simulation based lifecycle costs of inground insulation for heated concrete slabs

4
www.seipub.org/ijepr International Journal of Engineering Practical Research (IJEPR) Volume 2 Issue 4, November 2013 178 Simulation Based Lifecycle Costs of Inground Insulation for Heated Concrete Slabs Colin Simmer *1 , Min Wu 2* *1 [email protected]; 2* Corresponding author: [email protected] Abstract This case study investigated the costs and savings of in ground concrete insulation systems for a home situated in the cooler Australian climates of Canberra, Hobart and Thredbo. EnergyPlus V7.2 was used to determine the annual heating energy requirements for various combinations of insulation systems and soil thermal conductivity values. The costs savings attributed to the in ground insulation were life cycle over 25 years using low, median and high heating energy cost scenarios. The results indicated that in most scenarios the concrete insulation as stipulated by the Building Code of Australia (BCA) is not the most cost effective solution. Keywords Concrete; Insulation; Life Cycle; EnergyPlus; Heat; Ground; Canberra; Thredbo; Hobart Introduction The Nationwide House Energy Rating Scheme (NatHERS) and the Building Sustainability Index (BASIX) schemes are the embodiment of the national push to increase building energy efficiencies across Australia. This drive for efficiency has resulted in a community mindset that frequentlyresults in building professionals over specifying insulation such as that used to insulate heated concrete slabs on ground. This study investigated the cost effectiveness of in ground insulation for heated concrete slabs for a particular building in the cooler Australian climates using EnergyPlus V7.2 building energy simulation software. The Case Study EnergyPlus Model The Building Model The case study building has a rectangular floor plan 30m by 10m and its construction is atypical for Australia. The building follows passive solar design principles in that the 30m length North facing wall has the most glazing (39m 2 ), the south wall as a moderate amount of glazing (18m 2 ) and the East and West walls have no glazing. Standard EnergyPlus constructions/ materials were used where possible to model the building in EnergyPlus V7.2, and some imperial units and American R values are used in table 1. TABLE 1BUILDING MODEL CONSTRUCTION Building element EnergyPlus construction/material layers Note: EnergyPlus construction/material libraries use imperial units even though the program operates in SI units External Walls 3m high 1. Poured ConcreteSand And Gravel or Stone Aggregate Concrete 4 in. 150 lb/ft3 2. Poured ConcreteSand And Gravel or Stone Aggregate Concrete 4 in. 150 lb/ft3 3. Poured ConcreteSand And Gravel or Stone Aggregate Concrete 4 in. 150 lb/ft3 4. Expanded Polystyrene Molded Beads 2 in. 5. WoodFramed 4 in. Studs 24 in. OC R11 Cavity Insulation 6. Gypsum or Plaster Board 3/8 in. hip roof 1. Metal Decking 2. Glass Fiber Organic Bonded 2 in. Notes: Pitch 22.50, Eaves600mm wide Roof 1. Metal Decking 2. Glass Fiber Organic Bonded 2 in. Ceiling 1. Plaster Board 3/8 in. 2. WoodFramed 4 in. Studs 24 in. 3. OC R11 Cavity Insulation 4. Glass Fiber Organic Bonded 3 in. 5. Glass Fiber Organic Bonded 3 in Floor slab 1. Heavyweight Concrete 65mm 2. Resistive Electric Heating elements spaced 300mm apart 3. Heavyweight Concrete 65mm Doors 1. 40mm solid wood Windows Ufactor:3.0 W/m2K Solar heat gain coefficient:0.43 Visible transmittance0.44 Model Loads and Environment Heating loads attributed by people or appliances were not included in the model due to the low occupancy density of the building. An infiltration rate of 20 litres per second was used and an automatic natural ventilation system was introduced to help cool the house in summer and warm in winter when the difference between indoor and outdoor temperatures was favourable. The sub program “SLAB” was employed to model the

Upload: shirley-wang

Post on 02-Apr-2016

215 views

Category:

Documents


0 download

DESCRIPTION

http://www.seipub.org/ijepr/paperInfo.aspx?ID=13230 This case study investigated the costs and savings of in ground concrete insulation systems for a home situated in the cooler Australian climates of Canberra, Hobart and Thredbo. EnergyPlus V7.2 was used to determine the annual heating energy requirements for various combinations of insulation systems and soil thermal conductivity values. The costs savings attributed to the in ground insulation were life cycle over 25 years using low, median and high heating energy cost scenarios. The results indicated that in most scenarios the concrete insulation as stipulated by the Building Code of Australia (BCA) is not the most cost effective solution.

