simple pipeline sizing

46
Overview This spreadsheet contains pipe pressure drop calculations for single Friction factor is calculated iteratively using the Colebrook-White well known Moodey Chart) Preliminary pipe wall thickness calculations, lookup of standard ind included. Liability No warrantees are made with respect to the accuracy or applicability The onous is on the user to verfiy that any results obtained are cor Copyright This spreadsheet is the intellectual property of the author, Andrew You are free to use it and distribute it however, you may not make i without prior written consent and you must not remove or obscure any don't steal or take credit for my work). Contact email: for other tools visit: SIMPLE PIPE PRESSURE DROP CALCULATION - READ ME [email protected] www.firstprincipleseng.net

Upload: guaspari

Post on 30-Nov-2015

49 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Simple Pipeline Sizing

OverviewThis spreadsheet contains pipe pressure drop calculations for single phase fluids (either gas or liquid)Friction factor is calculated iteratively using the Colebrook-White equation (which is the key equation used to generate thewell known Moodey Chart)Preliminary pipe wall thickness calculations, lookup of standard industry sizes and erosional velocity checks are alsoincluded.

LiabilityNo warrantees are made with respect to the accuracy or applicability of the calculations in this spreadsheet.The onous is on the user to verfiy that any results obtained are correct and appropriate for the work being carrying out.

CopyrightThis spreadsheet is the intellectual property of the author, Andrew Hooks.You are free to use it and distribute it however, you may not make it available for download from any websitewithout prior written consent and you must not remove or obscure any notices regarding authorship. (Basicallydon't steal or take credit for my work).

Contactemail:for other tools visit:

SIMPLE PIPE PRESSURE DROP CALCULATION - READ ME

[email protected]

Page 2: Simple Pipeline Sizing

This spreadsheet contains pipe pressure drop calculations for single phase fluids (either gas or liquid)Friction factor is calculated iteratively using the Colebrook-White equation (which is the key equation used to generate the

Preliminary pipe wall thickness calculations, lookup of standard industry sizes and erosional velocity checks are also

No warrantees are made with respect to the accuracy or applicability of the calculations in this spreadsheet.The onous is on the user to verfiy that any results obtained are correct and appropriate for the work being carrying out.

You are free to use it and distribute it however, you may not make it available for download from any websitewithout prior written consent and you must not remove or obscure any notices regarding authorship. (Basically

Page 3: Simple Pipeline Sizing

PIPELINE PRESSURE DROP CALCULATION (SINGLE PHASE - LIQUID)

Notes

Fluid properties

Density 800 kg/m3 800Viscosity 0.55 cP 5.50E-04 Pa.s

Pipeline dimensions

Length 200 km 200000 mDiameter 24 in 0.610 mOuter diameter (actual) 610 mm 0.610 mWT - calculated #VALUE! mm #VALUE! mWT - overwrite in 0.0000 mInternal diameter #VALUE! in #VALUE! mRoughness 0.05 mm 0.00005 mElevation change 10 m 10 m

Wall thickness calc…

Process conditions

Outlet pressure 30 bara 3000 kPaInlet temperature 30 'C 303 K

Volume rate 100000 bbl/d 0.1842

Flow conditions

Velocity #VALUE! ft/s #VALUE! m/sRe #VALUE!Flow regime #VALUE!

Friction Factor #VALUE!Efficiency factor 1.00

Static dP 0.8 bar 78 kPadP #VALUE! bar #VALUE! kPaInlet pressure #VALUE! bara #VALUE! kPa

Checks

Erosional velocity (API 14E)c factor 150Gas/Liquid ratio 10 scf/bbl 0.00000 scf/bblSpecific gravity - gas 0.8Compressibility (gas) 0.9Specific gravity - liquid 0.76

kg/m3

m3/s

Nominal

B70
Diameter Uncheck the 'Nominal' option to enter actual outer diameter.
C70
Diamter Standard sizes (based on ASME B36.10) may be selected from the in cell drop down list or you can enter your own value. If you enter a non-standard size you will also have to provide your own wall thickness.
B76
Elevation change = h(in) - h(out) ie. enter -ve if the outlet point is lower than the inlet.
B78
Wall thickness calc. Note that this is a preliminary sizing calculation only. For detailed sizing refer the appropriate code (eg. ASME B31.8) since there are a number of specific conditions & exceptions which may be relevant.
B118
Inlet temperature Only used in the erosional velocity calculation
B129
Efficiency factor A calibration term that can be used to account for effects not considered in the friction factor term (eg. fittings, condensate accumulations, sediment). A higher efficiency factor means less dP therefore a lower inlet pressure is required for the same flowrate.
B144
c factor 100 Solids free, continuous service 125 Solids free, intermittant service 150-200 Corrosion not expected or controlled by inhibitor 250 Intermittant service
Page 4: Simple Pipeline Sizing

"Mixture density" #VALUE! kg/m3 #VALUE! kg/m3Max. velocity #VALUE! m/s #VALUE! m/sMax. velocity overwrite m/s 0.0 m/s

Sensitivities

Ratesensitivity

25%50%75%

100%125%150%

Diametersensitivity

-1012

0.00.10.20.30.40.50.60.70.80.91.0

22 in

24 in

26 in

28 in

Basecase

Max vel. exceeded

Flow rate [bbl/d]

Inle

t pre

ssure

[bara

]

Nom. Diameter

B151
Max. velocity overwrite Displayed in the sensitivity chart
Page 5: Simple Pipeline Sizing

Nominal diameter?Lookup valueLookup column offsetDiameter indexNominal diameter - inchesClosest diam index (non-stClosest diam (non-std)

#VALUE!

