skh3 ca 50 004 a4 calculation of deg room

Upload: putu-aditya-setiawan

Post on 06-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    1/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 1 of 8

    CALCULATION SHEET

    FOR NEW DIESEL ENGINE AND PANEL BUILDING

    KLIEN : PT. PERTAMINA (PERSERO) DIREKTORAT PEMASARAN DAN NIAGA

    PROYEK : KONSULTAN PERENCANAAN DESAIN (FRONT END ENGINEERING

    DESIGN FEED) PENGEMBANGAN AVIATION FUEL SUPPLY

    FACILITIES DI SOEKARNO-HATTA

    LOKASI : CENGKARENG, BANTEN

    REV DATE DESCRIPTION PREP’D  CHK’D  APP’D  CLIENT

    0 21/5/15 Issued for Review VP BA NK

    1 8/6/15 Issued for Approval VP BA NK

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    2/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 2 of 8

    REVISION SHEET

    Rev. No. Date Description

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    3/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 3 of 8

    LIST OF CONTENT

    COVER.......................................................................................................................................1

    REVISION SHEET ................................................................................................................. 2 

    LIST OF CONTENT ................................................................................................................ 3 

    1. INTRODUCTION ................................................................................................................. 4 1.1 General ........................................................................................................................... 4

    1.2 Scope ............................................................................................................................. 4

    1.3 References ..................................................................................................................... 4

    1.3.1 Project Specifications and Data Sheets .................................................................... 4

    1.3.2 Standards and Codes ................................................................................................. 4 

    2. MATERIAL SPECIFICATION .......................................................................................... 5 

    2.1 Reinforced Concrete ...................................................................................................... 5

    2.2 Reinforcement Bar ......................................................................................................... 5

    3. LOADS ................................................................................................................................... 6 

    3.1 Dead Load (DL)............................................................................................................. 6

    3.2 Additional Dead Load (EL) ........................................................................................... 6

    3.3 Wind Load (WL) ........................................................................................................... 6

    3.4 Seismic Load (SL) ......................................................................................................... 7

    APPENDICES

    APPENDIX A.Design Of Structure..........................................................................................8

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    4/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 4 of 8

    1.  INTRODUCTION

    1.1  General

    PT. PERTAMINA (PERSERO) plans to build a new aviation fuel supply facilities in

    Soekarno Hatta International Airport. The expansion plan consist of build one (1)

     New Receiver Tank capacity 12000 kl , add Hydrant Pit in Domestic and

    International Cargo, and build four (4) New Delivery Tanks capacity 4x11000 kl.

    Recently, JET A-1 is supplied from SPM-1 and SPM-2 at Tanjung Pasir.

    The Expansion Plant will accommodate all requirement in Terminal#3 Soekarno

    Hatta International Airport, Cengkareng.

    1.2  Scope

    This report covers the design calculation for diesel engine and panel building at

    DPPU existing.

    1.3  References

    1.3.1 Project Specifications

    - Design Basis for Civil, Structural and Architectural, SKH3-BD-50-001-A4.

    -  Construction Specification for Concrete and Foundation, SKH3-SP-50-

    005-A4

    -  Data Sheet of Diesel Engine Generator, SKH3-DS-30-013-A4.

    1.3.2 Standards and Codes

    -  SNI 03 –  2847 –  2002

    -  SNI 03 –  1726 –  2002

    -  UBC 1997 (Uniform Building Code)

    -  ACI 318 –  2002 (American Concrete Institute)

    -  ASTM (American Society for Testing Materials)

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    5/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 5 of 8

    2.  MATERIAL SPECIFICATION

    Material specification used for this filter separation foundation as follows :

    2.1  Reinforced Concrete

    These material specification are used for all structure made from reinforced concrete.

    Specific weight for reinforced concrete :

    γc = 2400 kg / m³ 

    Poisson Ration of Concrete : 0,2

    Characteristic of concrete :

    fc’ = 18,675 MPa (186,75 kg/cm²) ~ equal to K –  225

    Modulus of Elasticity of concrete :

    Ec = 4700 x √fc’ 

    Ec = 4700 x √18,675

    Ec = 20310,85 Mpa

    2.2  Reinforcement Bar

    Reinforcement bar usually called Rebar is used for supporting the concrete.