TRANSCRIPT

Page 1: Simulation Based Lifecycle Costs of Inground Insulation for Heated Concrete Slabs

www.seipub.org/ijepr               International Journal of Engineering Practical Research (IJEPR) Volume 2 Issue 4, November 2013 

 

178  

Simulation Based Lifecycle Costs of Inground 

Insulation for Heated Concrete Slabs Colin Simmer*1, Min Wu2* 

*[email protected]; 2*Corresponding author: [email protected] 

 

Abstract 

This  case  study  investigated  the  costs  and  savings  of  in 

ground  concrete  insulation  systems  for  a  home  situated  in 

the  cooler  Australian  climates  of  Canberra,  Hobart  and 

Thredbo. EnergyPlus V7.2 was used to determine the annual 

heating  energy  requirements  for  various  combinations  of 

insulation systems and soil thermal conductivity values. The 

costs savings attributed to the in ground insulation were life 

cycle  over  25  years  using  low,  median  and  high  heating 

energy  cost  scenarios.  The  results  indicated  that  in  most 

scenarios  the  concrete  insulation  as  stipulated  by  the 

Building  Code  of  Australia  (BCA)  is  not  the  most  cost 

effective solution. 

Keywords 

Concrete;  Insulation;  Life  Cycle;  EnergyPlus;  Heat;  Ground; 

Canberra; Thredbo; Hobart 

Introduction

The Nationwide House Energy Rating Scheme 

(NatHERS)  and  the  Building  Sustainability  Index 

(BASIX)  schemes are  the embodiment of  the national 

push  to  increase  building  energy  efficiencies  across 

Australia.  This  drive  for  efficiency  has  resulted  in  a 

community mindset that frequentlyresults in building 

professionals  over  specifying  insulation  such  as  that 

used to insulate heated concrete slabs on ground. This 

study  investigated  the cost effectiveness of  in ground 

insulation  for  heated  concrete  slabs  for  a  particular 

building  in  the  cooler  Australian  climates  using 

EnergyPlus V7.2 building energy simulation software. 

The Case Study EnergyPlus Model

The Building Model 

The  case  study  building has  a  rectangular  floor plan 

30m  by  10m  and  its  construction  is  atypical  for 

Australia.  The  building  follows  passive  solar  design 

principles in that the 30m length North facing wall has 

the most glazing (39m2), the south wall as a moderate 

amount of glazing (18m2) and the East and West walls 

have  no  glazing.  Standard EnergyPlus  constructions/ 

materials  were  used  where  possible  to  model  the 

building in EnergyPlus V7.2, and some imperial units 

and American R values are used in table 1.  

TABLE 1BUILDING MODEL CONSTRUCTION 

Building 

element 

EnergyPlus construction/material layers 

Note: EnergyPlus construction/material libraries use 

imperial units even though the program operates in SI units

External W

alls 

3m high 

1. Poured  Concrete‐  Sand  And  Gravel  or  Stone 

Aggregate Concrete ‐ 4 in. ‐ 150 lb/ft3 

2. Poured  Concrete‐  Sand  And  Gravel  or  Stone 

Aggregate Concrete ‐ 4 in. ‐ 150 lb/ft3 

3. Poured  Concrete‐  Sand  And  Gravel  or  Stone 

Aggregate Concrete ‐ 4 in. ‐ 150 lb/ft3 

4. Expanded Polystyrene ‐ Molded Beads ‐ 2 in. 

5. Wood‐Framed ‐ 4 in. Studs ‐ 24 in. OC ‐ R‐11 Cavity 

Insulation 

6. Gypsum or Plaster Board ‐ 3/8 in. 

hip roof  1. Metal Decking 

2. Glass Fiber ‐ Organic Bonded ‐ 2 in. 

Notes:  Pitch ‐  22.50, Eaves‐ 600mm wide 

Roof  1. Metal Decking 

2. Glass Fiber ‐ Organic Bonded ‐ 2 in. 

Ceiling 

1. Plaster Board ‐ 3/8 in. 

2. Wood‐Framed ‐ 4 in. Studs ‐ 24 in. 

3. OC ‐ R‐11 Cavity Insulation 

4. Glass Fiber ‐ Organic Bonded ‐ 3 in. 

5. Glass Fiber ‐ Organic Bonded ‐ 3 in 

Floor slab 

1. Heavyweight Concrete ‐ 65mm 

2. Resistive  Electric Heating  elements  spaced  300mm 

apart 

3. Heavyweight Concrete ‐ 65mm 

Doors 

1. 40mm solid wood 

Windows 

U‐factor:3.0 W/m2K 

Solar heat gain coefficient:0.43 

Visible transmittance0.44 

Model Loads and Environment 

Heating loads attributed by people or appliances were 

not  included  in  the model due  to  the  low occupancy 

density of the building. An infiltration rate of 20 litres 

per  second  was  used  and  an  automatic  natural 

ventilation  system  was  introduced  to  help  cool  the 

house  in  summer  and  warm  in  winter  when  the 

difference between  indoor  and outdoor  temperatures 

was favourable. 

