simulation of chromatographic band transport · 2008/10/10  · ©2007 waters corporation...

16
©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele, Uwe Neue Waters Corp October 10, 2008 Boston Comsol Conference Presented at the COMSOL Conference 2008 Boston

Upload: others

Post on 30-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation

Simulation of chromatographic band transport

Bernard Bunner, Antoni Kromidas, Marianna Kele, Uwe Neue

Waters Corp

October 10, 2008Boston Comsol Conference

Presented at the COMSOL Conference 2008 Boston

Page 2: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 2

Outline

1. About chromatography2. Detector cell: Band transport in open fluid

→ Navier-Stokes + convection-diffusion

3. Microfluidic chip: Band transport in a packed bed:+ Darcy’s law

4. Thermal effects in 2.1 mm column+ heat equation

Page 3: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 3

What is chromatography?

Pass a mixture of chemical species dissolved in a liquid mobile phase through a stationary phase physically located in a column

Depending on chemical affinity of the different species with the stationary phase, they elute at different times ⇒ separation

Page 4: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 4

An HPLC system

Page 5: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 5

Detector

0.0025” Ø0.005” Ø

200 um Ø200 um Ø

flow in

geometry mesh

flow out

Page 6: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 6

Governing equations

Incompressible Navier-Stokes

Convection-diffusion for analyte band

numerical vs physical diffusion

uuutu

2. ∇=∇+∂∂ µρρ

CDCutC 2. ∇=∇+∂∂

t

inlet

outlet

2inσ 2

outσ

Page 7: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 7

Velocity field

Page 8: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 8

Band transport

Page 9: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 9

Transport in a packed bed

Solvent: Darcy’s law

superficial velocity

permeability void fraction

Solute:

linear velocity

evolution of concentration

effective diffusion coefficient

plate height (Van Deemter)

02 =∇ P

( )232

1180 εε−

= pdk

PkUs ∇−=µ

tot

m

VV

CDCutC

eff2. ∇=∇+

∂∂

t

sUuε

=

2uHDeff =

( ) uDd

uDduH

mol

pmolp 6

5.12

++=

Page 10: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 10

Microfluidic chip: inlet/outlet vias

Dvia 500 um

75 um

25 um

bed

fluid

t=0

t=22.5 s

t=20 s

t=17.5 s

t=15 s

t=12.5 s

t=10 s

t=5 s

t=0.5 s

Page 11: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 11

Microfluidic chip: inlet/outlet vias

0

5

10

15

20

25

50 100 150 200 250

Dvia (um)

Hef

f (um

)

Page 12: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 12

Microfluidic chip: bends

6.75

7

7.25

7.5

7.75

8

0 0.5 1 1.5

R (mm)

Hef

f (um

)

Page 13: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 13

Thermal effects in 2.1 mm columns

2.1 mm ID columnpacked with

1.7 um particles

retainingfrit

retainingfrit

Page 14: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 14

Temperature field

adiabatic BCs

∆Tmax=16.6 K

isothermal BCs

∆Tmax=1.7 K

Page 15: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 15

Performance

Heating and the temperature dependence of viscosity and diffusion coefficient can combine to create a significant drop of performance

0

2000

4000

6000

8000

10000

12000

14000

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400

Q (ml/min)

N adiabaticisothermal

Page 16: Simulation of chromatographic band transport · 2008/10/10  · ©2007 Waters Corporation Simulation of chromatographic band transport Bernard Bunner, Antoni Kromidas, Marianna Kele,

©2007 Waters Corporation 16

0

2000

4000

6000

8000

10000

12000

14000

0.000 0.200 0.400 0.600 0.800 1.000 1.200

Q (ml/min)

plat

e he

ight

no artificial diffusiond_id=0.01

Concluding remark

Effect of artificial and numerical diffusion in convection-diffusion problems: