈折:透過した先の物体が透けて(歪んで)見える   物体が反射だけでなく,透過・屈折を起こす場合

  表面上の反射特性のみでは不十分   レイトレーシングなどで,物体内部の透過,屈折を考慮   レイ:反射方向+透過・屈折方向 →これらを求める必要!   レイの追跡における終了条件(再帰的に)

  レイが拡散反射面(完全鏡面反射も透過・屈折もなし)に当たった場合   レイが交差する物体がシーン中に存在しない場合(背景の色とする)

Computer Graphics 24

  正反射: 入射角=反射角   面の向き(法線ベクトルN)と視点方向(視点方向ベクトルV)から,正反射方向ベクトルを求める

R = ′ V + 2 ˆ N

′ V = −ˆ V

ˆ V • ˆ N

正反射方向ベクトルR

正反射方向の単位ベクトル

R =1

ˆ V • ˆ N

ˆ R = RR

= ˆ V • ˆ N R

Page 13: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

13

Computer Graphics 25

  透明,半透明な物体   光は屈折率の異なる媒質の境界で屈折

  屈折→スネルの法則に基づき計算 n1sinθ1=n2sinθ2

T = k f ˆ N + ′ V ( ) − ˆ N

面の法線ベクトル,視点方向ベクトル,2つの媒質の屈折率(n1, n2)を既知として,屈折方向ベクトルTを計算

kf: 屈折の程度を表す係数,これを求れば良い

n1sinθ1=n2sinθ2(スネルの法則)

n =n2n1

=sinθ1sinθ2

sinθ1 =ˆ N + ′ V

′ V

sinθ2 =k f ˆ N + ′ V ( )

T=

k f ˆ N + ′ V

k f ˆ N + ′ V ( ) − ˆ N

∴n =k f ˆ N + ′ V ( ) − ˆ N

k f ′ V

Computer Graphics 26

  透明,半透明な物体   光は屈折率の異なる媒質の境界で屈折

  屈折→スネルの法則に基づき計算 n1sinθ1=n2sinθ2

両辺を2乗、(N+V)・N=0より

n2 =k f

2 ˆ N + ′ V 2

+ ˆ N 2

k f2 ′ V 2

∴ k f =1

n2 ′ V 2− ˆ N + ′ V

2

Page 14: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

14

Computer Graphics 27

  異なる屈折率を持つ媒質境界での反射率kr

  各レイにおける最終的な光の強さIv €

kr =12

sin2 θ1 −θ2( )sin2 θ1 + θ2( )

+tan2 θ1 −θ2( )tan2 θ1 + θ2( )

フレネルの式から算出

Iv = krIr + ktIt反射方向からの光の強さ

屈折方向からの光の強さ

ただし,透過率kt=1-kr

Computer Graphics 28

  媒体に散乱粒子が含まれる場合に考慮   空気分子,水蒸気,塵,煙,霧,雲,水分子 等

  レイマーチング法   レイに沿って微小距離ずつ移動しながら,視点に到達するまでの減衰を考慮して散乱光を加算し,輝度を決定

1.点Qからの反射光成分

2.光路PEQ間の点Rにおいて,光源からの光が視点方向へ散乱された光の成分

Page 15: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

15

Computer Graphics 29

Computer Graphics 30

  コンスタント(フラット)シェーディング   ポリゴンの代表点での明るさを用いてポリゴン全体を一定の明るさで表示   マッハバンド効果

  スムーズシェーディング   ポリゴン内の輝度を保管して近似的に滑らかな明るさで表示

  グローのスムーズシェーディング(輝度補間)   フォンのスムーズシェーディング(法線ベクトル補間)

Page 16: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

16

Computer Graphics 31

  ポリゴン頂点での輝度を求め,ポリゴン内での輝度を頂点の輝度からバイリニア補間により求める手法

Computer Graphics 32

  ポリゴン頂点での法線ベクトルを求め,ポリゴン内での法線ベクトルを頂点の法線ベクトルからバイリニア補間

  各位置で求めた法線ベクトルから輝度を計算

Page 17: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

17

Computer Graphics 33

  計算量   グロー < フォン

  輝度値の補間 < 法線ベクトルの補間+正規化+輝度値計算

  ハイライトの表現   グロー

  ポリゴン内部の小さなハイライトは表現不可能   フォン

  ポリゴン内部の小さなハイライトも表現可能

  マッハバンド効果の削減   フォンの方がよい

Computer Graphics 34

Page 18: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

18

Computer Graphics 35

  本影   光源からの光が全く届かない領域

  半影   光源からの光の一部が到達する領域

Computer Graphics 36

  平行光線・点光源による影 → 本影のみ

  レイトレーシング法による影付け   各画素に表示される面の位置と光源を結び,レイ上に遮蔽物があるかどうかを画素毎に判定

Page 19: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

19

Computer Graphics 37

  スキャンライン単位の隠面消去と影付けを同時に行う

  光源から見た面の各辺をスキャンライン上の可視面へ投影   面S1の可視区間P1-P3で面S2による面S1上の影の区間P1-P2を計算し影付け

Computer Graphics 38

  光源と視点からの2つの透視投影図を求め,表示時に影の領域をマッピング   1.光源から見た際の影領域を求める   2.視点から見たときの表示で,影領域をマッピング

  スキャンライン法とZバッファ法に適用   隠面消去と影付けを同時に処理可能

Page 20: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

20

Computer Graphics 39

  Zバッファ法を用いて影となる画素を計算   1.光源を視点として光源から可視面までの距離を画素毎に計算 → シャドウマップ

  2.視点から見て,各画素での可視点に対応するシャドウマップの値を参照

  光源から可視点までの距離>シャドウマップ  → 遮蔽物が存在 → 影

Computer Graphics 40

  線光源,面光源 → 本影+半影   半影の明るさ

  計算点から光源を見たときの光源の可視領域の面積に依存   光源の可視部分のみを新たな光源として,区分求積法により各点での影の明るさを求める

Page 21: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

21

Computer Graphics 41

Computer Graphics 42

  局所照明モデル   間接光(直射光以外の周囲からの光)を環境光として近似

  大域照明モデル   間接光を含めて精密なモデルにより照明計算   光の相互反射を考慮したシェーディングモデル   ラジオシティ法,フォトンマップ法

Page 22: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

22

Computer Graphics 43

  光の相互反射をより詳細に計算   影が半影(ぼやけた影)を伴う   直接光が届かない部分も相互反射による間接光により照射   反射面の色が隣接する面に影響する(カラーブリーフィング)

  間接光が醸し出す柔らかい雰囲気を表現可能

Computer Graphics 44

  シーンをすべて細かなポリゴン(面素,エレメント)に分割する   各面に対する他の面から光の相互反射を繰り返し計算 (フォームファクター)

  最終的なエネルギーをもとに陰影処理をする

Page 23: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

23

Computer Graphics 45

  パッチ間のラジオシティ(放射発散度)の授受を考慮し,ラジオシティ方程式を作成

Computer Graphics 46

  フォームファクタ   エレメントAiのすべての点から放射されたエネルギーがエレメントAj に受け取られる率

  距離の2乗で減衰する   法線と同じ方向のとき最も強度が大きい(フォンの法則より)

※エレメントの幾何形状のみに依存

Page 24: SIC - コンピュータ・グラフィックスyaoki/cg/CG2008-10.pdf3 Computer Graphics 5 光の量(測光量),明るさなどを規定するための基本用語 光束 単位時間にある面を通過する放射エネルギー:放射量

24

Computer Graphics 47