The sub program “SLAB” was employed to model the 

Page 2: Simulation Based Lifecycle Costs of Inground Insulation for Heated Concrete Slabs

International Journal of Engineering Practical Research (IJEPR) Volume 2 Issue 4, November 2013              www.seipub.org/ijepr  

    179

ground heat  transfer  and  the default EnergyPlus  soil 

properties  of  density:  1200kg/m3  and  specific  heat: 

1200 J/kg∙K were used. Thermal conductivity which is 

greatly  influenced  by  moisture  levels  is  the  soil 

property  which  most  affects  heat  transfer  and  is 

difficult to estimate because it can vary across the site, 

with depth and time. The range of values used  in the 

model for soil thermal conductivity (λ) is based on the 

recommendations  for an “Unknown” soil class  found 

in  the  AHSRAE  Research  Project  Report  RP‐701.  The 

recommended  general  estimates  of  0.3,  1.2  and  2.6 

W/m∙K  for  low,  median  and  high  values  of  soil 

thermal  conductivity were  replaced with  0.6, 1.5 and 

2.6 W/m∙K because suspected convergence issues with 

the  SLAB  sub‐program  caused  the  program  to  crash 

when the value of λ was less than 0.6 W/m∙K. 

The  EnergyPlus  weather  files  for  Canberra  Airport, 

ACT Hobart, Tasmania and Thredbo, NSW are based 

on data provided by the Australia Greenhouse Office. 

Concrete Slab Insulation 

Fifteen  ground  insulation  scenarios were modelled  , 

combinations of 600mm height vertical insulation and 

horizontal  insulation  placed  around  the  perimeter  at 

three different widths 1.2, 2.4 and 5.0m with R values 

of 0, 1.0 and 2.0(see figure 1).  

 FIG. 1 INSULATION CONFIGURATIONS 

System Costs

Insulation 

Rigid  extruded  polystyrene  board  (XPS)  is  the 

insulation chosen for the modelling. This is the sort of 

insulation typically used in ground for slab insulation; 

which  complies  with  all  the  Building  Code  of 

Australia  (BCA)  requirements  for  strength  and 

durability. The material cost was obtained as a quote 

from a  leading Canberra  supplier and  the excavation 

and  labour  costs  for  insulation  installation  were 

derived from a construction cost guide.  

Heating 

The  EnergyPlus  simulations  only  simulate  resistive 

electric heating because this simplified the modelling. 

The  assumption  is  made  that  the  resulting  energy 

requirements  are  equivalent  for  the  hydronic  heated 

systems.  The  three  different  heating/energy  systems 

investigated were: 

1) Slab hydronically heated by a wood fired heat 

exchanger  with  an  efficiency  of  75%  using 

home  cut wood  at  an  estimated  $160/t    (low 

heating energy cost) 

2) Slab  hydronically  heated  by  a  Natural  gas 

boiler with  an  efficiency of  95% using natural 

gas  costed  at  $0.02825/MJ  (median  heating 

energy cost) 

3) Resistive electric heating with a heating efficiency 

of 100% using electricity costed at the peak rate 

of $0.2014/kWhr(high heating energy cost) 

Note:  A  figure  of  15.7MJ/kg  is  used  for  the  energy 

content of typical for air dried Australian hardwood. 

The EnergyPlus simulations

At  a  room  air  thermostat  set  to  be  190C  each 

EnergyPlus  simulation  gave  a  result  of  an  annual 

energy requirement (in Joules) to heat the building. In 

all  135  simulations were  run,  45for  each  of  the  three 

weather  files  (Canberra,  Hobart  and  Thredbo).  The 

designation of each EnergyPlus simulation is based on 

the  particular  insulation  system  and  the  soil 

conductivity  used  for  that  run  and  is  designated 

byKxxVxHxWx where:‐ 

Kxx = soil conductivity (e.g. K06 = 0.6 W/m∙K) 

Vx= Vertical insulation R‐value (e.g. V1 = R1.0) 