    Specification for reinforcement bar as follows :

    Flexural Reinforcement Bar

    fy = 400 MPa (yield strength)

    fu = 520 MPa (ultimate strength)

    Shear Reinforcement Bar

    fy’ = 240 MPa (yield strength)

    fu’ = 312 MPa (ultimate strength) 

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    6/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 6 of 8

    3.  LOADS

    3.1  Dead Load (DL)

    Dead load here means self weight of the structure. The weight of the structure

    depends on the dimension of its structure.

    3.2  Live Load (LL)

    Live load are defined as the weight of all moveable loads including personnel, tools,

    and others equipment. The following live loads shall be uniformly distributed over

    horizontal projection of the specified areas.

    3.3  Wind Load (WL)

    A cylindrical surface wind pressure on projected area of equipment which has been

    adjusted by  the proper shape and height factor required by the basic design

    specification applied as a horizontal  shear at the centerline elevation of the

    equipment. The horizontal shear shall normally be increased to account the effect of

     projection such as piping, insulation, operating platforms, ladders, and influent.

    Wind load be shall be calculated in accordance with the formula as given in UBC-

    1997, in general :

    WL = Ce x qs x I x Cq x A

    W = P x Cq x A

    P = Ce x qs x I

    Where :

    WL = Wind Load

    Ce = combined height, exposure & gust factor coefficient

    (height factor for exposure type B, as seen on table 16 –  G of UBC 97)

    qs = Wind stagnation

    I = Importance factor

    = 1.15 (for essential & hazardous facilities, table 16 –  K of UBC 97)

    Cq = Pressure coefficient

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    7/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 7 of 8

    = 0.8 (for chimney, tank, & solid tower, table 16 –  H of UBC97)

    A = Projected Area (m2)

    3.4  Seismic Load (SL)

    Seismic load works in to the center of mass of the structure. This part of the

    calculation will based on UBC 1997.

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    8/26

     

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN

    FEED) PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI

    SOEKARNO-HATTA

    No. Kontrak

    016/F20510/2015-SONo. Dokumen :

    SKH3-CA-50-004A-A4Halaman 8 of 8

    APPENDIX A. DESIGN OF STRUCTURE

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    9/26

    1.0 MATERIAL DATA

    1.1 Concrete Data

    - Concrete Strength fc' =   Mpa = kg/cm2 K

    - Concrete Strength of piling fc' =   Mpa = kg/cm2 K

    - Yield strength for main rebar fy =   Mpa = kg/cm2

    - Yield strength for secondary rebar fy =   Mpa = kg/cm2

    - Unit weight of concrete   gc = kg/m3

    - Unit weight of soil   gs = kN/m3 = kg/cm3

    1.2 Steel Data

    - Unit weight of steel   gs = kN/m3 = kg/cm

    3

    - Steel structure material ASTM A-36, with a minimum yield strength 2531 kg/cm2

    - High quality bolts, ASTM A325 for the primary connection, and secondary connection are ASTM A-307

    - Type of weld is E-70XX (70 ksi) with a minimum tensile stress 5062 kg/cm2

    2.0 GEOMETRI STRUCTURE

    Floor Plan

    76.98 7850

    390

    22.8

    423

    3977

    41.5

    1717

    240

    275

    500

    2447

    233

    2400

    17

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    10/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    3.0 MODELING STRUCTURE

    4.0 DESIGN LOAD

    A. Dead Load (D)

    Selfweight

    Structure weight automatically calculated by STAAD.Pro with Selfweight Command multiplier is 1

    Finishing load ( thk = mm ) = kg/m2

    Brick wall load ( base on SNI ) = kg/m2

    B. Live Load (L)

    - Floor load

    Live load for maintenance (operating area) based on design basis civil and structure = kg/m2

    - Roofing loadBased on SKBI-UDC 1987 live load (rain) for roofs with a slope are as follows:

    L = (40 - 0.8a) kg/m2   < kg/m2

    where,

    a = slope of the roof angle in degrees

    = deg

    L = kg/m2 > kg/m2

    Rain live load used = kg/m2

    Maintenance / construction live load = kg/m2

    Total = kg/m2

    C. Wind Load (W)

    Importance Factor for Industrial Building Category I I =

    Exposure Category C, for open terrain

    Based on desain basis for civil & structural,maksimum wind speed used

    as basic wind speed V = kph

    = mph

    = mps

    20

    80.75 

    20

    5

    25

    130.00 

    50

    15

    365

    36.1

    0.87

    125

    250

    2028

    3D Structure in STAAD.pro Analysisy

    x

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    11/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Gust effect factor G =

