sikorsky wireless test instrumentation for rotating...

16
ECE193/ME32 October 30, 2013 University of Connecticut Storrs, CT 06269 Website: http://ecesd.engr.uconn.edu/ecesd193/ E-Mail: [email protected] Sikorsky Wireless Test Instrumentation for Rotating Parts ECE 193: Olivia Bonner David Vold Brendon Rusch Michael Grogan ME 32: Andrew Potrepka Kyle Lindell UCONN Faculty Advisors: Rajeev Bansal Robert Gao Sikorksy Contacts: Paul Inguanti Chris Winslow Dan Messner

Upload: dodien

Post on 26-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

ECE193/ME32 October 30, 2013

University of Connecticut Storrs, CT 06269 Website: http://ecesd.engr.uconn.edu/ecesd193/ E-Mail: [email protected]

Sikorsky Wireless Test Instrumentation for Rotating

Parts

ECE 193:

Olivia Bonner

David Vold

Brendon Rusch

Michael Grogan

ME 32:

Andrew Potrepka

Kyle Lindell

UCONN Faculty Advisors:

Rajeev Bansal

Robert Gao

Sikorksy Contacts:

Paul Inguanti

Chris Winslow

Dan Messner

Sikorsky Wireless Test Instrumentation 2

Table of Contents

 1  Executive  Summary……………………………………………………………………..………..………………3  2  Specifications…………………………………………………………………………………………………………5  3  Proposed  Solution………………………………………………………………………………..……………….6  4  Electronics…………………..………………….......……………………………………………………………….7  

4.1  Microcontroller………………………………………………………………………………….……7  4.2  Sensors……………………………………………………………………………………………………9  4.3  Wireless  Transceiver..…………………………………………………………………………...10  

5  Battery…………………………………………………………………………………………………………………11  6  Energy  Harvesting……………………………………………………………………………………………..…12  7  Test  Rig/Setup……………....…………………………………………………….……………………….…….13  8  Budget…………………………………………………………………………………………………………………15  

8.1  Estimated  Costs…………………………………………………………………………………....15  9  Timeline……………………………………………………………………………………………………………...16  

 

Sikorsky Wireless Test Instrumentation 3

1 Executive Summary

Sikorsky  helicopters  rely  on  numerous  rotating  systems.  These  systems  are  crucial  to  the  operation  of  the  aircraft  and  must  be  monitored  in  order  to  detect  system  faults.      Sikorsky  currently  utilizes  a  monitoring  system  that  consists  of  wired  sensors  and  slip  rings.  These  slip  rings,  however,  are  extensively  utilized  at  high  rotational  speeds  and  often  fail  due  to  erosion.  Additionally,  the  wires  from  the  sensors  and  slip  rings  add  unnecessary  weight  to  the  aircraft.      Consequently,  Sikorsky  has  proposed  the  concept  of  a  wireless  electronic  monitoring  system;  this  system  would  more  quickly  and  more  efficiently  monitor  parameters  such  as  temperature,  noise,  stress,  strain  and  vibrations.  United  Technologies,  Sikorsky  Aircraft,  has  asked  UCONN  team  EE193/ME32  to  come  up  with  a  wireless  solution  to  monitor  the  pitch  change  bearings  of  their  S92  Helicopter.  The  team  was  allocated  a  budget  of  $2,000  to  update  and  redesign  the  system  created  by  the  previous  senior  design  team  (2012-­‐2013).    The  2012-­‐2013  UCONN  student  team  created  a  wireless  system  in  which  one  sensor  was  used.  The  system  was  powered  by  a  battery  that  could  handle  12  hours  of  operation  per  day  and  a  lifetime  of  at  least  a  year.  In  order  to  successfully  demonstrate  their  system  the  team  created  a  test  rig  to  represent  the  tail  rotor  of  the  S-­‐92  helicopter.  The  test  rig  included  an  accurate  representation  of  the  electronics  cavity.    An  accelerometer  was  used  to  measure  the  acceleration  near  the  tail  rotor  bearings.  The  2012-­‐2013  UCONN  student  team  successfully  created  a  test  rig  for  the  tail  rotor  of  an  S-­‐92  helicopter  and  a  wireless  sensor  system  that  utilized  one  sensor  and  was  powered  by  a  battery.    Sikorsky  has  asked  the  current  team  to  further  the  project  with  the  addition  of  at  least  one  other  sensor  and  the  utilization  of  energy  harvesting.  The  team  will  be  using  a  new  Arduino  nano  microcontroller  due  to  lack  of  documentation  of  the  previous  PCB  and  microcontroller.  The  team  will  test  the  following  sensors  as  viable  options  for  the  second  sensor:  microphone,  infrared  temperature  and  thermometer.  Wi-­‐Fi  will  be  used  instead  of  Zig-­‐Bee  to  transmit  the  signals.    In  order  to  power  the  

Sikorsky Wireless Test Instrumentation 4

system  the  team  will  test  several  methods  of  energy  harvesting.  The  method  that  provides  the  most  promise  is  magnetic  energy  harvesting.  

