size enlargement, agglomeration · scarabaeus sacer adult beetle rolling its ball of dung (actual...

31
Fig. 7.1 Prof. Dr. J. Tomas, chair of Mechanical Process Engineering Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.1 Size Enlargement, Agglomeration 7. Particle formulation by agglomeration, 7.1 Fundamental agglomeration principles 7.2 Agglomerate strength 7.3 Pelletizing of moist powder 7.4 Press agglomeration 7.4.1 Powder compression and compaction behaviour 7.4.2 Briquetting and tabletting 7.4.3 Roller press

Upload: others

Post on 15-Feb-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Fig. 7.1

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.1

Size Enlargement,

Agglomeration

7. Particle formulation by agglomeration, 7.1 Fundamental agglomeration principles 7.2 Agglomerate strength 7.3 Pelletizing of moist powder 7.4 Press agglomeration

7.4.1 Powder compression and compaction behaviour 7.4.2 Briquetting and tabletting 7.4.3 Roller press

Fig. 7.2

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.2

Processes or unit operations of mechanical process engineering according to RUMPF

separation

combination

without

change

of

particle size

mechanical

separation (filters,

separators,

screens, sifters)

powder mixing

and

blending

particle

size

analysis with change

of

particle size

size reduction

(crushing and

grinding)

size enlargement

(agglomeration)

transport and storage of bulk materials

Fig. 7.3

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.3

Agglomeration - Size Enlargement

7.1 Fundamental agglomeration principles:

a) tumble agglomeration (growth or agitation agglomeration)

pelletizing

b) press agglomeration (compaction)

• continuous sheets

• solid forms (tablets, briquettes)

c) sintering (thermal process)

A – feed material (for agglomeration), Q heat flow

Fig. 7.4

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.4

Different Types of Pellets and Granulates

Cellets Pelletizing Pharma

Micropellet < 500 µm Coating Pharma

Micropellet < 500 µm (Cross-Section) Coating Pharma

Instant-Tee Agglomeration Food

Aromas Encapsulating Food

Sweetener Agglomeration Food

Amino acid Coating Feeding stuff

Polymer Agglomeration Fine chemistry

Detergent component Spraying granulation Fine chemistry

Quelle: www.glatt.de

Fig. 7.5

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.5

7.2 Tensile Strength of Agglomerates

Approximation of the theoretical tensile strength of agglo-

merates versus primary particle size, porosity ε = 0.35

(according to RUMPF)

Fig. 7.6

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.6

Compressive strength of agglomerates

(according to RUMPF)

pellets 25 mm diameter

dried

dried with 2 - 3 % of salt

green dried pellets 20 mm diam.

green pellets 20 mm diam.

green pellets 50 X 50 mm

ore briquettes

lignite briquettes

calcinated pellets of 25 mm diameter

Fig. 7.7

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.7

7.3 Tumble Agglomeration (Pelletizing)

Species of the genus Scarabaeus, which occur throughout Southern Europe and Northern Africa, are fairly typical of the ‘dung - rolling’ scarabs: Scarabaeus sacer adult beetle rolling its ball of dung (actual size 25 – 30 mm long) to a suitable place for burial

Scarabaeus sacer, nature’s “pelletizer”

Fig. 7.8

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.8

7.3 Tumble Agglomeration (Pelletizing) 1. Balling drum and balling pan

a) balling drum b) balling pan A feed material P green pellets W water

Fig. 7.9

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.9

Models of pellet nucleation and pellet formation mechanism

a) Pellet nucleation mechanism b) Embedding of small feed particles at the surface of wet

agglomerates (acc. to Pietsch, Aufbereitungstechnik 7 (1966) 177-191)

liquid solid

Fig. 7.10

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.10

Balling pan pelletizer

Inclined pan pelletizer 1. pan 5. device for changing the

2. pan drive pan angle of inclination

3. water supply (tilt angle to the horizontal)

4. bottom share

Fig. 7.11

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.11

ncrit = π1

D2sing β

Figure shows conditions to determine the critical rotation speed of

pan

β pan bottom angle of inclination (tilt angle to the horizontal)

Φb dynamic angle of repose of the material to be granulated

ω angular velocity

D pan diameter

g gravitational acceleration

m mass in the pan

ncrit critical number of revolutions

Fig. 7.12

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.12

Movement of the charge in a pelletizing pan at different rotational speeds

Qualitative relationship between moisture, residence time or throughput and average pellet size for balling pan

f moisture content

Fig. 7.13

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.13

Deep dish or pan pelletizer

1 disc

2 screw conveyor

3 water supply

A feed

P green product

Fig. 7.14

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.14

Different material flow patterns during revolution of balling drums

material is sliding,

rotational speed too

slow

material is rolling,

rotational speed is

optimal, 8 – 14 rpm,

6 – 10° drum angle

material is cataracting,

rotational speed too fast

Fig. 7.15

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.15

Flow sheets for pelletizing systems a) with balling drums

b) with balling pan

1 mixer

2 balling drum or pan

3 screen

4 mill

A feed

Z additives

P green pellets

Fig. 7.16

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.16

7.4 Press Agglomeration Operation principles of press agglomeration : a) b) c)

a) in a closed die

b) in a open die

c) by roller pressure

A feed

B agglomerate

FP compaction or press force

FR wall friction force in the die

channel

h punch stroke length

l filling level (not compacted)

s thickness of compacted

material

k compaction (k=l/s)

β1 half of nip angle

1 punch

2 pressing die

Fig. 7.17

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.17

bulk

den

sity

ρb

ρb,0

ρb = ρb,0 · (1 + )σM,stσ0

n

centre stress during consolidationor steady-state flow σM,st

isostatictensile strength -σ0

0

n = 0 incompressible

0 < n < 1 compressible

n = 1 ideal gas compressibility index

Isentropic Powder Compression

Adiabatic gas compression:

pV1

dpdV

adκ=−

(1)

Isentropic powder compression:

∫∫σρ

ρ σ+σσ

⋅=ρρ st,Mb

0,b 0 0st,M

st,M

b

b dnd

(2)

Compressibility index of powders, semi-empirical estimation

index n evaluation examples flowability 0 – 0.01 incompressible gravel free flowing

0.01 – 0.05 low compressibility fine sand 0.05 - 0.1 compressible dry powder cohesive

0.1 - 1 very compressible moist powder very cohesive

Fig. 7.18

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.18

bulk

den

sity

ρb

ρb,0

average pressure pisostatictensilestrength -σ0

0

0 < n < 1

Powder Compression

ρb = ρb,0 · (1 + )pσ0

n

com

pres

sion

rate

dρ b

/dp

ρb

p + σ0= n· dρb

dp

Wm,b = . . (1 + ) - 1pσ0

1-n n1 - n

σ0ρb,0

spec

ific

com

pres

sion

wor

k W

m,b

ρb,0σ0

Fig. 7.19

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.19

average pressure at steady-state flow σM,stisostatictensile strength -σ0

0

0 < n < 1

Compression and Preshear Work

Wm,b = . . (1 + ) - 1σM,st

σ0

1-n n1 - n

σ0ρb,0

spec

ific

com

pres

sion

and

pres

hear

wor

k W

m,b, W

m,b

,pre Wm,b,pre = (1 + )σM,st

σ0

1-nspre. sin 2ϕst

2 . hSz

σ0

ρb,0

displacement s

shea

r fo

rce

FS

preshear

spre

τpre, YL3

Wb, pre = ∫ FS(s) ds

τpre, YL2

τpre, YL1

FN

FS

s

spre. sin 2ϕst

2 . hSz

σ0

ρb,0

Fig. 7.20

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.20

Microprocesses and deformation mechanism at powder press agglomeration (compaction)

pp

d) Plastic deformation of particles to create large contact areas

f) Plastic deformation of entire tablet

e) Breakage of edges, particle breakage, pore filling

p

p

b) Elastic-plastic contact deformation

a) Feed of loose packing

c) Pore filling by fine particles

p

h0

h(t)

h(t)

h(t)

h(t)

h(t)