#VALUE!

Page 6: Simple Pipeline Sizing

SensitivityNom. Diam Out. Diam

--- msensitivity 22 in 0.5588

22 in 0.558822 in 0.558822 in 0.558822 in 0.558822 in 0.558824 in 0.609624 in 0.6096

sensitivity 24 in 0.609624 in 0.609624 in 0.609624 in 0.609626 in 0.660426 in 0.660426 in 0.660426 in 0.660426 in 0.660426 in 0.660428 in 0.711228 in 0.711228 in 0.711228 in 0.711228 in 0.711228 in 0.7112

Page 7: Simple Pipeline Sizing

124

024

24.00 in24

24.00 in

R70
Lookup value For nominal diameter, look up either the value in inches or the value in mm (depending on unit selected by the user. For outside diameter look up the value in mm. Column offset will determine which column to look in.
R73
Nominal diameter Nominal diameter must be in inches in the WT calc since the conversion factor to mm changes with diameter (& WT calc is defined as nominal diameter in inches in the code). If the diameter is not a standard size user must input the WT (it is not calculated).
R74
Closest diam index (non-std) If a non-standard diameter is entered the largest diameter less than the value entered is looked up here. This can then be used to generate diameter sensitivities (see chart below)
Page 8: Simple Pipeline Sizing

WT(min) Schdl WT(act) Int.Diam Rate Rate Velocity Re fm --- m m bbl/d sm3/s m/s --- ---

0.0085 #VALUE! #VALUE! #VALUE! 25000 0.05 #VALUE! #VALUE! #VALUE!0.0085 #VALUE! #VALUE! #VALUE! 50000 0.09 #VALUE! #VALUE! #VALUE!0.0085 #VALUE! #VALUE! #VALUE! 75000 0.14 #VALUE! #VALUE! #VALUE!0.0085 #VALUE! #VALUE! #VALUE! 100000 0.18 #VALUE! #VALUE! #VALUE!0.0085 #VALUE! #VALUE! #VALUE! 125000 0.23 #VALUE! #VALUE! #VALUE!0.0085 #VALUE! #VALUE! #VALUE! 150000 0.28 #VALUE! #VALUE! #VALUE!0.0090 #VALUE! #VALUE! #VALUE! 25000 0.05 #VALUE! #VALUE! #VALUE!0.0090 #VALUE! #VALUE! #VALUE! 50000 0.09 #VALUE! #VALUE! #VALUE!0.0090 #VALUE! #VALUE! #VALUE! 75000 0.14 #VALUE! #VALUE! #VALUE!0.0090 #VALUE! #VALUE! #VALUE! 100000 0.18 #VALUE! #VALUE! #VALUE!0.0090 #VALUE! #VALUE! #VALUE! 125000 0.23 #VALUE! #VALUE! #VALUE!0.0090 #VALUE! #VALUE! #VALUE! 150000 0.28 #VALUE! #VALUE! #VALUE!0.0095 #VALUE! #VALUE! #VALUE! 25000 0.05 #VALUE! #VALUE! #VALUE!0.0095 #VALUE! #VALUE! #VALUE! 50000 0.09 #VALUE! #VALUE! #VALUE!0.0095 #VALUE! #VALUE! #VALUE! 75000 0.14 #VALUE! #VALUE! #VALUE!0.0095 #VALUE! #VALUE! #VALUE! 100000 0.18 #VALUE! #VALUE! #VALUE!0.0095 #VALUE! #VALUE! #VALUE! 125000 0.23 #VALUE! #VALUE! #VALUE!0.0095 #VALUE! #VALUE! #VALUE! 150000 0.28 #VALUE! #VALUE! #VALUE!0.0100 #VALUE! #VALUE! #VALUE! 25000 0.05 #VALUE! #VALUE! #VALUE!0.0100 #VALUE! #VALUE! #VALUE! 50000 0.09 #VALUE! #VALUE! #VALUE!0.0100 #VALUE! #VALUE! #VALUE! 75000 0.14 #VALUE! #VALUE! #VALUE!0.0100 #VALUE! #VALUE! #VALUE! 100000 0.18 #VALUE! #VALUE! #VALUE!0.0100 #VALUE! #VALUE! #VALUE! 125000 0.23 #VALUE! #VALUE! #VALUE!0.0100 #VALUE! #VALUE! #VALUE! 150000 0.28 #VALUE! #VALUE! #VALUE!

R154
WT = Minimum wall thickness based on stress condition + corrosion allowance. Is not yet based on a standard size (that comes next) All other factors, besides diameter, remain constant therefore required WT can be calculated by the ratio of D(basecase)/D(sensitivity)
S154
Schedule Closest schedule size to the minimum wall thickness. Note that the selected schedule may not appear to follow a "logical" sequence with increasing diameter. This is because a schedule must be selected which has wall thickness > minimum wall thickness and this can result in a higher schedule for some diameters (even though the diameter is smaller). Note also that the corrosion allowance does not change with diameter.
T154
WT(act) For steel pipe this is the closest standard wall thickness to the minimum required wall thickness as found in the ASME 36.10 table. For plastic pipe the standard dimension ratio calculated above still holds and is applied consistently across the range of diameters therefore we can simply calculate wall thickness as WT = Diam/SDR
Page 9: Simple Pipeline Sizing

dP Pin Pin Points > Pipe schedule lookup table dimensionskPa kPa bara max vel Nr standard diameters 31

#VALUE! #VALUE! #VALUE! #VALUE! Nr schedule sizes 13#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! Chart titles#VALUE! #VALUE! #VALUE! #VALUE! Inlet pressure [bara]#VALUE! #VALUE! #VALUE! #VALUE! Flow rate [bbl/d]#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! Basecase point#VALUE! #VALUE! #VALUE! #VALUE! x y#VALUE! #VALUE! #VALUE! #VALUE! pt1 100000 0#VALUE! #VALUE! #VALUE! #VALUE! pt2 100000 #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! pt3 0 #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE!