Figure 1. An interior sketch of the tail rotor gearbox on the S92 helicopter

Sikorsky Wireless Test Instrumentation 5

2 Specifications

Electronics  Compartment:  •  Size:  1.5”  diameter  x  5.1”  long  •  Temperature:  -­‐20  to  250  degrees  F  

 

Rotating  Speed  of  Tail  Rotor  Shaft  •  1200  RPM  

 

Battery  Life  •  1-­‐year  min  (3  years  recommended)  •  Run  for  12  hours  a  day  •  Must  survive  30  days  of  inactivity  

 

Data  Processing  •  Measure  vibration  •  Store  data  temporarily  •  Transmit  to  stationary  system  and  available  at  request  of  user  •  Data  must  travel  wirelessly  upwards  of  40  feet  

 

Environmental  Parameters  •  Oil  lubricated  cavity  •  Moisture    •  High  vibration  level  •  Must  not  be  visible  on  the  exterior  (hostile  elements  present)  

 

Sikorsky Wireless Test Instrumentation 6

3 Proposed Solution

3.1 System Design/Circuitry

Figure 2. General system block diagram

Figure  2  illustrates  the  general  system  block  diagram  that  the  team  will  be  utilizing.  The  two  sensors,  the  accelerometer  and  the  thermometer,  are  illustrated  to  the  far  left  and  will  be  communicating  with  the  Arduino  via  a  Serial  Peripheral  Interface  Bus  (SPI  Bus)  and  an  interrupt.    The  interrupt  signal  temporarily  stops  the  program  from  collecting  data,  as  it  is  only  necessary  to  collect  this  information  upon  user  command.  When  the  device  is  not  collecting  data,  it  shall  remain  in  standby  mode  in  order  to  save  battery  life.  The  Arduino  will  be  in  communication  with  the  Static  Random  Access  Memory  (SRAM)  via  data  lines  and  an  address.  Additionally,  the  Arduino  will  be  in  communication  with  the  wireless  transceiver  via  another  SPI  Bus  and  a  sleep/wake,  input/output  signal.  The  transceiver  will  communicate  with  the  antenna  receiver.      Lastly,  the  Arduino  will  be  powered  via  an  applicable  battery  and  an  energy-­‐harvesting  source  (to  save/maintain  battery  life).  The  battery  and  energy  harvester  will  need  to  have  special  circuitry  to  facilitate  their  interaction  with  the  rest  of  the  system.  The  energy  harvester  will  need  conditioning  circuitry  to  ensure  its  output  voltage  and  

Sikorsky Wireless Test Instrumentation 7

current  are  within  limits  that  are  useful  for  the  demands  of  the  system.  The  conditioning  circuitry  may  include  an  AC  to  DC  rectifier  circuit  if  a  vibrational  energy  harvesting  method  is  utilized.  Two  options  are  possible  for  the  interaction  of  the  energy  harvester  with  the  battery.  The  system  may  switch  between  energy  sources,  depending  on  whether  the  energy  harvester  is  providing  the  necessary  power  for  the  system,  or  the  energy  harvester  may  be  dedicated  to  charging  a  rechargeable  battery.  

Figure 3. Circuit schematic utilized from the previous team (2012-2013)

The  team  has  the  above  circuitry  from  the  previous  team;  we  plan  to  further  analyze  the  system  they  created  in  order  make  necessary  improvements.      4 Electronics

4.1 Microcontroller

We’ve  decided  to  move  the  project  to  the  open  source  Arduino  platform.  The  switch  has  several  advantages  compared  to  the  PCB  used  by  last  year’s  team.  Arduino  will  give  us  more  flexibility  in  our  design,  as  the  platform  offers  more  connectivity  with  a  greater  number  of  inputs,  and  has  a  wide  range  of  compatible  sensors,  which  are  readily  available.  Arduino  is  also  available  at  a  much  lower  price  point  than  similar  

