sigma2013_kejungchen

21
The Cosmic Dawn: Physics of the First Luminous Objects Ke-Jung (Ken) Chen Johnston Graduate Fellow, University of Minnesota

Upload: ken-chen

Post on 10-Jan-2017

794 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Sigma2013_kejungchen

The Cosmic Dawn: Physics of the First Luminous Objects

Ke-Jung (Ken) Chen

Johnston Graduate Fellow, University of Minnesota

Page 2: Sigma2013_kejungchen

The First Stars

Page 3: Sigma2013_kejungchen

The First Stars

Mass Scale ~ 100-1000 M⊙

Abel, et al. Science (2002) Bromm, et al. Nature (2009)

Page 4: Sigma2013_kejungchen

MS Mass He Core Supernova Mechanism

The Death of Massive Stars

10 ≤ M ≤ 85 2 ≤ M ≤ 32 Fe core collapse to a neutron star or black hole

80 ≤ M ≤ 150 35 ≤ M ≤ 60 Pulsational pair instability followed by core (PPSN)

150 ≤ M ≤ 250 60 ≤ M ≤ 133 Pair instability supernova (PSN)

250 ≤ M 133 ≤ M Black holes

Woosley, Heger, & Weaver (2002)

Mass Unit: solar mass ⊙

(GRB Talks: Aloy, Matsumoto, Mizuta)

(CCSNe Talk by Suwa )

Page 5: Sigma2013_kejungchen

Pair-Instability Supernova (PSN)

Page 6: Sigma2013_kejungchen

Supernovae (Energetic Explosions)

Page 7: Sigma2013_kejungchen

Luminous Supernovae

Page 8: Sigma2013_kejungchen

How to Model 3D Supernovae 1D Models 80 - 150 M⊙ Stars (Woosley+ 2007, priv. comm.) 150 - 250 M⊙ Stars (Heger & Woosley 2002, 2010)

CASTRO Massive Parallel, Adaptive Mesh Refinement (AMR), Multi-D, Radiation, Hydro, +( Nuclear Burning, Mapping, Rotation, GR, ... ) (Almgren+ 2010, Zheng+ 2011 2012, Chen+ 2011 2012)

Supercomputers

Itasca Franklin JaguarHopper

(DOE SciDAC Computational Astrophysics Team)

Page 9: Sigma2013_kejungchen

Explosion of a 110 M⊙ Star

(Chen+ Nature 2013)

Page 10: Sigma2013_kejungchen

Explosion of a 200 M⊙ Star

Page 11: Sigma2013_kejungchen

No Bang !! form a black hole

BSG 150 BSG 200 BSG 250

RSG 150 RSG 200 RSG 250

More Explosions !(Chen+ 2012)

Page 12: Sigma2013_kejungchen

Mixing of Elements

Page 13: Sigma2013_kejungchen

ModelMass[M⊙]

Core[M⊙]

E[10 52 erg]

Ni[M⊙]

Instab. Mixing

B150 150 67 1.29 0.07 Burning weak

B200 200 95 4.14 6.57 Burning weak

B250 250 109 7.23 28.05 Burning weak

R150 150 59 1.19 0.10 Rev. Strong

R200 200 86 3.43 4.66 Rev. Strong

R250 250 156 ... ... ... ...

Results

Ni is only slightly mixed out .The Gamma-Ray emission for PSNe is unlikely.

Page 14: Sigma2013_kejungchen

13

Conclusions

80 ~ 150 M⊙

150 ~ 250 M⊙

250+ M⊙

Very Bright

YES

YES

No

Fate

PPSN

PSN

BH(?)

Sources Observation

Mixing can be important !

Multi-SN

Large Ni

GW

Pop I, II, III

Pop I(?), II, III

No

Page 15: Sigma2013_kejungchen

👍👍

z ~ 20

?z ~ 10

👍

time

Formation of the First Galaxies

Page 16: Sigma2013_kejungchen

Characters of the First GalaxiesBromm, & Yoshida (2011)

• Mass scale ~ 108 M⊙

• Redshift ~ 10 • Self-bound system. • Affected from the previous stellar feedback• Hosted the Pop III and Pop II stars

Page 17: Sigma2013_kejungchen

Modeling the Galaxy Formation

Gadget-2 ( Springel 2005) 1. Star formation 2. Radiative transfer 3. Diffusion mixing 4. Chemical cooling

Bromm+ 2002,2003 Johnson+ 2007

Greif+ 2009, 2010 Jeon+ 2012

Possible radiative feedbacks

1. Ionizing photons

2. SN shock reheating

3. X-Ray Binaries

Chemical enrichment 1. SN feedback

Page 18: Sigma2013_kejungchen

Impact of the First Stars and Supernovae

Page 19: Sigma2013_kejungchen

Conclusions

• All possible radiative feedback 1. Ionizing photons

2. SN shock reheating

3. X-Ray Binaries

• Chemical enrichment1. SN feedback

2. Pop III to Pop II transition

The impact of the first stars holds the key to the later galaxy formation!!

Page 20: Sigma2013_kejungchen

The cosmic dawn may be observed by

Page 21: Sigma2013_kejungchen

My work has been kindly supported by:

Many thanks for your attention