Page 10: Simple Pipeline Sizing

PIPELINE PRESSURE DROP CALCULATION (SINGLE PHASE - GAS)

Notes

Fluid properties

Pipeline dimensions

Length 200 km 200000 mDiameter 36 in 0.914 mOuter diameter (actual) 914 mm 0.914 mWT - calculated #VALUE! mm #VALUE! mWT - overwrite in 0.0000 mInternal diameter #VALUE! in #VALUE! mRoughness 0.05 mm 0.00005 mElevation change 0 m 0 m

Wall thickness calc…

Process conditions

Outlet pressure 70 bara 7000 kPa(A)

Guess inlet pressure 85 bara 8500 kPa(A)Inlet temperature 40 'C 313 KOutlet temperature 30 'C 303 K

Volume rate 700 MMscf/d 229.86

Flow conditions

Velocity Inlet Outlet Average Inlet Outletz 0.88 0.90 0.89 0.88 0.90

Density 59.52 49.19 54.36 kg/m3 59.5 49.2

Volume rate (actual) 10.35 11.82 11.09 MMcf/d 3.393 3.875Velocity #VALUE! #VALUE! #VALUE! m/s #VALUE! #VALUE!

Flow regimeRe #VALUE!Flow regime #VALUE!

Friction factor #VALUE!Efficiency factor 1.00

Static dP 0.00 bar 0 kPaFrictional dP #VALUE! bar #VALUE! kPaInlet pressure #VALUE! bara #VALUE! kPa(A)

Checks

Erosional velocity (API 14E)

sm3/s

Auto iterate

Nominal

B70
Diameter Uncheck the 'Nominal' option to enter actual outer diameter.
C70
Diamter Standard sizes (based on ASME B36.10) may be selected from the in cell drop down list or you can enter your own value. If you enter a non-standard size you will also have to provide your own wall thickness.
B76
Elevation change = h(in) - h(out) ie. enter -ve if the outlet point is lower than the inlet.
B78
Wall thickness calc. Note that this is a preliminary sizing calculation only. For detailed sizing refer the appropriate code (eg. ASME B31.8) since there are a number of specific conditions & exceptions which may be relevant.
B118
Guess inlet pressure Used to calculate average z factor & average density and therefore velocity, Re & friction factor. Tick 'Auto iterate' to automatically set the inlet solution value.
B119
Inlet temperature Heat transfer is not modelled. In most single phase pipelines temperature changes do not have a significant impact on the pressure drop.
B135
Efficiency factor A calibration term that can be used to account for effects not considered in the friction factor term (eg. fittings, condensate accumulations, sediment). A higher efficiency factor means less dP therefore a lower inlet pressure is required for the same flowrate.
Page 11: Simple Pipeline Sizing

c factor 150Liquid/Gas ratio 10 bbl/MMscf 0.00001 bbl/scfSpecific gravity - gas 0.55Specific gravity - liquid 0.76"Mixture density" #VALUE! kg/m3 #VALUE! kg/m3Max. velocity #VALUE! m/s #VALUE! m/sMax. velocity overwrite m/s 0.0 m/s

Sensitivities

Ratesensitivity

25%50%75%

100%125%150%

Diametersensitivity

-1012

0 200 400 600 800 1000 12000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

34 in

36 in

42 in

42 in

Basecase

Max vel. exceeded

Flow rate [MMscf/d]

Inle

t pre

ssure

[bara

]

Nom. Diameter

B144
c factor 100 Solids free, continuous service 125 Solids free, intermittant service 150-200 Corrosion not expected or controlled by inhibitor 250 Intermittant service
B150
Max. velocity overwrite Displayed in the sensitivity chart
Page 12: Simple Pipeline Sizing

Nominal?Lookup valueLookup column offsetDiameter indexNominal diameter - inchesClosest diam index (non-stClosest diam (non-std)

#VALUE!0

Average0.89

54.36

3.63#VALUE! m/s

kg/m3

am3/s

I125
Average properties Sometimes average pressure is calculated as 2/3[P1+P2-P1.P2/(P1+P2)] instead of via an arithmetic average. This is to account for the non-linearity of dP over the length of the pipeline. However, there is little difference in the result and given the other uncertainties the arithmetic average is used here for simplicity.
Page 13: Simple Pipeline Sizing

#VALUE!

SensitivityNom. Diam Out. Diam

--- msensitivity 34 in 0.8636

34 in 0.863634 in 0.863634 in 0.863634 in 0.863634 in 0.863636 in 0.914436 in 0.9144

sensitivity 36 in 0.914436 in 0.914436 in 0.914436 in 0.914442 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.066842 in 1.0668

Page 14: Simple Pipeline Sizing

136

030

36.00 in30

36.00 in

R70
Lookup value For nominal diameter, look up either the value in inches or the value in mm (depending on unit selected by the user. For outside diameter look up the value in mm. Column offset will determine which column to look in.
R73
Nominal diameter Nominal diameter must be in inches in the WT calc since the conversion factor to mm changes with diameter (& WT calc is defined as nominal diameter in inches in the code). If the diameter is not a standard size user must input the WT (it is not calculated).
R74
Closest diam index (non-std) If a non-standard diameter is entered the largest diameter less than the value entered is looked up here. This can then be used to generate diameter sensitivities (see chart below)
Page 15: Simple Pipeline Sizing

