simulation in materials summary

15
Simulation in Materials Summary Friday, 12/6/2002

Upload: melora

Post on 19-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Simulation in Materials Summary. Friday, 12/6/2002. MATLAB programming. Visualization: Stress matrix visualization Stress field visualization Color expression Simulation methods: Atomistic simulation Brownian movement Molecular dynamics (MD) Monte Carlo method (MC) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Simulation in Materials Summary

Simulation in MaterialsSummary

Friday, 12/6/2002

Page 2: Simulation in Materials Summary

MATLAB programmingVisualization:

Stress matrix visualizationStress field visualizationColor expression

Simulation methods:Atomistic simulation

Brownian movementMolecular dynamics (MD)Monte Carlo method (MC)

Continuum SimulationMaterial Point Method (MPM)Finite Element Method (FEM)

Page 3: Simulation in Materials Summary

Visualization

Stress field visualizationhole under stretchingcrack tip

Stress matrix visualizationhedgehog for 2D stress matrixbean-bag for 3D stress matrix

Color expressiondisplacement distribution in FEM

Page 4: Simulation in Materials Summary

Stress Distribution Visualization

Crack tip stress distribution

Stress distribution around a hole

Page 5: Simulation in Materials Summary

Hedgehog Method

σ xx σxy

σ yx σyy

⎡ ⎣ ⎢

⎤ ⎦ ⎥ =

1 22 1

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 6: Simulation in Materials Summary

Bean-Bag Method

σ11 σ12 σ13

σ21 σ 22 σ 23

σ31 σ 32 σ 33

⎣ ⎢ ⎢

⎦ ⎥ ⎥ =

1 2 32 2 −13 −1 1

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 7: Simulation in Materials Summary

Visualization of FEM Results

Displacementfield

Pixel:The smallest image-forming unit of a video display.

Page 8: Simulation in Materials Summary

Atomistic Simulation

Brownian movementMolecular dynamics (MD)Monte Carlo method (MC)

Page 9: Simulation in Materials Summary

Extension of Random WalkThis model is a two-dimensional extension of a random walk. Displayed is the territory covered by 500 random walkers. As the number of walkers increases the resulting interface becomes more smooth.

Page 10: Simulation in Materials Summary

Extension of particles from one room to two rooms

Page 11: Simulation in Materials Summary

Monte Carlo Method1. Current configuration: C(n)

2. Generate a trial configuration by selecting an atom at random and move it.

3. Calculate the change in energy for the trial configuration, U.

Page 12: Simulation in Materials Summary

Essence of MD

ax(i ) =Fx

(i ) +fx(i )

m(i)

ay(i ) =Fy

(i ) +fy(i )

m(i)

fx(i ) = fx

(i, j )

j≠i∑

fy(i ) = fy

(i, j )

j≠i∑

Internal forces External forces

Fx(i)

Fy(i)

Page 13: Simulation in Materials Summary

Continuum Simulation

Material Point Method (MPM)Finite Element Method (FEM)

Page 14: Simulation in Materials Summary

MPM

a x(n) = 1M (n) F x(n) + f x(n)( )

a y(n) = 1M (n) F y(n) + f y(n)( )

⎧ ⎨ ⎪

⎩ ⎪

v x(n) = 1

M (n) m( p)vx( p)N(n,p)

p∑

v y(n) = 1M (n) m( p)vy

( p)N(n,p)

p∑

⎨ ⎪

⎩ ⎪

Page 15: Simulation in Materials Summary

FEM

Tx(n) +Fx

(n) = Kxx(n,n')ux

(n') +Kxy(n,n')uy

(n')( )n'∑

Ty(n) +Fy

(n) = Kyx(n,n')ux

(n') +Kyy(n,n')uy

(n')( )n'∑