    Width of Building L = m

    Length of Building B = m

    Space between column middle = m

    Space between column edge = m

    Mean height roof h = m

    Height of column z = m

    Velocity pressure Exposure Coefficients Kzt =

    Velocity pressure

    qz = 0,613 Kz Kzt V2 I

    qh = 0,613 Kz Kzt V2 I

    Wind Load Z Direction

    Wall

    L = =

    B

    Cp = for windward Wall

    Cp = for Leeward Wall

    Roof

    h = =L

      Cp = for windward roof  

    Cp = for Leeward roof

    Design Wind Pressure

    Pz = qz . G. Cp and Ph = qh . G. Cp

    qh (kg/m2 )

    5.00

    66.64

    Height

    above level

    6.1

    7.6

    9.1 69.47

    0.94

    0.85

    0.90

    Kz

    Exposure Cqz (kg/m

    2 )

    -0.5

    -0.7

    73.731.04

    0.44

    12.2

    4.00

    0.909.0

    (m)

    0-4,6

    9.00

    0.98

    60.26

    10.0

    -0.5

    0.8

    1.0

    4.0

    66.64

    63.80

    69.47

    9.0

    10.0

    73.73

    60.26

    63.80

    4.0

    0.85

    4.50

    z

    x

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    12/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Wall

    Design Wind pressure Windward Wall

    Design Wind pressure Leeward Wall

    Wind Load X DirectionWall

    B = =

    L

    Cp = for windward Wall

    Cp = for Leeward Wall

    Roof

    h = =

    B

      Cp = for windward roof  

    Cp = for Leeward roof

    Design Wind Pressure

    Pz = qz . G. Cp and Ph = qh . G. Cp

    Wall

    Design Wind pressure Windward Wall

    Design Wind pressure Leeward Wall

    or 

    4.00 0.40

    0-4,6 0.85 -15.37

    Cp G

    (kg/m2)

    40.980.85

    0.8

    -0.3

    0.8

    10.00

    Height

    above level Cp G

    (m)

    -0.5

    -0.7

    10.0

    0-4,6 -0.5 0.85 -128.05

    Middle

    Portal

    -57.62-25.61

    edge

    (m)

    Cp edgeGPz

    0.850-4,6

    Height

    above level

    Cp G

    (kg/m)

    Portal

    40.98

    (kg/m2)

    Middle

    184.39

    (kg/m) (kg/m)

    0.8

    1.11

    Ph

    -0.3

    0-4,6

    (m)

    Height

    above levelPh

    (kg/m)

    B

    B

    (kg/m)

    (kg/m)-69.15

     A

    (kg/m)

     A

    9.0

    (m) (kg/m2)

    Height

    above levelPh

    (kg/m2) (kg/m)

    184.39

    (kg/m)

    204.88

     A

    Portal As

    -69.15

    92.19

     

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    13/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    D. Seismic Base Shear Coefficient

    Based on IndonesiaN earthquake map 2010, location of Muara Bekasi Station included in the zone 0.25 - 0.3g,

     we used 0.3g for calculation, In the UBC 1997 seismic zone fa Z =

    Importance Factor (category I) I =

    Numerical factor related structural system (Direction X) R =

    Soil type Soil = SE

    Soil Profile = Soft Soil

    Soil Classification (coefficient of soil characteristic) S =

    Seismic Source type = C

    Seismic Response Coefficient (Cv,Ca) Cv =

    Ca =

    Ct for type Steel Moment resisting Frame Ct =

    Height above the base to higest level of the building (Roof Height) h = m

    Seismic Direction X

    Fundamental period of buildingT = Ct ( h ) 3/4

    T = 0.0853x(4)^3/4 T = second

    T = > Flexible structure

    Design Seismic Base Share

    V = (Cv . I / R.T). W

    V = (0.84x1.25/4.5x0.24) V = W

    Maximum Seismic Base Shear

    Vmak = (2.5 Ca . I / R). W

    Vmak = ( 2.5x0.36x1.25/4.5) Vmak = W

    Minimum Seismic Base Shear CoefficientVmin = 0.11 Ca . I . W

    Vmin =  0.11x0.36x1.25 Vmin = W

    V = 0.9671 is greater than V max = 0.25,. Therefore Vmax is the governing seismic base shear for this structure