WT(min) Schdl WT(act) Int.Diam Rate Rate z(in)m --- m m MMscf/d sm3/s kPa --- kg/m3

0.0159 #VALUE! #VALUE! #VALUE! 175 57.47 8500 0.88 59.520.0159 #VALUE! #VALUE! #VALUE! 350 114.93 8500 0.88 59.520.0159 #VALUE! #VALUE! #VALUE! 525 172.40 8500 0.88 59.520.0159 #VALUE! #VALUE! #VALUE! 700 229.86 8500 0.88 59.520.0159 #VALUE! #VALUE! #VALUE! 875 287.33 8500 0.88 59.520.0159 #VALUE! #VALUE! #VALUE! 1050 344.79 8500 0.88 59.520.0167 #VALUE! #VALUE! #VALUE! 175 57.47 8500 0.88 59.520.0167 #VALUE! #VALUE! #VALUE! 350 114.93 8500 0.88 59.520.0167 #VALUE! #VALUE! #VALUE! 525 172.40 8500 0.88 59.520.0167 #VALUE! #VALUE! #VALUE! 700 229.86 8500 0.88 59.520.0167 #VALUE! #VALUE! #VALUE! 875 287.33 8500 0.88 59.520.0167 #VALUE! #VALUE! #VALUE! 1050 344.79 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 175 57.47 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 350 114.93 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 525 172.40 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 700 229.86 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 875 287.33 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 1050 344.79 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 175 57.47 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 350 114.93 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 525 172.40 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 700 229.86 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 875 287.33 8500 0.88 59.520.0189 #VALUE! #VALUE! #VALUE! 1050 344.79 8500 0.88 59.52

P(in)guess r(in)

R153
WT = Minimum wall thickness based on stress condition + corrosion allowance. Is not yet based on a standard size (that comes next) All other factors, besides diameter, remain constant therefore required WT can be calculated by the ratio of D(basecase)/D(sensitivity)
S153
Schedule Closest schedule size to the minimum wall thickness. Note that the selected schedule may not appear to follow a "logical" sequence with increasing diameter. This is because a schedule must be selected which has wall thickness > minimum wall thickness and this can result in a higher schedule for some diameters (even though the diameter is smaller). Note also that the corrosion allowance does not change with diameter.
T153
WT(act) For steel pipe this is the closest standard wall thickness to the minimum required wall thickness as found in the ASME 36.10 table. For plastic pipe the standard dimension ratio calculated above still holds and is applied consistently across the range of diameters therefore we can simply calculate wall thickness as WT = Diam/SDR
Page 16: Simple Pipeline Sizing

vel(in) vel(out) Re f Pin Pin Points >kg/m3 m/s m/s --- --- kPa bara max vel49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!49.19 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

r(out)

Page 17: Simple Pipeline Sizing

Pipe schedule lookup table dimensionsNr standard diameters 31Nr schedule sizes 13

Chart titlesInlet pressure [bara]Flow rate [MMscf/d]

Basecase pointx y

pt1 700 0pt2 700 #VALUE!pt3 0 #VALUE!

Page 18: Simple Pipeline Sizing

PIPELINE PRESSURE DROP CALCULATION - MOODEY CHART FOR FRICTION FACTOR

Moody friction factor (c/- Colebrook-White equation solved by iteration)

e/DReynolds 0.00001 0.00005 0.0001 0.0002 0.0004 0.0006 0.0008 0.001

6E+02 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!8E+02 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!1E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!2E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!2E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!3E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!4E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!6E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!8E+03 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!1E+04 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!2E+04 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!4E+04 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!6E+04 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!8E+04 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!1E+05 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!2E+05 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+080.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Moody friction factor chart

0.05

0.04

0.03

0.02

0.015

0.01

0.008

0.006

0.004

0.002

0.001

0.0008

0.0006

0.0004

0.0002

0.0001

0.00005

0.00001

Lookup

Reynolds Number

Fri

ctio

n f

acto

r

e/D

Page 19: Simple Pipeline Sizing

4E+05 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!6E+05 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!8E+05 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!1E+06 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!2E+06 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!4E+06 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!6E+06 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!8E+06 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!1E+07 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!2E+07 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!4E+07 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!6E+07 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!8E+07 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!1E+08 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

Page 20: Simple Pipeline Sizing

Friction factor lookup

Re 6.00E+05 600000 0.000e 0.05 mm 600000 #VALUE!D 160 mm 101 #VALUE!e/D 0.00031FF #VALUE!

0.002 0.004 0.006 0.008 0.01 0.015 0.02 0.03 0.04#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+080.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Moody friction factor chart

0.05

0.04

0.03

0.02

0.015

0.01

0.008

0.006

0.004

0.002

0.001

0.0008

0.0006

0.0004

0.0002

0.0001

0.00005

0.00001

Lookup

Reynolds Number

Fri

ctio

n f

acto

r

e/D

Note that the Moody chart is usually plotted with a non-linear y axis scale so the shape may look slightly different to this chart. However, the actual values are the same.

Page 21: Simple Pipeline Sizing

#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

Page 22: Simple Pipeline Sizing

0.05#VALUE!#VALUE!#VALUE!#VALUE!#VALUE! Critical zone between#VALUE! laminar & turbulent flow#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!

Page 23: Simple Pipeline Sizing

#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!#VALUE!

Page 24: Simple Pipeline Sizing

PIPELINE PRESSURE DROP CALCULATION - PIPE SIZES

Steel yield strengthGrade Yield stress

[psia] [kPa]A25 25000 172414A 30000 206897B 35000 241379X42 42000 289655X52 52000 358621X60 60000 413793X70 70000 482759X80 80000 551724

Pipeline basic design factorRefer to the code (ASME B31.8) for more detailed factors which take account of road or rail crossings, parallel encroachment etc.

