single atom wants to meet single photon · 2011. 1. 6. · deterministic source of single neutral...

59
Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002 Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms D. Meschede, Institut für Angewandte Physik Collège de France Paris, Fevriér 26, 2002 Universität Bonn

Upload: others

Post on 05-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Single Atom wants to meet Single PhotonControlled Processes with Neutral Atoms

    D. Meschede,

    Institut für Angewandte Physik

    Collège de FranceParis, Fevriér 26, 2002

    Universität Bonn

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Single Atoms Crew

    Dr.Victor GomerStephan KuhrWolfgang AltDominik SchraderMartin MüllerYephen Miroshnyshenko

    Daniel Frese (`00)Bernd Ueberholz (`01)

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1. Experimenting with Single Neutral Atoms in a MOT

    2. Deterministic Source ofSingle Neutral atoms

    3. Single Atom Dynamics4. Towards entanglement

    Overview

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Ernst Mach (1838-1916)

    1867 Professor for Experimental Physics Prague1895 Professor for Philosophy Vienna

    „Atome können wir nirgends wahrnehmen, sie sind wie alle Substanzen Gedankendinge.“

    („Atoms themselves cannot be perceived anywhere, like all substances they are abstractions.“ 1912)

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    2002:Physics/Quantum Optics is moving

    towards Quantum Engineering!

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1. Experimenting with Single Neutral Atoms in a MOT

    2. Deterministic Source ofSingle Neutral atoms

    3. Single Atom Dynamics4. Towards entanglement

    Overview

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Strong magnetic field helpsto better localise atoms

    Magneto-optical Trap (MOT)

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Cesium atom „sixpack“

    10 µm

    Magneto-optical Trap (MOT)

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Clock 1

    Detectors: APD (EG&G), 200ns dead time, Q.E. > 50%

    Clocks: 50 ns resolution, ~ 1 MHz dyn. range

    Magneto-optical Trap (MOT)

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Dynamics of trapped atoms

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10

    12

    14

    16

    18

    5 Atoms

    Minutes

    103 counts/100ms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Clock 1Clock 2

    1. Experimenting with Single Neutral Atoms

    Hanbury-Brown & Twiss setupImproves time resolution!

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1. Presto Internal Dynamics @ nano seconds2. Allegro Magnetic Bistability @ micro seconds3. Andante Global trap motion @ milli seconds4. Adagio Cold collisions @ seconds/minutes

    Photon correlationsreveal atomic dynamics

    at all relevant time scales!

    1. Experimenting with Single Neutral Atoms

    For a review see: V. Gomer and D. Meschede, Ann.Phys.(Leipzig)10, 9 –18 (2001) and refs. therein

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1 atom

    0

    1

    2

    3

    Time [ns]0 40 80-40-80

    Photon Antibunching – a Classic of Quantum Optics

    Coi

    ncid

    ence

    s/m

    in„Prepares“ atom in ground state

    Shows Rabi oscillation1. Photon

    2. Photon

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    3 atoms

    10

    0

    5

    coin

    cid

    en

    ces/

    min

    0

    4

    8

    2 atoms

    1 atom

    0

    1

    2

    3

    Time [ns]0 40 80-40-80

    0 20 40 600,0

    0,5

    1,0ρ22

    N = 1

    N = 10

    0 20 40 600,0

    0,5

    1,0

    22

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Polarisation analysis

    Clock 1Clock 2

    Use linearly polarized light only!

    PBS

    l

    r

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Strong circular correlations!

    No linear correlations !

    t [µs]0 20 40 60 80 100

    1300

    1400

    1500

    1600C

    oinc

    iden

    ces/

    100

    ms l l

    0 20 40 60 80 1000,0

    0,2

    0,4

    0,6

    0,8

    1,0

    t [µs]

    lr

    0 20 40 60 80 1000,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    g(2

    )(τ

    )vh

    t [µs]

    h v

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    r

    Magnetic Bistability(Optical pumping in „real time“, µs time scale)

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    h

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    ∆m = 1

    ∆m = 0

    h

    r

    1. Experimenting with Single Neutral Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1. Experimenting with Single Neutral Atoms in a MOT

    2. Deterministic Source ofSingle Neutral atoms

    3. Single Atom Dynamics4. Towards entanglement

    Overview

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    2. Deterministic Source of Cold Atoms

    Controlling atomic dynamics:

    • Impossible in the MOT• Use off resonant dipole trap!