Hx = Horizontal insulation R‐value (e.g. H2 = R2.0) 

Wx = Width of horizontal insulation (e.g. W12 = 1.2m)  

Note: W50 is 5m which covers the entire slab 

Life Cycle Cost Analysis (LCCA)

The energy savings of each insulation system over the 

corresponding non‐insulated scenario were calculated 

for  every  simulation  using  a  low, median  and  high 

cost  heating  energy  system.  The  energy  savings  and 

insulation costs were then amortised over 5, 10, 15, 20 

and 25 year periods using the following equation: 

fv=pv(1+r)n+pmt((1+r)n‐ (1+q)n) / (r‐q)where:  

fv=future value 

pv=present value (cost of insulation) 

pmt=payment (energy cost savings over uninsulated case) 

Page 3: Simulation Based Lifecycle Costs of Inground Insulation for Heated Concrete Slabs

ww

 

180

r=i

q=i

n=n

Re

Lo

Th

ene

gro

R1

sho

the

T

TA

ww.seipub.org

0

interest rate (

inflation (3%

number of p

esults

ow Cost Heat

he  life  cycle 

ergy  reveale

ound  insula

.0  insulation

own in table

ese results is 

TABLE 2 LEAST CO

Hom

Location  λ

Canberra  0

Canberra  1

Canberra  2

Thredbo  0

Thredbo  1

Thredbo  2

Hobart  0

Hobart  1

Hobart  2

FIG. 2 INS

ABLE 3LEAST COS

N

Location  λ

Canberra  0.6

Canberra  1.5

Canberra  2.6

Thredbo  0.6

Thredbo  1.5

Thredbo  2.6

Hobart  0.6

Hobart  1.5

Hobart  2.6

g/ijepr              

(5% per annu

% per annum

periods (years

ting Energy 

cost  analys

ed  that  in m

ation  is  une

n  is  cost  effe

e 2. A graphi

shown in Fi

OST INSULATION

me cut wood hy

λ  Least cos

0.6  Nil 

1.5  Nil 

2.6  Nil 

0.6  Nil 

1.5  Nil 

2.6  Nil 

0.6  Nil 

1.5  Nil 

2.6  Nil 

SULATION LCC

ST INSULATION SY

Natural gas hyd

  Least cos

5  10 

6  Nil  Nil 

5  Nil  Nil 

6  Nil  V1 

6  Nil  Nil 

5  Nil  V1 

6  Nil  V1 

6  Nil  Nil 

5  Nil  V1 

6  Nil  V1 

 International

um) 

s) 

sis  using  lo

most  situation

conomic  an

ective  in  thr

ical depiction

g. 2. 