Location class & summary descriptionClass 1, div 1 - Wasteland, deserts, mountains, grazing land, farmland & sparsely populated areas. Hydrotest PClass 1, div 2 - Wasteland, deserts, mountains, grazing land, farmland & sparsely populated areas. Hydrotest PClass 2 - Fringe areas around cities & towns, industrial areas, ranch or country estatesClass 3 - Suburban housing developments, shopping centres, residential areas, industrial areasClass 4 - Multistory buildings, high traffic density, numerous other utilities undergroundCustom - Enter custom value in table on 'PipeData' sheet

ANSI B36.10

Diameter Wall thickness [mm] Schedule determines the wall thickness (not the pressure class)Nominal Nominal Outside[inches] [mm] [mm]

0.125 6 10.3 1.73 2.410.25 8 13.7 2.24 3.02

0.375 10 17.1 2.31 3.200.5 15 21.3 2.77 3.73 7.47

0.75 20 26.7 2.87 3.91 7.821 25 33.4 3.38 4.55 9.09

1.25 32 42.2 3.56 4.85 9.71.5 40 48.3 3.68 5.08 10.15

2 50 60.3 3.91 5.54 11.072.5 65 73.0 5.16 7.01 14.02

3 80 88.9 5.49 7.62 15.243.5 90 101.6 5.74 8.08

4 100 114.3 6.02 8.56 17.125 125 141.3 6.55 9.53 19.056 150 168.3 7.11 10.97 21.958 200 219.1 8.18 12.70 22.23 6.35 7.04

10 250 273.1 9.27 12.70 25.4 6.35 7.8012 300 323.9 9.53 12.70 25.4 6.35 8.3814 350 355.6 9.53 12.70 6.35 7.92 9.5316 400 406.4 9.53 12.70 6.35 7.92 9.5318 450 457.2 9.53 12.70 6.35 7.92 11.13

STAN-DARD

EXTRA STRONG

XX STRONG

SCHED. 10

SCHED. 20

SCHED. 30

D3
Steel yield strength Note that this list is not exhaustive. See the relevant code [ASME B31.4 (liquids), B31.8 (gas), ISO 13623] for a more complete list.
F29
Wall thickness Standard, Extra strong and Double extra strong are common designations. The schedule numbering was added later.
B50
14" and above the nominal diameter in inches equals the outside diameter.
Page 25: Simple Pipeline Sizing

20 500 508.0 9.53 12.70 6.35 9.53 12.7022 550 558.8 9.53 12.70 6.35 9.53 12.7024 600 609.6 9.53 12.70 6.35 9.53 14.2726 650 660.4 9.53 12.70 7.92 12.7028 700 711.2 9.53 12.70 7.92 12.70 15.8830 750 762.0 9.53 12.70 7.92 12.70 15.8832 800 812.8 9.53 12.70 7.92 12.70 15.8834 850 863.6 9.53 12.70 7.92 12.70 15.8836 900 914.4 9.53 12.70 7.92 12.70 15.8842 1050 1066.8 9.53 12.70

Standard dimension ratios (SDR=D/t) for plastic pipe9

1113.6

1717.6

212633

Page 26: Simple Pipeline Sizing

Refer to the code (ASME B31.8) for more detailed factors which take account of road or rail crossings, parallel encroachment etc.

FactorClass 1, div 1 - Wasteland, deserts, mountains, grazing land, farmland & sparsely populated areas. Hydrotest P 0.80Class 1, div 2 - Wasteland, deserts, mountains, grazing land, farmland & sparsely populated areas. Hydrotest P 0.72

0.600.500.400.30

Schedule determines the wall thickness (not the pressure class)

1.73 2.412.24 3.022.31 3.202.77 3.73 4.782.87 3.91 5.563.38 4.55 6.353.56 4.85 6.353.68 5.08 7.143.91 5.54 8.745.16 7.01 9.535.49 7.62 11.135.74 8.086.02 8.56 11.13 13.496.55 9.53 12.70 15.887.11 10.97 14.27 18.268.18 10.31 12.70 15.09 18.26 20.82 23.019.27 12.70 15.09 18.26 21.44 25.40 28.58

10.31 14.27 17.48 21.44 25.40 28.58 33.3211.13 15.09 19.05 23.83 27.79 31.75 35.7112.70 16.66 21.44 26.19 30.96 36.53 40.4914.27 19.05 23.83 29.36 34.93 39.67 45.24

SCHED. 40

SCHED. 60

SCHED. 80

SCHED. 100

SCHED. 120

SCHED. 140

SCHED. 160

K19
Class 1 division 1 full description A Location Class 1 is any 1-mile section [with 1/4-mile width] that has 10 or fewer buildings intended for human occupancy. A Location Class 1 is intended to reflect areas such as wasteland, deserts, mountains, grazing land, farmland, and sparsely populated areas. [Div1 has been hydrostatically tested to 1.25 times the maximum operating pressure.]
K20
Class 1 division 2 full description A Location Class 1 is any 1-mile section [with 1/4-mile width] that has 10 or fewer buildings intended for human occupancy. A Location Class 1 is intended to reflect areas such as wasteland, deserts, mountains, grazing land, farmland, and sparsely populated areas. [Div2 has been hydrostatically tested to 1.1 times the maximum operating pressure.]
K21
Class 2 full description A Location Class 2 is any 1-mile section [with 1/4-mile width] that has more than 10 but fewer than 46 buildings intended for human occupancy. A Location Class 2 is intended to reflect areas where the degree of population is intermediate between Location Class 1 and Location Class 3, such as fringe areas around cities and towns, industrial areas, ranch or country estates, etc.
K22
Class 3 full description A Location Class 3 is any 1-mile section [with 1/4-mile width] that has 46 or more buildings intended for human occupancy except where a Location Class 4 prevails. A Location Class 3 is intended to reflect areas such as suburban housing developments, shopping centres, residential areas, industrial areas, and other populated areas not meeting Location Class 4 requirements.
K23
Class 4 full description A Location Class 4 includes areas where multistory buildings are prevalent, where traffic is heavy or dense, and where there may be numerous other utilities underground. Multistory means four or more floors above ground including the first or ground floor. The depth of basements or number of basement floors is immaterial.
K24
Custom design factor Enter your own factor based on company guidelines or other consideration.
Page 27: Simple Pipeline Sizing