    Seismic Direction Z

    Fundamental period of building

    T = Ct ( h ) 3/4

    T = 0.0853x(4)^3/4 T = second

    T = > Flexible structure

    Design Seismic Base Share

    V = (Cv . I / R.T)

    V = (0.84x1.25/4.5x0.24) V =   W

    Maximum Seismic Base Shear 

    Vmak = (2.5 Ca . I / R). W

    Vmak = ( 2.5x0.36x1.25/4.5) Vmak =   W

    0.97

    0.25

    0.25

    0.05

    0.24

    0.060.24

    0.24 0.06

    0.97

    0.24

    0.0853

    2

    4

    0.36

    1.25

    4.5

    0.84

    0.3

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    14/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Minimum Seismic Base Shear 

    Vmin = 0.11 Ca . I . W

    Vmin =  0.11x0.36x1.25 Vmin =   W

    V = 0.9671 is greater than Vmax = 0.25,. Therefore V max is the governing seismic base shear for this structure

    DEAD LOAD STRUCTURE

    Structure

    1 Roof Slab

    2 Roof Main Beam   x

    3 Roof Beam   x

    4 Column   x

    Design base shear ;

    V = W

    Vx = kg

    Vz = kg

    Statik equivalen force ;

    Table Seismic static calculation on X and Z direction

    upper struktur 

    E. Crane Load

    There is Over Head Crane capacity 2 Ton for maintenance diesel engine generator at DEG room.

    The sketch of Over Head Crane is shown below.

    Position OHC in the middle girder beam (P1) Position OHC in the edge girder beam (P2)

    8890.15 0.25 2400 19 1

    Length

    0.05

    0.25 0.25

    1 4692

    2400

    Kg/m3 (m)

    2400 42.50.35

    133924.8 8370

    Fix = Fiz

    (kg)

    8

    25200

    2700

    0.20

    Wi

    (kg)

    Wi.zi

    0.250

    Kg/m3

    8370.30

    (m)

    11 87.510

    8370.30

    Weight

    33481

    Width Amount

    4.5

    (kg)

    F dir x

    2400

    TOTAL

    F dir z

    1/4 Fix (kg) 1/4 Fiz (kg)

    2092.58

    33481

    Kg

    2092.58

    Weight of Material

    Floor 

    4.00

    zi

    33481

    (m)

    L

    P1a P1b P2a P2b

    22

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    15/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Moving load at OHC system

    Capacity of Over Head Crane 2 ton SWL = kg

    Weight of hoist and trolley WHT = kg

    2 unit traveling tranversal machine WMT = kg

    Panel dan equpment electrical WE = kg

    Moving load (ML) = kg

    Force Position Hoist Crane in the Middle Girder Beam (P1)

    -. P1a and P1b

    Force wheel to rail girder    = (ML + MS ) / 2 = kg

    Impact Load

    Vertical Impact increased Percentages = 25 %

    Vertical Impact force (P1a x 1.25) and (P1b x 1.25) = kg

    Lateral Force increased Percentages = 20 %

    Lateral Impact force (P1a x 0.20) dan (P1b x 0.20) = kg

    Longitudinal Force increased Percentages = 10 %

    Longitudinal Impact force = kg

    5.0 LOAD COMBINATION

    5.1 Concrete Design

    LC101 = 1.4 D + F

    LC102 = 1.4 D + O

    LC103 = 1.2 (D + F) + 1.6 L

    LC104 = 1.2 (D + O) + 1.6 L

    LC105 = 1.2 D + 0.8 WxLC106 = 1.2 D + 0.8 Wy

    LC107 = 1.2 D +1.6 Wx + 1.0 L

    LC108 = 1.2 D +1.6 Wy + 1.0 L

    LC109 = 1.2 D + 1.0 Ex + 1.0 L

    LC110 = 1.2 D + 1.0 Ey + 1.0 L

    LC111 = 0.9 D + 1.0 Ex

    LC112 = 0.9 D + 1.0 Ey

    6.0. CONCRETE DESIGN

    6.1 Deflection Check

    Deflection check for concrete structure is performed based on unfactored load combination

     Allowable horisontal deflection, Δh

     Allowable vertical deflection, Δv

    = H/150, where : H = Member Height

    = L/240, where : L = Member Length

    P1a 1310

    0

    262

    131

    2000

    520

    40

    60

    2620

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    16/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Based on STAAD.Pro output for joint displacement, the cr itical value are as follows :

    Horizontal Deflection

    Displacementmm

    OK

    OK

    Vertical Deflection

    Displacement

    mm

    OK

    6.2 Column x

    Concrete design for pedestal is performed by STAAD.Pro in accordance to ACI 318. The suggested

    reinforcement configuration by STAAD.Pro are not adapted to design, only the required reinforcement

    area will be used.

