sinaia, september 6-10, 20051 berndt klecker max-planck-institut für extraterrestrische physik,...

34
Sinaia, September 6-10, 2005 1 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions from Microscale to Global Models Sinaia, Romania, September 6 - 10, 2005 Heavy Ion Charge States in Solar Energetic Particle Events

Upload: berenice-griffith

Post on 29-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 1

Berndt Klecker

Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany

Workshop on

Solar Terrestrial Interactions from

Microscale to Global Models

Sinaia, Romania, September 6 - 10, 2005

Heavy Ion Charge States in

Solar Energetic Particle Events

Page 2: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 2

• Introduction

• Measurement Techniques

• Ionic Charge State (Fe , Ne, Mg, Si) in IP Shock /CME Related SEP

Events

• Ionic Charge States (Fe, Ne, Mg, Si) in 3He-rich and Heavy Ion-rich Events

• The Energy Dependence of Ionic Charge States - Mechanisms

• Summary

OUTLINE

Page 3: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 3

ENEGETIC PARTICLES IN THE HELIOSPHERE

Page 4: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 4

• Information on the Source

i.e. Solar (Solar Wind, Corona); Interstellar, e.g. He+ Pickup Ions

For Solar Source: Source Location (Temperature, Density)

• Important Information on Fractionation, Acceleration and Propagation

Processes

Injection, Acceleration and Propagation generally depend on Rigidity,

i.e. particle velocity v and M/Q

INTRODUCTION

Why are Ionic Charge States Important?

Page 5: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 5

WHERE DO SOLAR ENERGETIC PARTICLES COME FROM ?The Historical Development

Forbush, 1946

Phase 1:

Everything comes from Flares

Phase 2: ~ 70s to 90s

Flares and CMEs / Shocks

Impulsive and Gradual SEPs

Phase 3: Present

Flares and CMEs / ShocksRelative Contribution to SEPs under Debate

Classification of 2 distinct types of SEPs events in question. 

IMPULSIVEFLARES

GRADUALFLARES

DurationSXR < 1 h < 10 hγ SXR < 10 min < 10 min

Height ≤10 km ~5 ⋅10

Volume 10 -10 cm 10 -10 cmenerg y density high LowHa size small LargeDuration HXR < 10 min > 10 minDuration m < 5 min > 5 minMetri c Radio (I )I , III II,(III),IV

Lin, 1970; Pallavicini et al., 1977, Reames 1999

  He-rich gradualparticles electron rich proton rich

He/ He ~ 1 ~0.0005Fe/O ~ 1.23 ~ 0.15H/He ~ 10 ~ 100Q ~ 20 ~ 14Duration hours Days

Long. Distrib < 30° ≤ 80°Metric Radio III, V II,III,IV,VSolar Wind - Ipl. shockEvent Rate ~ 1000/a ~ 10/a

1st measurement of 2 GLEs

in 1942

Page 6: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 6

Average of 20 Events

Energy: 385 keV/nuc

IMPULSIVE EVENTS Average Elemental Abundances

• Mason et al., 2002, 2004

• Reames, 1999

NEW

Page 7: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 7

Results from early measurements at ~1 Mev/nuc:

Qm(Fe) ~12 -16

-> Te ~ 1.5-2 106 K

Coronal Temperatures

Q ~ Solar Wind, but somewhat larger (Fe)

EARLY RESULTS

for Large (gradual) IP-Shock Related SEP Events

Gloeckler et. al., 1976, Hovestadt et al. 1981, Luhn et al., 1984

Page 8: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 8

Qm (Fe) ~ 19-20, Qm (Si) ~14

-> Te ~107 K

EARLY RESULTS

for 3He-, Fe-rich (Impulsive) SEP Events

Klecker et al., 1984, Luhn et al., 1987

Page 9: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 9

EARLY RESULTS

Puzzle:

Gradual: Q at ~1 MeV/n similar to Solar Wind, but for some

ions (e.g. Fe) higher than in Solar Wind

Impulsive: Si fully ionized, i.e. M/Q=2

How can abundances be enhanced relative to C or O

(M/Q=2 for C - Si)

Question: Measurement only in small energy range at

~1MeV/nuc. How is Q at other energies?

Page 10: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 10

1) In-Situ Measurement (e.g. by Electrostatic Deflection)

Energy range from Solar Wind energies to a few MeV/amu

Advantage: Direct Measurement of E, M, Q, Q Distribution,

Energy Dependence Q (E)

2) Measurement of the Rigidity Cutoff in the Earth’s Magnetic Field

Measurement of M, E, Rcutoff > Determination of average Q

Advantage: Q Determination to High Energies of 10s of MeV/amu

3) Indirect Methods using information on Energy Spectra, Composition, or time-

intensity profiles

Disadvantage: Model dependent

IONIC CHARGE DETERMINATION

Measurement Techniques

Page 11: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 11

We want: E, M, Q Measurement of E/Q (electrostatic defl.)