15.09 20.62 26.19 32.54 38.10 44.45 50.0122.23 28.58 34.93 41.28 47.63 53.98

17.48 24.61 30.96 38.89 46.02 52.37 59.54

17.4817.4819.05

Page 28: Simple Pipeline Sizing

CONSTANTS & UNIT LOOKUP TABLES

DETAILSAndrew Hooks11/15/2007Version 1

PREFIXESMetricPrefix long form valuem milli 0.001c centi 0.01k thousand 1000M million/mega 1E+06B billion 1E+09T tera 1E+12P peta 1E+15

ImperialPrefix long form valueM thousand 1000MM million 1E+06

BASIC CONSTANTS

Gas constant, R 8.31451

Grav. accel. 9.80665

MW (air) 28.964 kg/kmol

Standard T, P 2Std Pressure 101.325 kPaStd Temperature 288.15 K

Molar Volume 23.645

Common definitions for Standard T, P

Temp Abs Pres Molar Vol

K kPa

273.15 101.325 22.414

288.15 101.325 23.645

288.71 101.325 23.691

273.15 100 22.711

288.15 100 23.958

288.71 101.560 23.636

www.firstprincipleseng.net

kPa.m3/(kmol.K)

m/s2

m3/kgmol

m3/kgmol

0oC, 1atm (273.15K = 0'C = 32'F; 101.325kPa = 1atm = 14.696psia)

15oC, 1atm (288.15K = 15'C = 59'F)

60oF, 1atm (288.71K = 60'F = 15.56'C)

0oC, 100kPa

15oC, 100kPa

60oF, 14.73psia (100.232kPa = 14.73psia)

B42
Former IUPAC definition (Internation Union of Pure & Applied Science)
B45
IUPAC definition (Internation Union of Pure & Applied Science)
Page 29: Simple Pipeline Sizing

UNITSExampleClick the unit cell then select required unit from the dropdown listthat appears

Length 10 in0.254 m0.000 mile

Temperature 15 'C288.15 K

15 'C

LengthBase conversionsinches/foot 12 in/ftfeet/metre 3.281 ft/mfeet/mile 5280 ft/mi

Lookup tableUnit SI unitmm = 0.001 mcm = 0.01 mm = 1 mkm = 1000 min = 0.0254 mft = 0.3048 mmile = 1609.3 m

Area_smallLookup tableUnit SI unit

= 0.000001

= 0.000645

= 1

= 0.0929

Area_largeBase conversionshectare/km2 100 hct/km2 1 hectare is 100m x 100mft2/acre 43559.66 ft2/acre

Lookup tableUnit Metric Unit

= 1

= 0.6214

hectare = 0.01

acre = 0.0040468

mm2 m2

in2 m2

m2 m2

ft2 m2

km2 km2

mi2 km2

km2

km2

D68
feet/metre International foot is defined as 0.3048m. US Survey foot is defined as 1200/3937 = 0.30480061m but is only used in connection with surveys by the US Coast & Geodectic Survey (Wikipedia)
Page 30: Simple Pipeline Sizing

VolumeBase conversions

barrels/cubic meter 6.283

231Litres/Imperial(UK) gallon 4.54609 L/gallon(UK)

Lookup tableUnit SI unit

mL = 0.000001

= 0.000001

L = 0.001

= 1

= 1.639E-05

= 0.0283 (35.31 ft3/m3)

bbl = 0.1592

gallon (US) = 0.00379 (264.2 gallon/m3)

gallon (UK) = 0.00455 (220 gallon/m3)

MassBase conversionspounds/kilogram 2.20462 lbl/kgpound/ton (short) 2000 lbl/tnpound/ton (long) 2240 lbl/ton

Lookup tableUnit SI unitmg = 0.000001 kgg = 0.001 kgkg = 1 kgtonne (metric) = 1000 kglbl = 0.454 kgton (short) = 907.2 kgton (long) = 1016.0 kg

ForceBase conversionsForce = mass * accelerationDyn 1.00E-05 N

Lookup tableUnit SI unitN = 1 NmN = 0.001 Nkg(f) = 9.80665 N 1kg * gravitational accelerationlbl(f) = 4.44823 NDyn = 0.00001 N

bbl/m3

in3/US gallon in3/gallon

m3

cm3 m3

m3

m3 m3

in3 m3

ft3 m3

m3

m3

m3

Page 31: Simple Pipeline Sizing

PressureBase conversionsPressure is force per unit area

kPa/Atmosphere 101.325 kPa(A)/atm(A) Atmospheric pressure at sealevel in kPakPa/bar 100 kPa/barbara/Atmosphere 1.01325 bara/atm The atmospheric pressure in bar at sealevel is 1.01325 barbarg/Atmosphere 0 barg/atmpsia/Atmosphere 14.696 psia/atm(A) The atmospheric pressure in psi at sealevel is 14.696 psipsi/bar 14.504 psi/bar

Lookup table!!! Order is important - multiply first then add the constant !!!