     All beam design for 

    fy  = kg/cm2

    = MPa

    fc'  = kg/cm2

    = MPa

    top clear  Ct = mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    Stirrups = mm

    f =

    Dimension = x 25 (cm)

    Based on the STAADpro output, the result of this columns reinforcement is as follows :

    D-

    16

    40

    40

    Load Case

    16

    As

    250 

    40

    625

    (mm2)

    250

    390

    22.83

    25

    Remark

    OK4

    from STAAD.Pro (mm2)

    3977

    0.85

    201

    mmmm

    LenghtJoint

     Δvy

    31

    Height

    4000

    5000

    Load Case

    As Required

    233

    Use Re-bar

    Configuration

    49

    mmJoint   Δh

    mm

    44 212 Δhx 18.669

     Δhz 4000

    26.67

    Remarks

    Δv

    2.184 33.33

    18.796 26.67

    Remarksmm

    10

    10

    804.25

    ====================================================================

    COLUMN NO. 21 DESIGN PER ACI 318-05 - AXIAL + BENDING

    FY - 413.7 FC - 27.6 MPA, SQRE SIZE - 250.0 X 250.0 MMS, TIEDONLY MINIMUM STEEL IS REQUIRED.

     AREA OF STEEL REQUIRED = 625.0 SQ. MM

    BAR CONFIGURATION REINF PCT. LOAD LOCATION PHI----------------------------------------------------------

    4 - 16 MM 1.287 1 END 0.650

    (PROVIDE EQUAL NUMBER OF BARS ON EACH FACE)

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    17/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    6.3 Roof Beam - 1 x

    Beam design is performed by STAADPro in accordance to ACI 318. The reinforcement of beam based

    on output STAADPro analysis

     All beam design for 

    fy = kg/cm2

    = MPa

    fc'  = kg/cm2 = MPa

    top clear  Ct = mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    Stirrups = mm

    f =

    Dimension = 20 x 30 (cm)

    Based on the STAADPro output :

    Beam x

    fc' = MPa b =

    fy = MPa

    h = mm

    d = mm

    b = mm

    Mmax- = Tm Mn

    -= Tm  As = mm

    2

    Mmax+ = Tm Mn

    += Tm  As = mm

    2

    Use

    Top Reinforcement 3 D  Asuse = mm   r =

    Bottom Reinforcement 2 D  Asuse = mm   r =

    shear reinforcement

    = Ton = 1/6x(fc')0.5

    xbwxd

    = Ton > = Ton Need shear reinforcement= Vn - Vc

    = Ton

     Avxdxfy Rebar diamater = mm

    fy = MPa

    = cm

    = mm

    ≈ mm

    Stirrups Used, @ used @

    So ;

    Top Reinforcement 3 D

    Bottom Reinforcement 2 D

    Stirrups Used, D 10 -

    285.631

    13 398.197 0.0079639

    224.208

    300250

    0.0053093

    200

    233 22.83

    13 265.465

    -2.63

    300 

    22.83 0.85

    390

    0.85

    390

    1.67 2.09

    200

    13

    10

    40

    40

    40

    3977

    Vu 3.70 Vc

    200 300

    -2.10

    71.77

    Vn 6.17 3.98

    2.19

    s =

    Vs

    10

    Vs 400

    =157079.6327

    2188.706938

    717.68

    710

    D 10 710 D 10 200

    13

    13

    200

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    18/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    6.4 Roof Beam - 2 x

    Beam design is performed by STAADPro in accordance to ACI 318. The reinforcement of beam based

    on output STAADPro analysis

     All beam design for 

    fy = kg/cm2

    = MPa

    fc'  = kg/cm2

    = MPa

    top clear  Ct = mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    Stirrups = mm

    f =

    Dimension = 15 x 20 (cm)

    Based on the STAADPro output :