N SYSTEMS FOR LO

ydronic slab hea

st insulation sys

10  15 

Nil  Nil 

Nil  Nil 

Nil  Nil 

Nil  Nil 

Nil  Nil 

Nil  Nil 

Nil  Nil 

Nil  Nil 

Nil  Nil 

CA FOR CANBE

YSTEMS FOR MED

ronic slab heati

st insulation sys

15 20 

Nil Nil 

V1 V1 

V1 V1 

Nil V1 

V1 V1 

V1 V1H1W

Nil Nil 

V1 V1 

V1 V1 

l Journal of En

ow  cost  heat

ns  the use o

nd  only  vert

ree  scenarios

n of a portion

OW COST HEATIN

ating 

stem for Year:‐

20  25

Nil  Nil

Nil  Nil

Nil  Nil

Nil  Nil

Nil  V1

V1  V1

Nil  Nil

Nil  Nil

Nil  V1

ERRA, λ=0.6 

DIAN COST HEAT

ng 

tem for Year:‐

25 

Nil 

V1 

V1 

V1 

V1H1W12

W12  V1H1W12

V1 

V1 

V1H1W12

ngineering Pra

ting 

of  in 

tical 

s  as 

n of 

NG 

TING 

2

2

2

Me

The

ene

ver

solu

por

Hig

Hig

mo

por

T

Loc

Can

Can

Can

Thr

Thr

Thr

Ho

Ho

Ho

actical Researc

FIG. 3 INS

edian Cost H

e  life cycle c

ergy  reveale

rtical  R1.0  in

ution as show

rtion of these

gh Cost Heat

gh  energy  c

ore  cost  effec

rtion of these

TABLE 4LEAST CO

Elect

cation λ

5

nberra 0.6 Nil

nberra 1.5 Nil

nberra 2.6 V1

redbo 0.6 Nil

redbo 1.5 V1

redbo 2.6 V1

obart 0.6 Nil

obart 1.5 Nil

obart 2.6 V1

FIG.  4 INSU

ch (IJEPR) Vol

SULATION LCC

Heating Energ

cost analysis 

ed  that  in  m

nsulation  w

wn in table 3

e results is sh

ting Energy 

costs  make  h

ctive  as  show

e results is sh

OST INSULATION S

tric resistive (pe

Least cost i

10 

l Nil 

l V1 

V1  V

l V1 

V1  V

V1H1‐W12  V

l Nil 

l V1 

V1 

ULATION LCC

lume 2 Issue 4

CA FOR HOBA

gy 

using medi

most  situatio

was  the  mos

3. A graphica

hown in Fig. 

higher  level

wn  in  table 

hown in Fig. 

SYSTEMS FOR HIG

eak rate) slab he

insulation system

15 

V1 

V1 

V1H1‐W12  V1H

V2 

V1H1‐W12  V1H

V2H2‐W12  V2H

V1  V1H

V1  V1H

V1  V1H

CA FOR THRED

4, November 2

RT, λ =1.5 

ian cost heat

ons  the  use

t  cost  effect

al depiction o

3. 

ls  of  insulat

4. A grapho

4. 

GH COST HEATIN

eating 

m for Year:‐ 

20  25

V1  V2

V1  V1H1W

H1W12 V1H1W

V2  V2

H1W12 V2H2W

H2W50 V2H2W

H1W12 V1H1W

H1W12 V1H1W

H1W12 V2H2W

DBO, λ = 2.6 

2013 

ting 

e  of 

tive 

of a 

tion 

of  a 

NG 

 

W12

W12

 

W12

W50

W12

W12

W50

Page 4: Simulation Based Lifecycle Costs of Inground Insulation for Heated Concrete Slabs

International Journal of Engineering Practical Research (IJEPR) Volume 2 Issue 4, November 2013              www.seipub.org/ijepr  

    181

Conclusions

The BCA states  that Canberra and Hobart designated 

as  climate  zone  7  and  as  such  a  minimum  of  the 

equivalent  of KxxV1H0W0  insulation  is  required  for 

heated  concrete  slabs.  Thredbo  in  climate  zone  8 

requires  KxxV1H2W50  as  a  minimum.  The  results 

show  that  if  a  reasonable  soil  thermal  conductivity 

estimate  can be determined  for  a  building  site,  large 

cost savings could be made if the optimum insulation 

system could be used. These savings could benefit the 

home  owner  directly  in  reducing  building  costs  or 

they could be used to  implement other energy saving 

or energy producing technologies which are more cost 

effective  such  as  heat  recovery  units, more  efficient 

windows or photovoltaic systems. 

REFERENCES 

ACTEW  AGL,  ʺACT  Natural  Gas  Residential  ActewAGL 

NG Regulated Offer,ʺ ed: ACTEW AGL,, 2013. 

ACTEW  AGL,  ʺACT  Electricity  Residential  ActewAGL 

Regulated Offer,ʺ 27/6/2013 2013. 

Environment Australia,  ʺReview of  literature on  residential 

firewood use, wood‐smoke and air toxicsʺ, 2002. 

G. Satish, L. S. Shen, and L. F. Goldberg, ʺAssessment of Soil 

Thermal  Conductivity  for Use  in  Building Design  and 

Analysis,ʺ  American  Society  of  Heating,  Refrigeration 

and Air‐Conditioning  Engineers, Atlanta, USA  RP‐701, 

1993. 

Rawlhouse  Publishing  Pty  Ltd,  ʺRawlinsons  Australian 

Construction  Handbook,ʺ  ed.  Perth:  Rawlhouse 

Publishing Pty Ltd, 2012. 

S.  Andolsun,  C.  H.  Culp,  J.  Haberl,  and  M.  J.  Witte, 

ʺEnergyPlusvs DOE‐2.1 e: The effect of ground coupling 

on cooling/heating energy requirements of slab‐on‐grade 

code  houses  in  four  climates  of  the  US,ʺ  Energy  and 

Buildings, 2012. 

 

Colin  Simmer,  Bachelor  of  Construction  Management 

(Building),  Faculty  of  Engineering  and  Built  Environment, 

University of Newcastle, Callaghan, NSW, Australia, 2013.  

Dr. Min Wu,  was  a  Professor  (on  leave)  Chongqing  Jiao 

Tong  University;  and  is  a  Senior  Lecturer,  School  of 

Architecture  and  Built  Environment,  the  University  of 

Newcastle, Australia.