E/M (e.g. time-of-

flight)

E (SSD)

Solar Wind: SWICS / Ulysses, SWICS/ACE, CTOF/SOHO

Suprathermal: STOF /SOHO, SEPICA/ACE

~ 0.2 - 0.6 Mev/nuc: SEPICA/ACE

~ 0.5 - 2.0 Mev/nuc: IMP-7/8, ISEE-1/3

IONIC CHARGE DETERMINATION

(1) In-Situ Measurements

Page 12: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 12

1) In-Situ Measurement (e.g. by Electrostatic Deflection)

Energy range from Solar Wind energies to a few MeV/amu

Advantage: Direct Measurement of E, M, Q, Q Distribution,

Energy Dependence Q (E)

2) Measurement of the Rigidity Cutoff in the Earth’s Magnetic Field

Measurement of M, E, Rcutoff > Determination of average Q

Advantage: Q Determination to High Energies of 10s of MeV/amu

3) Indirect Methods using information e.g. on Energy Spectra, Composition, or

time- intensity profiles

Disadvantage: Model dependent

IONIC CHARGE DETERMINATION

Measurement Techniques

Page 13: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 13

IONIC CHARGE DETERMINATION

(2) Rigidity Cutoff of the Earth’s Magnetic Field

10 1

10 2

55 60 65 70 75

Sampex/Lica0.85-1.25 MeV/nuc

Flux (particles/cm

2

-sec-sr-MeV/n)

Adjusted invariant latitude

normalization:average flux between 75-85degrees invariantlatitude

1H4He

16 O

Fe (group)

97311 0005 - 97313 1156

Mason et al., 1995; Mazur et al., 1995;

Leske et al., 1995; Oetliker et al., 1997

• Determine c(Rc) with ions of known charge (H+) on an orbit-by orbit bases

• Determine c for other ions

• Compute Qavg from Rc, c and E, M

Advantage:

Large Energy Range

Energy Dependence

Disadvantage:

Intensity needs to be large

SAMPEX

(polar Orbit, ~ 600 km altitude)

Page 14: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 14

IONIC CHARGE DETERMINATION

(2) Rigidity Cutoff Variations During SEP Events

Leske et al., 2001

• c(Rc) can vary by several degrees

during an event• Determine c for H+ or He2+ on an orbit by

orbit basis• Compute adjusted c from time variation

• Use c(Rc) or linear fit: cos4(c) = a Rc+b

to derive Qavg from Rc, c and v, M

Qavg = (M v) / (Rc e)

SAMPEX

Page 15: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 15

3) Indirect Methods using information e.g. on Energy Spectra, Composition, or

time - intensity profiles

Disadvantage: Model dependent

• Energy Spectra: M/Q dependent roll-over of spectra (Tylka et al.,

2000)

• Composition: M/Q-dependent fractionation effects (Cohen et al.,

1999)

Rigidity dependent interplanetary propagation:

• Time to maximum intensity (O’Gallagher et al, 1976, Dietrich & Tylka, 2003)

• SEP decay phase (Sollitt et al., 2003)

IONIC CHARGE DETERMINATION

Measurement Techniques

Page 16: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 16

IONIC CHARGE DETERMINATION

(3) Indirect Methods

1. FeX(E) ~ Eγ exp(-E/E0X)

2. E0X =E0H*(Q/M) 1

April 20-24, 1998Tylka et al., 2000

• Determine E0X, γ from spectral fit

• Determine M/Q from (2)

Page 17: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

17

IONIC CHARGE DETERMINATIONExperiments and Energy Range

EEARLY MEASUREMENTS FROM IMP-7 / 8, ISEE - 1/3

RECENT MEASUREMENTS FROM SAMPEX - SOHO - ACE

0

4

10-1 100 101 102 103 104 105

ENERGY (keV/nucleon)

Solar Wind

SWICS / ACE

Suprathermal and Energetic Particles

STOF / CELIAS / SOHO

SEPICA / ACE

LICA+HILT+MAST / SAMPEX

ULEZEQ / ISEE-1/3

Page 18: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 18

NEW RESULTS (SAMPEX-SOHO-ACE) Gradual Events: Mean Ionic Charge Varies With Energy

SAMPEX: Mason et al., 1995; Leske et al., 1995, Oetliker et al., 1997)

Systematic Increase of Q with Energy above ~10 MeV/amu, in particular for Fe

Oct. 1992

Page 19: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 19

NEW RESULTS (SAMPEX-SOHO-ACE) Gradual Events: Large Variability of Q (E)