    Beam x

    fc' = MPa b =

    fy = MPa

    h = mm

    d = mm

    b = mm

    Mmax- = Tm Mn

    -= Tm  As = mm

    2

    Mmax+ = Tm Mn

    += Tm  As = mm

    2

    Use

    Top Reinforcement 1 D  Asuse = mm   r =

    Bottom Reinforcement 1 D  Asuse = mm   r =

    shear reinforcement

    = Ton = 1/6x(fc')0.5

    xbwxd

    = Ton < = Ton No need shear reinforcement= Vn - Vc

    = Ton

     Avxdxfy Rebar diamater = mm

    fy = MPa

    = cm

    = mm

    ≈ mm

    Stirrups Used, @ used @

    So ;

    Top Reinforcement 2 D

    Bottom Reinforcement 2 D

    Stirrups Used, D 10 -

    233 22.83

    40

    40

    150 200 

    3977 390

    40

    13

    10

    0.85

    150 200

    22.83 0.85

    390

    200

    150

    150

    -0.24 -0.30 52.514

    0.41 0.51 91.333

    13 132.732 0.0058992

    13 132.732 0.0058992

    Vu 0.50 Vc

    Vn 0.83 1.79Vs

    -0.96

    s =10

    Vs 400

    =94247.77961

    -958.2485445

    -98.35

    -983.54

    200

    13

    13

    200

    -980

    D 10 -980 D 10

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    19/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    6.5 Floor Slab Reinforcement

    From output of STAAD Pro, longitudinal & transversal reinforcement are summarized as follows :

     All beam design for fy  = kg/cm

    2= MPa

    fc'  = kg/cm2 = MPa

    top clear  Ct = mm mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    thickness = mm

    Longitudinal reinforcement axis X-X

    Mu = Mx max

    = Tm

    Mn = Tm

    fc' = MPa

    fy = MPa

    h = mm

    d = mm

    b = mm

    Cc =   b.fc'.a.b

    = x x a x

    = .a

    Moment Mn = Cc.(d-a/2)

    = .a ( - a/2 )

    = a - a2

    a2

    a + = 0

    a =

    Cc = N

    Balance T = CcT = Asxfy

     As = mm2

    rmin =

     Asmin = mm2

     Asuse = mm2

    ruse =

    Used D A = mm2

    amount reiforcement =

    = D for width mm or  

    D mm

    So, used D mm

    Transversal reinforcement Axis Y-Y

    Mu = My max

    = Tm

    Mn = Tm

     As = mm2

     Asuse = mm2 r =

    100

    9700.625

    13

    1.11

    20

    390

    390

    114636.7905

    =0.8

    9700.63 -1940125

    5.90873

    100

    0.89

    0.97

    1.11

    233

    13

    0.8

    0.85

    1000

    0.0018

    13

    =

    22.83

    150

    20

    20

    22.83

    3977

    0.89

    Mu

    150

    333

    @

    19401.25

    19401.25

    11125000 1940125

    293.9404884

    0.002939

    132.732

    13 @

    2.21

    180

    293.94

    3 13 1000

    200

    =1.21

    13

    0.8 0.8

    Mu

    321.272

    =0.97

    321.272 0.00321

    1000

    1E+007

    22.83

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    20/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Used D A = mm2

    amount reiforcement =

    = D use wide mm

    D mm

    So, used D mm

    6.6 Roof Slab Reinforcement

    From output of STAAD Pro, longitudinal & transversal reinforcement are summarized as follows :

     All beam design for 

    fy  = kg/cm2

    = MPa

    fc'  = kg/cm2 = MPa

    top clear  Ct = mm mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    thickness = mm

    Longitudinal reinforcement axis X-X

    Mu = Mx max

    = Tm

    Mn = Tm

    fc' = MPa

    fy = MPa

    h = mm

    d = mm

    b = mm

    Cc =   b.fc'.a.b

    = x x a x

    = .a

    Moment Mn = Cc.(d-a/2)

    = .a ( - a/2 )

    = a - a2

    a2

    a + = 0

    a =

    Cc = N

    Balance T = CcT = Asxfy

     As = mm2

    rmin =

     Asmin = mm2

     Asuse = mm2

    ruse =

    0.35

    120

    10

    20

    1320

    22.83233

    3977 390

    19401.25

    20

    126

    19401.25

    70

    390

    1000

    0.85 22.83

    Mu

    = =

    0.44

    0.8

    120

    0.35

    164.12

    4375000

    9700.63

    70

    0.822.83

    1000

    3.29919

    64008.3988

    164.1240995

    4E+006

    1358087.5 9700.625

    0.002345

    13 132.665

    2.42

    3 13

    13 @ 333

    1000

    @ 20013

    0.0018

    -1358087.5

    Dia. 13- 200 

    200 mm

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    21/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Used D A = mm2

    amount reiforcement =

    = D for width mm or  

    D mm

    So, used D mm

    Transversal reinforcement Axis Y-Y

    Mu = My max

    = Tm

    Mn = Tm

     As = mm2

     Asuse = mm2 r =

    Used D A = mm2

    amount reiforcement =

    = D use wide mm

    D mm

    So, used D mm

    6.7 Grade Beam - 1 x

    Beam design is performed by STAADPro in accordance to ACI 318. The reinforcement of beam basedon output STAADPro analysis