Compaction function of cohesive Powder

com

pact

stre

ngth

lg(

σ T i

n M

Pa)

compaction pressure lg(p in M Pa)10-3

Tablet, briquette or ribbon strength σT

unia

xial

com

pres

sive s

tren

gth

σc

consolidation stress σ10

σ c = a1 · σ1 + σ c,0

For hopper design

σT= f(p)

Fig. 7.21

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.21

Density in cylindrical compacts panels a) – g): pressure of isobars given in MPa

panel h): agglomerate density of iso-

density lines in % of pure solid

density (according to ORR)

Fig. 7.22

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.22

Punch - and - Die - Presses

a) Reciprocating piston and die (excenter) press

1 excenter drive

2 upper punch

3 lower punch

4 rotating table with inwrought dies

5 feed shoe with hopper

A feed

B tablets

b) Rotary tabletting machines

B

Fig. 7.23

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.23

Pelletizing machines

1 cutter A feed B briquettes a) ram extrusion or plunger press

b) screw extruder

c) pelleting machine with flat die and muller-type press rollers

d) pelleting machine with one solid and one hollow roll

e) pelleting machine with two hollow rolls

f) pelleting machine with internal press roll

g) gear-type pelletizer

Fig. 7.24

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.24

Compaction mechanism in a ram press

Sequence of events during a briquetting cycle in the ram press

(according to KEGEL and RAMMLER)

pressure filling filling

begin of stroke

back expansion begin of compaction

begin of pre-filling

begin of back stroke

Fig. 7.25

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.25

Schematic representation of the decrease in elastic recovery and increase of density of a briquette during consecutive press cycles in a ram press

Fig. 7.26

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.26

Ram extrusion press for coal briquetting (ZEMAG, Zeitz, Germany)

1 briquette die 5 thrust piece 2 ram 6 coal ejector channel 3 ram holder 7 slipping dog 4 press top cap 8 connecting rod

Fig. 7.27

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.27

Vakuumstrangpresse

Fabrikat BreitenbachTyp VAS 56bZylinder-Ø: 560 mmLeistung: max. 50 to./Antriebsmotor: 240 KW

Vacuum Ram Press

product Breitenbachtype VAS 56bcylinder-dia. 560 mmpress force: max. 500 kNdrive: 240 kW

Fig. 7.28

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.28

Roller press machines

Types of roller press machines:

a) roller compacting machine b) roller briquetting machine c) ring roller press

Fig. 7.29

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.29

Compaction zones and angles of a roller press

αo feed angle of roller

αE grip angle of roller (angle of compaction)

αg nip angle or neutral angle (sign of friction forces changes)

α > αg velocity lag of compacted (compressed) powder

compared to roller tip speed vb < vu = ω.D/2 = π.n.D

α < αg velocity advance of compacted material sheet

(ribbon) compared to roller tip speed vb > vu

αV angle of elastic release (recovery) zone after passing the

minimum roller gap, the ribbon (compacted sheet) gets

thicker s2 > s1 than the roller gap for roller angle α = 0 to -αV

Fig. 7.30

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.30

Feeder design for roller press machines (KÖPPERN, Hattingen, Germany)

a) gravity feeder with adjustable tongue (or plate)

b) screw feeder for filling and pre-compaction

Fig. 7.31

Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

Fig_MPE_7 VO Mechanical Process Engineering - Particle Technology Agglomeration Dr. W. Hintz/Prof. Dr. J. Tomas 23.06.2014 Figure 7.31

Roller press (KÖPPERN, Hattingen, Germany)

1 rollers with replaceable rings or sleeves as pressing tools 4 hydraulic reservoir

2 roller core with integral journals 5 hydraulic pump

3 hydraulic cylinder 6 automatic grease lubrication