Möbius et al., 1999, 2000, 2003; Bogdanov et al., 2000, Klecker et al. 2000, 2001, 2003; Popecki et al., 2000, 2001, 2003; Bamert et al., 2002; Labrador et al., 2003

Large Variability of Q (E) for Heavy Ions, in particular for Fe

At energies above ~200 keV/nuc:

Large VariabilityQFe(E) increasing at E > 10 Mev/nuc - often

QFe (E) increasing at ~ 1 MeV/nuc - some cases

At low energies of up to ~ 250 keV/amu:

Q similar to Solar Wind

0

10

20

30

40

50

60

0 5 10 15 20 25

Q STOF (x3)Q SEPICA (0.18-0.25 MeV/n)

IONIC CHARGE

1998, Day 121

Day 121, 1998 CME / IP Shock Event

0.01 - 0.1 MeV/n

SW: 10.1

Page 20: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 20

NEW RESULTS (SAMPEX-SOHO-ACE) Gradual Events: Mean Ionic Charge Varies With Energy

SAMPEX ResultsMason et al., 1995; Leske et al. 1995; Oetliker et. 1997; Mazur et al., 1999;Leske et al., 2001; Labrador et al., 2003

ACE ResultsMöbius et al., 1999, 2000, 2003; Bogdanov et al., 2000, Klecker et al. 2000, 2001, 2003; Popecki et al., 2000, 2001, 2003

Page 21: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 21

NEW RESULTS (ACE+SOHO) Impulsive Events: Mean Ionic Charge Increases ALWAYS with Energy

YEAR DATE Qm (Fe)0.18-0.43

Q

1998 252 00:29-253 23:45

17.5 0.60

1999 184 21:36-186 06:00

14.9 0.60

1999 201 02:19-202 22:19

16.5 0.60

2000 122 04:05-122 23:54

15.2 0.55

Möbius et al., 2003; Klecker et al, 2005

8

10

12

14

16

18

20

22

24

0.01 0.1

Event 1

Event 2

Event 3

Event 4

STOF-AVG (2-4)

Averge Charge of Fe

Energy (MeV/nuc)

Page 22: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 22

IMPULSIVE EVENTS Ionic Charge of Ne, Mg, Si, Fe (ACE)

6

10

14

18

22

26

0.1 1

9. September 1998

Q-NeQ-MgQ-SiQ-Fe

Energy (MeV/nuc)

SW / CME related SEP

6

10

14

18

22

26

0.1 1

20. July 1999

Q-Ne

Q-Mg

Q-Si

Q-Fe

Energy (MeV/nuc)

SW / CME related SEP

Page 23: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 23

THE ENERGY DEPENDENCE OF THE IONIC CHARGE Overview of Possible Mechanisms

1) Ionization by e, p in a dense plasma in the low corona

“Stripping Model”

2) Effect of Energy Spectra with M/Q-dependent roll-over

(i.e. Acceleration and Propagation effects)

2) Mixing of 2 Sources: Solar Wind Origin and Flare Origin (i.e Heavy Ion Rich)

Page 24: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 24

Comparison of Ionic Charge States with Stripping ModelI. The Equilibrium Case

The Equilibrium Case

Impact ionization by p + e

Radiative + dielectronic recombination

1. Qm at E < 0.1 MeV/amu depends on Te (electron distribution function)

2) Large Increase of Qm at E > 0.1 MeV/n by (p+e) impact ionization

Electrons: Maxwell distribution

Cross sections and rate coefficients:

Arnaud & Raymond, 1992, Mazzotta et al., 1998; Kovaltsov et al. 2001

4

8

12

16

20

24

28

0.01 0.1 1 10

CONeMgSiFe

Energy (MeV/nuc)

Te = 1.2 10

6

Te = 2 106

Te = 1 107

Ostryakov et al., 1999; Barghouty & Mewaldt, 1999; Kocharov et al., 2000

Klecker et al., 2005

Page 25: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 25

Comparison of Ionic Charge States with Stripping ModelII. The Non-Equilibrium Case

The Non-Equilibrium Case

Impact ionization by p + e

Radiative + dielectronic recombination

1) Qm depends on N*t

2) Equilibrium will be reached for

N * t ~ 1-10 * 1010 cm-3 s

(for E ~ 0.1 - 10 MeV/n)

3) Equilibrium N*t is energy

dependent

Kocharov et al., 2000

Q

24

20

16

12

8

Page 26: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 26

Comparison of Fe Ionic Charge State Datawith Stripping Model

The Equilibrium Case

1. Qm at E < 0.1 MeV/n consistent with Te 1.2 - 1.4 106 K

2) Large Increase of Qm at E > 0.1 MeV/n

N * t ~ 1 * 1010 cm-3 s

t ~ 1 - 100 s: N ~ 108 - 1010 cm-3

-> Acceleration low in Corona

3) Increase of Qm with E larger than

in equilibrium stripping model

What is missing?