     All beam design for 

    fy = kg/cm2 = MPa

    fc'  = kg/cm2

    = MPa

    top clear  Ct = mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    Stirrups = mm

    f =

    Dimension = 25 x 40 (cm)

    Based on the STAADPro output :

    Beam xfc' = MPa b =

    fy = MPa

    h = mm

    d = mm

    b = mm

    Mmax- = Tm Mn

    -= Tm  As = mm

    2

    Mmax+ = Tm Mn

    += Tm  As = mm

    2

    22.83250 400

    233

    350

    -4.64

    16

    -5.80

    390

    10

    250

    0.85

    10

    154.528 0.00221

    400

    0.85

    22.83

    3977 390

    154.528

    10

    @

    2.09

    3 10 1000

    @ 200

    78.5398

    0.33

    Mu=

    0.33=

    0.41

    0.8 0.8

    10 78.5

    200@10

    1.97

    2 10 1000

    10 @ 500

    250 400

    447.959

    479

    371.1334.85

    40

    40

    40

    10

    3.88

    Dia. 10- 200 

    150 mm

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    22/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Use

    Top Reinforcement 3 D  Asuse = mm   r =

    Bottom Reinforcement 2 D  Asuse = mm   r =

    shear reinforcement

    = Ton = 1/6x(fc')0.5

    xbwxd= Ton > = Ton Need shear reinforcement

    = Vn - Vc

    = Ton

     Avxdxfy Rebar diamater = mm

    fy = MPa

    = cm

    = mm

    ≈ mm

    Stirrups Used, @ used @

    So ;

    Top Reinforcement 3 D

    Bottom Reinforcement 2 D

    Stirrups Used, D 10 -

    6.8 Grade Beam - 2 xBeam design is performed by STAADPro in accordance to ACI 318. The reinforcement of beam based

    on output STAADPro analysis

     All beam design for 

    fy = kg/cm2

    = MPa

    fc'  = kg/cm2

    = MPa

    top clear  Ct = mm

    bottom clear  Cb = mm

    side clear  Cs = mm

    Rebar diamater = mm

    Stirrups = 10 mm

    f =

    Dimension = 20 x 30 (cm)

    Based on the STAADPro output :Beam x

    fc' = MPa b =

    fy = MPa

    h = mm

    d = mm

    b = mm

    Mmax- = Tm Mn

    -= Tm  As = mm

    2

    Mmax+ = Tm Mn

    += Tm  As = mm

    2

    Use

    200 300

    40

    233 22.83

    300

    22.83 0.85

    390

    40

    0.85

    200

    40

    13

    3977 390

    300

    250

    200

    -0.50 -0.63 64.951

    1.72 2.15 231.264

    Vu 6.35 Vc

    Vn 10.58 6.97

    Vs

    3.62

    s =10

    Vs 400

    10 200

    =219911.4858

    3616.070475

    60.82

    608.15

    16

    200

    0.0068936

    0.0045957

    16

    600

    D 10

    16 603.186

    16 402.124

    600 D

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    23/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Top Reinforcement 2 D  Asuse = mm   r =

    Bottom Reinforcement 2 D  Asuse

    = mm   r =

    shear reinforcement

    = Ton = 1/6x(fc')0.5

    xbwxd= Ton > = Ton Need shear reinforcement

    = Vn - Vc

    = Ton

     Avxdxfy Rebar diamater = mm

    fy = MPa

    = cm

    = mm

    ≈ mm

    Stirrups Used, @ used @

    So ;Top Reinforcement 2 D

    Bottom Reinforcement 2 D

    Stirrups Used, D 10 -

    7.0. FOUNDATION DESIGN

    7.1. Geometri of Foundation

    13 265.465 0.0053093

    13 265.465 0.0053093

    Vu 6.35 Vc

    Vn 10.58 3.98

    Vs

    6.60

    s =Vs

    10

    400

    =157079.6327

    6602.040271

    23.79

    237.93

    230

    D 10 230 D 10 150

    13

    13

    150

    0.6 m

    0.3m

    0.6 m

    0.3m

    0.3m 0.3m

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    24/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    Dimension of Foundation