Sikorsky Wireless Test Instrumentation 8

custom  designs.  For  comparison,  the  custom  built  PCB  from  last  year  cost  the  team  around  $1300,  while  a  stock  Arduino  nano  evaluation  board  costs  around  $30  and  offers  additional  functionality.  Lastly,  Arduino  is  a  mature  platform  with  plenty  of  documentation.  This  is  arguably  the  greatest  advantage  in  the  platform  switch,  as  any  problems  or  questions  that  arise  during  development  can  likely  be  solved  using  the  ample  sources  available  online.  Last  year’s  team  did  not  leave  much  information  about  the  specifics  of  their  design,  and  it  would  be  a  significant  hurdle  just  to  learn  the  full  capabilities  of  their  design,  which  may  or  may  not  meet  our  needs  for  this  year.  The  one  drawback  of  switching  to  Arduino  would  be  an  increase  in  power  consumption.  However,  the  additional  power  requirements  will  be  mitigated  by  the  new  energy  harvesting  solution,  which  will  be  discussed  in  detail  in  section  6.    The  particular  evaluation  board  we  will  use  is  the  Arduino  Nano  v3.0.  We  believe  this  board  offers  the  best  combination  of  features  while  still  fitting  inside  our  size  specifications.  Measuring  just  1.70”  by  0.73”,  the  nano  is  a  compact  package  that  actually  reduces  the  space  needed  from  the  custom  PCB  of  last  year.  It  however  does  not  compromise  on  speed  by  offering  the  same  16mhz  Atmel  ATmega328  microcontroller  that  is  used  on  full  sized  Arduino  packages.  It  also  provides  8  analog  input  pins  and  14  digital  I/O  pins,  which  should  satisfy  our  connectivity  needs.  

Arduino Nano v3.0 Specifications Table 4.1

Operating Voltage 5V

Input Voltage Range 7-12V

Digital I/O Pins 14

(6 PWM Outputs)

Analog Input Pins 8

Flash Memory 32 KB

SRAM 2 KB

Dimensions 0.70” x 1.70”

Sikorsky Wireless Test Instrumentation 9

4.2 Sensors

Accelerometer:

The  accelerometer  we  are  utilizing  is  the  ADXL362;  this  component  is  an  ultra  low  power  3  axis  MEMS  accelerometer.  It  consumes  less  than  2uA  at  100Hz  output  data  rate.  This  device  samples  the  full  bandwidth  of  the  sensor  at  all  data  rates.  It  also  features  ultra-­‐low  power  sleep  states  with  “wake  on  shake”  capability.  

Ambient Temperature Thermometer:

The  thermometer  we  are  utilizing  is  the  TMP36  Temperature  Sensor.  The  thermometer  can  read  ambient  temperatures  from  -­‐40°C  to  125°C  to  a  high  degree  of  accuracy.  The  ambient  temperature  of  the  cavity  is  an  important  metric  that  measures  whether  the  electronics  are  within  safe  operating  temperatures.  

Infrared Body Temperature Sensor:

The  infrared  sensor  we  are  utilizing  is  the  MLX90614.  This  sensor  allows  us  to  take  measurements  of  the  temperature  of  an  external  body.  The  sensor  has  a  wide  range  of  measurable  temperatures  and  could  theoretically  be  used  to  measure  the  heat  given  off  by  a  bearing.  

ADXL362 Table 4.2

Input Voltage Range 1.6 – 3.5V

Active Power 2uA at 100Hz

Standby Power 10 nA

Resolution 1mg/LSB

TMP36 Temperature Sensor Table 4.3

Input Voltage Range 2.7 – 5.5V

Linearity 0.5°C

Accuracy ±1°C (typical), ±2°C

Temperature Range -40°C - +125°C

Sikorsky Wireless Test Instrumentation 10

Microphone:

The  microphone  we  will  be  utilizing  is  a  CEM-­‐C9745JAD462P2.54R  Electret  microphone.  Although  it  does  not  have  a  direct  helicopter  application,  it  will  allow  us  to  determine  the  wireless  signal  quality.  

4.3 Wireless Transceiver

We  are  purchasing  an  add-­‐on  board  for  the  Wi-­‐Fi  module  to  make  initial  prototyping  easier.  It  is  not  yet  known  whether  it  will  be  used  in  the  final  prototype  design  as  it  adds  considerable  bulk.  

The  wireless  transceiver  is  an  RN-­‐XV  WiFly  module.  It  is  a  low  power  wifi  module  that  operates  on  the  802.11b/g  standard,  and  supports  a  serial  data  rate  of  464kps.  It  also  features  configurable  transmit  power  for  power  savings  when  we  don’t  need  the  extra  range  and  a  low  power  sleep  mode.  