    SetupMOT

    Nd:YAG laser

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Optical dipole potential = AC Stark effect

    ground state

    excited state

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    500 nm

    U0=1.3 mK

    z

    Ωz

    Optical dipole potential = AC Stark effect

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Laser SequenceMOTDipole Trap

    N=0

    N=2

    N=4

    N=3

    0 10 20 30 40 50

    Time [s]

    Phot

    on C

    ount

    s [1

    00 k

    Hz]

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Controlling theEXACT NUMBERof atoms

    !!

    SetupMOT

    Nd:YAG laser

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    F=4

    F=3

    CesiumHyperfine structure

    Controlling the internalQUANTUM STATEof single atoms !!

    SetupMOT

    Nd:YAG laser

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Towards controlling theEXACT POSITIONof single atoms !!

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    AOM

    AOM

    Loading Station for Single Atom Conveyor Belt

    2. Deterministic Source of Cold Atoms

    Photoncounter

    Imaging optics

    Nd:YAG-laser

    MOTlaser beams

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    M OTr e gion

    fix ed

    detectio n

    optic s

    pro be

    las er

    di spl ace d

    dete ctio noptics

    a b

    flu

    ore

    sc

    en

    ce

    [co

    un

    ts/

    20

    ms]

    0 50 100 15 0 20 0

    0

    10

    20

    30

    tim e [ m s]

    pr obe las er

    Detection of relocated atoms

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    -2-4 0 2 4 6 8 100.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Fluorescence-DetectionRayleigh-Zone

    Separation (mm)

    Eff

    icie

    ncy

    Transport Efficiency of Single Atoms (1)

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Laser sequence

    0 100 200 300 400 500 600 7000

    100

    200

    300

    400

    500

    600

    700

    fluor

    esc

    ence

    [cou

    nts

    /100

    ms]

    time [ms]

    MOTdipole trap

    MOT

    mut

    ual

    detu

    ning

    oneatom

    +∆ω

    -∆ω

    forward

    backward

    motion of thestanding wave0

    1 ms

    Laser sequence

    0 100 200 300 400 500 600 7000

    100

    200

    300

    400

    500

    600

    700

    fluor

    esc

    ence

    [cou

    nts

    /100

    ms]

    time [ms]

    MOTdipole trap

    MOT

    mut

    ual

    detu

    ning

    oneatom

    +∆ω

    -∆ω

    forward

    backward

    motion of thestanding wave0

    1 ms

    Laser sequence

    0 100 200 300 400 500 600 7000

    100

    200

    300

    400

    500

    600

    700

    fluor

    esc

    ence

    [cou

    nts

    /100

    ms]

    time [ms]

    MOTdipole trap

    MOT

    mut

    ual

    detu

    ning

    oneatom

    +∆ω

    -∆ω

    forward

    backward

    motion of thestanding wave0

    1 ms

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    distance [mm]

    eff

    icie

    ncy

    -4 -2 0 2 4 6 8 100.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Fluorescent Detection

    MOT-Recapture

    Transport Efficiency of Single Atoms (2)

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    0

    0.02

    0.04

    0.06

    0.08

    10 12 14 16 18 20z [mm]

    U [m

    K] ρ

    Utot

    Ueff

    U (z)eff

    U (z)

    0

    2. Deterministic Source of Cold Atoms

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    “Moving standing wave”

    atom

    1, 2, 3, ... Atoms0, 1, 2, ... Photons

    Delivery of atomsON DEMAND !!