Klecker et al., 2005

8

10

12

14

16

18

20

22

24

0.01 0.1 1

Event 1Event 2Event 3Event 4STOF-AVG

Te=1.2 106 K

Te=1.4106 K

Averge Charge of Fe

Energy (MeV/nuc)

Page 27: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 27

INTERPLANETARY TRANSPORTINCLUDING THE EFFECTS OF

Model, including acceleration Kartavykh et al., 2005

DIFFUSION CONVECTIONADIABATIC

DECELERATIONSOURCE

Energy Loss by Adiabatic Deceleration

1/E dE/dt = 4/3 Vsw / r s-1

Integrated (0.01 AU -> 1AU) energy loss depends on scattering mean free path and particle velocity.

Page 28: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 28

A MODEL FOR ACCELERATION AND TRANSPORT

Acceleration Model, including

At the Sun: Spatial and Momentum Diffusion,Ionization, Coulomb Losses

Interplanetary Space: Transport, including Spatial Diffusion, Convection, Adiabatic Deceleration.

Simultaneous fit of: Energy Spectra Intensity-time

profile QFe (E)

(Kartavykh et al., 2004, 2005)

Page 29: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 29

MODEL FITS FOR Ne, Mg, Si and Fe

July 3, 1999 Event July 20, 1999 Event

Page 30: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 30

THE ENERGY DEPENDENCE OF THE IONIC CHARGE 2. Effect of Energy Spectra with M/Q-dependent Roll-Over

Klecker et al, 2001

10-8

10-6

10-4

10-2

100

102

104

10-2 10-1 100 101 102

61014186101418

Fe Flux (relative units)

Energy (MeV/nuc)

Eo (Fe10+) = 0.2 MeV/n

Eo (Fe10+) = 2.0 MeV/n

Fe Charge

0

5

10

15

20

10-1 100 101

Q (E0=0.2)

Q (E0=0.5)

Q (E0=1)

Mean Ionic Charge

Energy (MeV/nuc)

= 1.0

Assumed Energy Spectra J(E) ~ E−γ ex p (-E/E0)with E0 (A/Q) = E0 (proto )n * (Q/ )A

(Ellison & Ramaty, 1985, Tylka e t a., l 2000)

Fe Mean Ionic Charge computed with sample SW-Fe ionic charge distribution

Page 31: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 31Mixing SW with QFe> 16+ from Impulsive EventsTylka et al. 2001

THE ENERGY DEPENDENCE OF THE IONIC CHARGE

3. Mixing of 2 Populations

Page 32: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 32

SUMMARY-1Impulsive Events

• All non Interplanetary Shock related 3He-rich, Fe-rich events investigated so

far show

Qm (Fe) ~11 - 13 at 10 - 100 keV/n with a steep increase of Qm (Fe) to

Qm (Fe) ~14 - 20 in the energy range 180 - 550 keV/n.

• For several events, the increase above ~200 keV/n is steeper than expected for

charge stripping equilibrium conditions. Interplanetary transport effects

(adiabatic deceleration) are important and can explain the steeper increase.

• Homogeneous models provide good fits, if Q(E) is not too steep

• Inhomogeneous models are required to explain observations of steeper charge

spectra

Page 33: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 33

SUMMARY-2

• The steep increase of Q with E for E < 1 MeV/nuc requires acceleration low

in the corona

N * A ~ 1-10 * 1010 cm-3 s

• For A ~ 10-100 s this corresponds to N ~ 108-1010 cm-3, i.e. altitudes < 2 Rs

High Charge States (e.g. Fe+20) observed at energies of ~ 1 MeV/n

can be used as Tracer for a Source Low in the Corona

Page 34: Sinaia, September 6-10, 20051 Berndt Klecker Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany Workshop on Solar Terrestrial Interactions

Sinaia, September 6-10, 2005 34

SUMMARY-3Gradual Events

• High Charge States (and abundance enhancements) of Fe at Energies of

~ 1 MeV/nuc

Acceleration low in the corona

• High Charge States (and abundance enhancements) of Fe at Energies

> 10 MeV/nuc

Option 1: Injection and acceleration in the contemporary flare

Option 2: Injection and acceleration of 2 components by CME driven

coronal shock

(1) ~ solar composition, SW charge states

(2) ‘flare’ composition (heavy ion rich, high charge states)