MLX90614 Infrared Thermometer Table 4.4

Input Voltage 3V

Accuracy ±0.5°C

Resolution 0.02°C - 0.14°C

Temperature Range -70°C - +380°C

Electret Microphone 4.5

Input Voltage Range 2.7V to 5.5V

Freq. Range 100-10,000Hz

Sensitivity -46 ± 2dB

XBee Add-on 4.6

On-board Regulator 3.3V, 250mA

Dimensions 3.7”x1.1”

Sikorsky Wireless Test Instrumentation 11

5 Battery

The  Arduino  Nano  and  add-­‐ons  can  be  run  through  the  Arduino’s  on-­‐board  linear  regulator  with  an  input  voltage  of  7V  to  12V  or  powered  directly  from  a  regulated  5V  source,  preferably  using  an  efficient  switching  regulator.  

Item Current Draw Table 5.1 Arduino Nano 17mA (direct 5V power with LED removed)

to 25mA (on-board regulator used, LED

intact)

Wi-Fi Module 38mA

Sensors <10mA (depending on sensors chosen)

Total 65mA-73mA

Sikorsky’s  minimum  requirement  is  that  the  unit  must  operate  12  hours  per  day  for  one  year.  (12  hours/day)*(365  days/year)*(73mA)  =  320Ah  A  battery  of  this  capacity  will  not  fit  within  the  electronics  cavity.  Thus,  our  design  will  have  only  a  small  battery  coupled  with  an  energy  harvesting  unit.  The  main  functions  of  this  battery  will  be  to  power  the  unit  during  startup  and  shutdown  and  to  ensure  a  constant  power  source,  as  power  received  from  an  energy  harvester  will  vary  through  time.        

RN-XV WiFly Module 4.7

Average Active Current 38mA

Sleep Current 4uA

Input Voltage 3.3V

Serial Data Rate 464 kbps

Encryption Support yes

Transmit Power 0 -12 dB

Sikorsky Wireless Test Instrumentation 12

 Several  types  of  battery  were  considered:    

NiCd NiMH Li-Ion Li-Poly Table 5.2 Energy Density Poor Average Good Excellent

Number of Cells

Needed for >5V

Poor (5 cells) Poor (5 cells) Good (2 cells) Good (2 cells)

Memory Yes No No No

Charging Method Simple Simple Complex Complex

Temperature Range Average Average Good Good

Impact/Shock

Resistance

Average Average Poor Poor

Overall Suitability Poor Average Good Best

For  this  application,  lithium  polymer  cells  are  the  most  suitable  option.  

6 Energy Harvesting

The  wireless  test  sensor  system  will  require  an  energy  harvesting  unit  in  order  to  recharge  its  battery.  This  unit  will  be  expected  to  provide  power  at  least  equal  to  power  consumed  so  that  no  external  charging  of  the  battery  is  required.  Energy  harvesting  methods  investigated  include  piezoelectric,  thermoelectric,  and  magnetic.     Thermoelectric Piezoelectric Magnetic Power Output Insufficient Insufficient Sufficient

Size Small Workable Workable

Optimal Operating

Conditions

Large temperature

gradient

Consistent vibration

frequency within narrow

band

Fairly high rotation rate

Miscellaneous Factors -------- -------- Gravitational torque or

attachment to

stationary component

necessary

Overall Suitability for

this Application

Unusable Unusable Best

Magnetic  energy  harvesting  is  by  far  the  most  promising,  but  there  are  significant  

Sikorsky Wireless Test Instrumentation 13

difficulties  with  installing  such  a  unit  in  the  rotating  electronics  cavity  due  to  lack  of  access  to  any  stationary  parts.  The  only  immediately  apparent  way  to  overcome  this  is  with  a  unit  that  utilizes  gravitational  torque.  Such  a  unit  would  consist  of  a  generator  mounted  to  the  rotating  unit  and  an  off-­‐center  weight  attached  to  its  shaft.  Gravity  would  keep  the  weight  stationary  while  the  rest  of  the  unit  rotates.  There  are  limitations  to  such  a  design  that  would  likely  create  problems  when  used  in  a  helicopter-­‐  when  at  extreme  angles,  the  weight  would  no  longer  be  kept  stationary  and  could  potentially  begin  rotating,  producing  significant  vibrations.  Thus,  alternatives  to  gravitational  torque  will  continue  to  be  explored.  