Unit Multiplier Constant SI unitPa(A) 0.001 0 kPa(A)kPa(A) 1 0 kPa(A)kPa(G) 1 101.325 kPa(A)MPa(A) 1000 0 kPa(A)MPa(G) 1000 101.325 kPa(A)bara 100 0 kPa(A)barg 100 101.325 kPa(A)psia 6.895 0 kPa(A)psig 6.895 101.325 kPa(A)atm(A) 101.325 0 kPa(A)atm(G) 101.325 101.325 kPa(A)

98.0665 0 kPa(A)

Pressure differenceLookup tableUnit SI unitPa = 0.001 kPakPa = 1 kPambar = 0.100 kPabar = 100 kPapsi = 14.504 kPaatm = 101.325 kPa

= 98.0665 kPamH2O = 9.80665 kPa

TemperatureBase conversions

Constant

Deg Celcius / Kelvin 273.15Fahrenheit 459.67 RankineRankine/Kelvin 1.8 0 R/K

Pa = N/m2 = kg.(m/s2)/m2 = kg/(m.s2)

kg/cm2(A) [kg/cm2 * (100cm/m)2] * (grav accel) = N/m2 = kg * (grav accel) /m2

kg/cm2

oC/K

X barg = X barg + atm P = Y bara; eg. 1barg + 1.013 = 2.013bara1 bar = 100kPa --> X barg = [100*(X barg + 1.013bar/atm)] kPa(A), or = [100*X + 101.325] kPa(A)X bara = (X - 1.013)barg * 100kPa/bar + 101.3kPa/atm = X*100kPa(A)

Converting to psia first would give the same result, ie.the following are equivalent:[X psig + (14.5*1.013=14.7)] psia * (1kPa / 14.5psi) = kPa(A)orX psig * (100/14.5=6.895) kPa(G) + 101.3 kPa/atm = kPa(A)

D163
psia/atm= [lbl/in^2 * (100cm/m)2] * (grav accel) = N/m2 = kg * (grav accel) /m2
Page 32: Simple Pipeline Sizing

Lookup table!!! Order is important - multiply first then add the constant !!!

Unit Multiplier Constant SI unit'C 1 273.15 KK 1 0 K'F 0.556 255 KR 0.556 0 K

Time_smallLookup tableUnit SI unitms = 0.001 ss = 1 smin = 60 shour = 3600 sday = 86400 s

Time_largeLookup tableUnit "SI Unit"hour = 0.0417 dayday = 1 daymonth = 30.4 dayyear = 365.25 day

Volume rate - Gas (standard conditions)Lookup tableSelect standard T, P from the in-cell drop down list

Unit Std T, P Multiplier "SI Unit"

15oC, 1atm 1

0oC, 100kPa 0.000267

15oC, 1atm 11.574

Mscf/d 60oF, 1atm 0.000328

MMscf/d 60oF, 1atm 0.328

Bscf/y 60oF, 1atm 0.900

kgmol/h 0.00657

lbmol/h 0.00298

Volume rate - Gas (actual conditions)Lookup tableUnit "SI Unit"

= 1

= 0.000278

= 11.574

Mcf/d = 0.000328

sm3/s sm3/s

Nm3/h sm3/s

Mm3/d sm3/s

sm3/s

sm3/s

sm3/s

sm3/s

sm3/s

am3/s am3/s

am3/h am3/s

Mm3/d am3/s

am3/s

Page 33: Simple Pipeline Sizing

MMcf/d = 0.328

Volume rate - LiquidLookup tableUnit "SI Unit"

L/s = 1000

L/min = 16.67

L/h = 0.278

L/d = 0.01157

= 1

= 0.002738

= 1.15741E-05

bbl/d = 1.842E-06

k.bbl/d = 0.001842125

gph (US) = 1.0515E-06 gallons/hour

gpd (US) = 4.38126E-08

gph (UK) = 1.2628E-06

gpd (UK) = 5.26168E-08

Liquid - Gas RatioLookup tableUnit "SI unit"

= 1

bbl/MMscf = 5.6207

Gas - Liquid RatioLookup tableUnit "SI unit"

= 1

scf/bbl = 0.178

Mass rateLookup tableUnit SI unitkg/s = 1 kg/skg/h = 0.000278 kg/st/d = 0.011574 kg/st/y = 3.17E-05 kg/slbl/s = 0.454 kg/slbl/h = 5.25E-06 kg/s

VelocityLookup tableUnit SI unit

am3/s

m3/s

m3/s

m3/s

m3/s

m3/s m3/s

m3/h m3/s

m3/d m3/s

m3/s

m3/s

m3/s

m3/s

m3/s

m3/s

m3/Mm3 m3/Mm3

m3/Mm3

m3/m3 m3/m3

m3/m3

Page 34: Simple Pipeline Sizing

m/s = 1 m/skm/h = 0.278 m/sft/s = 0.3048 m/smi/h = 0.4470 m/s

AccelerationLookup tableUnit SI unit

= 0.001

= 1

= 1000

= 0.025

= 0.305

mi/(h.s) = 0.447

= 1609

DensityLookup tableUnit SI unit

= 1.00E-09

= 1

= 16.018

EnergyBase conversions

1Joules/Calorie 4.1868 J/CalJoules/BTU 1055.056 J/BTU

Lookup tableUnit SI unitJ = 0.001 kJkJ = 1 kJCal = 0.0041868 kJkCal = 4.1868 kJBTU = 1.055056 kJ