    2. Deterministic Source of Cold Atoms

    D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, Phys. Rev. Lett., 85 3777 (2000)S. Kuhr, W. Alt, D. Schrader, M. Müller,V. Gomer,D. Meschede, Science 293, p. 278-280, (2001)D. Schrader, S. Kuhr, W. Alt, M. Mueller, V. Gomer, D. Meschede, Appl Phys B 73 (2001) 8, 819-824

    Refs:

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1. Experimenting with Single Neutral Atoms in a MOT

    2. Deterministic Source ofSingle Neutral atoms

    3. Single Atom Dynamics4. Towards entanglement

    Overview

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    3. Single Atom Dynamics

    Spectroscopyof a single neutral atom

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Photon Bursts of Individual Trapped Atoms

    Time [ms]

    1 Atom

    Phot

    ons/

    20m

    s

    Time [ms]

    No Atom

    Phot

    ons/

    20m

    s

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Spectroscopy of atoms in dipole trap

    0 20 40 60 80 1000

    20

    40

    60

    80

    100F

    luor

    esce

    nce

    [cou

    nts/

    ms]

    Probe laser detuning [MHz]

    0,50 W1,05 W2,15 W

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    σ-polarisiert

    π-polarisiert

    0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    Detuning [MHz]

    Detuning [MHz]

    Flu

    ores

    cenc

    e[a

    .u.]

    Flu

    ores

    cenc

    e[a

    .u.]

    0 20 40 60 80 1000

    500

    1000

    0 20 40 60 80 1000

    1000

    2000

    Detuning [MHz]

    Detuning [MHz]

    Pho

    tons

    Pho

    tons

    ∆mF=0

    ∆mF=1

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    ground state

    excited state

    Optical dipole potential = AC Stark effect

    3. Single Atom Dynamics

    Bound excited states!

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    3. Single Atom Dynamics

    Acceleratinga single neutral atom

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    10 100 1000 10000 100000 10000000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    a [m/s2]

    Effi

    zien

    z

    δν

    tt / 20

    vmax

    3. Single Atom Dynamics

    aspontaneous

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Axial oscillation frequencyExcitation mechanism

    dipole traplaser

    dipole traplaser

    vacuumwindow

    resonant excitation ifparametric excitation if

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    200 400 600 800 1000 1200 1400 1600 1800 2000 2200 24000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Model: GaussChi^2 = 1.23

    frequency1 330 ±5 kHzwidth1 66 ±10 kHz

    frequency2 660 ±15 kHzwidth2 112 ±24 kHzd

    ete

    ctio

    ne

    ffic

    ien

    cy

    ∆ω [kHz]

    resonantexcitation

    parametricexcitation

    Frequency measurement

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    3. Single Atom Dynamics

    „Temperature“ (E/kB)of a single neutral atom

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    UE

    x0U1 E1=U1

    x0

    ∫ == const.dxpSAdiabatic Cooling:

    x

    U0

    E0

    0

    V(U,x)

    3. Single Atom Dynamics

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    0.0 0.1 0.2 0.3 0.40.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Initial energy of atom E0/U0

    surv

    ival

    pro

    babi

    lity

    p(E) ~ E2exp(-E/kT)

    3. Single Atom Dynamics

    T ~ TDoppler

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    1. Experimenting with Single Neutral Atoms in a MOT

    2. Deterministic Source ofSingle Neutral atoms

    3. Single Atom Dynamics4. Towards entanglement

    Overview

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Creation of entangled and fully controlled atoms

    ( )12

    4. Towards Entanglement

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Next technical implementation:Raman cooling to dipole trap ground state

    0

    T=E/kB

    U(x)U0

    x

    4. Towards Entanglement

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    top view:

    Nd:YAGlaser

    MOT laserresonator

    side view:

    MOT laser Nd:YAGlaser

    resonator200 µm

    1 mm

    4. Towards Entanglement

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Conclusion

    We can or will control neutral atoms:

    Atoms are excellent quantum memories ... Photons make good transmitters, switches ...

    Exact number UUQuantum state (internal) UUPosition (global) UU

    Trapping oscillator stateNumber of photons in cavity.....

  • Copyright Research Group of Dieter Meschede, University of Bonn, Feb. 2002

    Merci beaucoup pour votre attention !