7 Test Rig

The  previous  team  (from  2012-­‐2013),  created  a  rig  in  order  to  test  the  wireless  sensing  system.  This  team’s  main  goal  was  to  test  and  analyze  specific  parameters  of  a  rotating  system  through  the  use  of  sensors.  What  was  produced  was  a  mock-­‐up  of  the  tail  rotor  without  the  propellers.  The  rig  has  an  open  compartment  on  the  end  to  insert  the  electronics  capsule  into  and  holes  bored  for  screws  which  mount  the  capsule  onto  the  rig  once  it  is  in  the  compartment.  Since  the  size  of  our  electronics  cavity  is  the  same  dimensions  as  the  previous  year,  we  will  be  reusing  the  same  motor  and  attached  rig.    We  have  ideas  to  modify  the  rig  to  work  better  with  our  design  this  year  outlined  below  in  this  section.    A  variable-­‐speed  electric  motor  was  mounted  to  a  plate.  The  driveshaft  of  the  motor  was  then  connected  to  a  shaft  of  the  same  diameter  via  a  clutching  mechanism.  The  shaft  then  tapers  to  the  diameter  of  the  helicopter’s  rotor  shaft  and  its  length  at  this  diameter  is  just  longer  than  the  electronics  capsule,  which  fits  into  a  center-­‐bored  cylindrical  cavity,  opening  to  the  end.  There  are  two  sets  of  bearings:  the  smaller  is  a  spherical  cartridge  bearing,  along  the  taper  and  the  larger  is  a  roller  cartridge  bearing,  around  the  midsection  of  the  wider  portion  of  the  shaft  (the  portion  with  the  same  diameter  as  the  rotor  shaft).  The  bearings  are  mounted  to  the  same  plate  as  the  motor.  The  use  of  cartridge  bearings  last  year  allowed  for  the  team  to  switch  

Sikorsky Wireless Test Instrumentation 14

out  a  working  bearing  with  an  intentionally  damaged  bearing  to  see  if  they  could  test  the  difference  with  their  sensing  system.  The  previous  team  did  research  into  the  bearings  and  found  the  larger  bearing  to  fit  the  design  specifications  designated  by  Sikorsky.  It  was  originally  thought  that  these  bearings  would  need  replacement  because  they  created  a  loud  scraping  sound,  which  would  interfere  with  sensing  via  a  microphone,  but  upon  inspection  of  their  physical  condition,  it  was  found  that  they  only  needed  lubrication  from  a  Teflon  spray  to  reduce  the  noise.    Potential  Modifications  to  the  Test  Rig:  The  main  purpose  of  this  design  project  is  to  be  able  to  transmit,  receive  and  then  analyze  data  from  the  sensor  network,  but  if  time  is  available,  the  plate  may  be  mounted  so  the  pitch  of  the  motor  and  shaft  can  change.  The  data  from  an  accelerometer  in  the  cavity  could  be  used  to  derive  the  pitch  angle  of  the  mount  and  confirm  the  validity  of  the  project.  Since  we  will  be  using  different  circuitry  and  electronics  from  last  year,  the  electronics  capsule  may  need  to  be  redesigned  as  well  to  better  hold  everything  in  place.    

Figure  4.  Test  rig  created  by  the  previous  team  (2012-­‐2013)  

Sikorsky Wireless Test Instrumentation 15

8 Budget

Sikorksy  has  granted  team  EE193/ME32  a  budget  of  $2,000  to  update  and  redesign  the  2012-­‐2013  Wireless  Network  System.  The  team  has  planned  to  utilize  the  mechanical  components  from  the  previous  year,  which  should  reduce  the  total  cost  to  prototype  and  test  the  design.  

8.1 Costs to Date and Estimated Costs

The  cost  of  components  ordered  are  shown  below,  as  well  as  cost  estimates  for  planned  components,  which  have  not  yet  been  finalized.  

Shopping List Table 8.1

Arduino Nano $35.00

Mini B USB Cable $4.50

XBee Add-On Board $25.00

Wifi Module $35.00

Nano Protoshield $15.00

Triple Axis Accelerometer $15.00

Infrared Thermometer $20.00

Thermometer $1.50

Electret Microphone $8.00

DC Generator (Estimated) $20.00

Power Management Circuitry (Estimated) $30.00

Battery (Estimated) $100.00

Printed Circuit Board (Estimated) $200.00

Total Price $509.00

Sikorsky Wireless Test Instrumentation 16

9 Timeline

The  team  has  come  up  with  an  orderly  timeline  in  order  to  track  our  progress.    The  timeline  illustrated  below  displays  our  project  goals  over  the  course  of  the  year.  

Figure 5. EE193/ME32 Timeline for 2013-2014