Energy rateLookup tableUnit "SI unit"TJ/d = 1 TJ/dPJ/y = 1000 TJ/d

PowerBase conversions

mm/s2 m/s2

m/s2 m/s2

km/s2 m/s2

in/s2 m/s2

ft/s2 m/s2

m/s2

mi/s2 m/s2

g/cm3 kg/m3

kg/m3 kg/m3

lbl/ft3 kg/m3

Joules/(kgm2/s2) J/(kgm2/s2)

B331
A Joule is defined as the work done, or energy expended, by a force of 1 Newton moving one metre. J = N/m = (kg.m/s2).m = kgm2/s2
B332
International Steam Table Calorie (1 calorie is the energy required to raise the temperature of 1 gram of water by 1degree Celsius. Definitions differ slightly depending on initial temperature.)
B333
ISO standard definition (1 BTU is the amount of energy required to raise the temperature of 1 pound of water one degree Fahrenheit. Definitions differ slightly depending on the initial temperature).
E344
Energy rate: Sometimes used to describe flow rate therefore tabled separately from power
Page 35: Simple Pipeline Sizing

(BTU/h) / kW 3412.1 (BTU/h)/kW

Lookup tableUnit SI unitW = 0.001 kWkW = 1 kWMW = 1000 kWHp = 0.746 kWBTU/h = 0.00029 kW

Heating value (volume basis)Lookup tableUnit "SI unit"

= 1

MJ/kgmol = 0.042292

MJ/scf = 35.315

= 0.001055

BTU/scf = 0.037259

BTU/lbmol = 0.000098

kcal/lbmol = 0.000390

Heating value (mass basis)Lookup tableUnit "SI unit"MJ/kg = 1 MJ/kgBTU/kg = 0.00106 MJ/kgBTU/lb = 0.00233 MJ/kgkcal/lb = 0.00923 MJ/kgkcal/kg = 0.00419 MJ/kg

Heat capacityLookup tableUnit "SI unit"J/K = 1 J/KBTU/'F = 1899 J/Kcal/'C = 4.187 J/K

Specific heat capacityLookup tableUnit "SI unit"J/(kg.K) = 1 J/(kg.K)J/(g.K) = 1000 J/(kg.K)BTU/(lb'F) = 4187 J/(kg.K)cal/(g'C) = 4187 J/(kg.K)

Thermal conductivity

MJ/m3 MJ/m3

MJ/m3

MJ/m3

BTU/m3 MJ/m3

MJ/m3

MJ/m3

MJ/m3

Page 36: Simple Pipeline Sizing

Lookup tableUnit "SI unit"W/(m.K) = 1 W/(m.K)BTU/(h.ft'F) = 1.731 W/(m.K)

= 0.144 W/(m.K)cal/(sm'C) = 4.187 W/(m.K)

Heat transfer coefficientLookup tableUnit "SI unit"

= 1

= 5.678

= 4.19E-04

= 1.163

Dynamic (Absolute) ViscosityBase conversionsPa.s = 1 kg/m/sPoise = 1 g/cm/s (Water has viscosity of ca. 1cP at 20'C (1.002))

Lookup tableUnit "SI unit"cP = 0.001 Pa.sPoise = 0.1 Pa.sPa.s = 1 Pa.s

Kinematic Viscosity Kinematic viscosity = Dynamic viscosity / Density for a Newtonian fluidBase conversions

Stoke = 1

Lookup tableUnit "SI unit"

= 1

St = 0.0001

cSt = 0.000001

Surface tensionLookup tableUnit "SI unit"T = 1 N/mN/m = 1 N/mmN/m = 0.001 N/mlbl(f)/in = 175.13 N/mdyn/cm = 0.001 N/m

BTU.in/(h.ft2'F)

W/(m2K) W/(m2K)

BTU/(h.ft2'F) W/(m2K)

cal/(s.cm2K) W/(m2K)

kcal/(h.m2K) W/(m2K)

cm2/s

m2/s m2/s

m2/s

m2/s

Page 37: Simple Pipeline Sizing

(273.15K = 0'C = 32'F; 101.325kPa = 1atm = 14.696psia)

(288.15K = 15'C = 59'F)

(288.71K = 60'F = 15.56'C)

(100.232kPa = 14.73psia)

Page 38: Simple Pipeline Sizing

1 hectare is 100m x 100m

Page 39: Simple Pipeline Sizing

(264.2 gallon/m3)

(220 gallon/m3)

1kg * gravitational acceleration

Page 40: Simple Pipeline Sizing

Atmospheric pressure at sealevel in kPa

The atmospheric pressure in bar at sealevel is 1.01325 bar

The atmospheric pressure in psi at sealevel is 14.696 psi

[kg/cm2 * (100cm/m)2] * (grav accel) = N/m2 = kg * (grav accel) /m2

X barg = X barg + atm P = Y bara; eg. 1barg + 1.013 = 2.013bara1 bar = 100kPa --> X barg = [100*(X barg + 1.013bar/atm)] kPa(A), or = [100*X + 101.325] kPa(A)X bara = (X - 1.013)barg * 100kPa/bar + 101.3kPa/atm = X*100kPa(A)

Converting to psia first would give the same result, ie.the following are equivalent:[X psig + (14.5*1.013=14.7)] psia * (1kPa / 14.5psi) = kPa(A)orX psig * (100/14.5=6.895) kPa(G) + 101.3 kPa/atm = kPa(A)

Page 41: Simple Pipeline Sizing

(Water has viscosity of ca. 1cP at 20'C (1.002))

Kinematic viscosity = Dynamic viscosity / Density for a Newtonian fluid