    Top soil to top Ped = m

    H footing = m

    Width of Pedestal = m

    Width of Footing = m

    Footing Length = m

    7.2. Footing Design

    Material Properties

    Concrete Strength f'c = MPa

    Bar Yield Strength fy = MPa

    b =

    Flexural Capacity reduction fac. f =

    Shear Capacity reduction fac. f =

    Concrete Cover c = m

    = mm

    Longest Span Zi = L = m

    = mm

    Footing Thickness HF = m

    = mm

    Main Bar diameter D = mm

    Flexural reinforcement

    Moment max. at foundation Mu = kNm

    = Nm

    Foundation Tickness HF = m

    = mm

    Foundation effective thickness d = HF - c- d

    = mm

    Ru = Mu / (Ф x Width x d2)

    = 5000000 /(0.9x9000x(209^2))

    = MPa

    m = fy / ( 0.85 x fc' )

    = 390/(0.85x22.825)

    =

    ρ required = (1/m) x (1 - (1 - 2m Ru/fy)0.5

    )

    (1/20.102)x(1-(1-2x20.102x0.014/(390))^0.5)

    =

    ρ balanced = βi x 0.85 fc' x 600

      fy 600 + fy

    = 0.85x(0.85x22.825/390)x(600/(600+390))

    =

    1.601.60

    0.20

    75.0

    0.026

    20.102

    5000000

    0.300

    0.08

    0.85

    0.90

    0.00004

    209

    16.0

    300

    5.000

    0.014

    0.3

    9.0

    9000.0

    300.0

    22.8

    390.0

    0.85

    0.30

    1.60

    0.25

    0.3 mFooting 

    columnFGL

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    25/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    ρ max = 0.75 ρ balanced

    =

    ρ min =(1.4/fy if 1.33 x r required > 1.4/fy)

    (0.18% if 1.33 x r required < 1.4/fy)

    < 0.0193……...OK

    ρ used =

     As req = ρ x b x h

    = mm2

    Diameter of reinf. Bars = mm

     As = mm2

    No.of bars = As req / As

    = ≈ 17

    spacing = Width / no. of bar

    = mm

    ≈ mm

    Use D16 - 200 for top & bottom flexural reinforcement

    200

    201.062

    534.442

    16.84

    0.00180

    3385.8

    16

    0.00180

    0.0192

  • 8/17/2019 Skh3 CA 50 004 a4 Calculation of Deg Room

    26/26

    No. Kontrak

    016/F20510/2015-SO

    KONSULTAN PERENCANAAN DESAIN

    (FRONT END ENGINEERING DESIGN FEED)

    PENGEMBANGAN AVIATION FUEL

    SUPPLY FACILITIES DI SOEKARNO-HATTA

    No. Dokumen :

    SKH3-CA-50-004-A4

    8.0 CONCLUSION

    Concrete Structure :

    Use D 13- 200 for top & bottom Axis-X

    Use D 13- 200 for top & bottom Axis-Y

    Use ø 10- 200 for top & bottom Axis-X

    Use ø 10- 200 for top & bottom Axis-Y

    Use 4 D16 for vertical bars

    Use minimum shear reinforcement ø 10 - 150

    Use 3 D 16 for top

    Use 2 D 16 for bottom

    Use minimum shear reinforcement ø 10 - 200

    Use 2 D 13 for top

    Use 2 D 13 for bottom

    Use minimum shear reinforcement ø 10 - 150

    Use 3 D 13 for top

    Use 2 D 13 for bottom

    Use minimum shear reinforcement ø 10 - 200

    Use 2 D 13 for top

    Use 2 D 13 for bottom

    Use minimum shear reinforcement ø 10 - 200

    Use D16 - 200 for top & bottom flexural reinforcement

    Use minimum shear reinforcement D13 -200

    mm mm mm

    4000

    120

    200

    400

    -

    250

    -

    -

    Reinforcement Arrangment

    -

    150

    Structure

    Dimension

    Length Width

    Roof slab

    250

    150

    Grade Beam-2- 300 200

    Floor slab

    Height

    Column 250

    Grade Beam-1-

    30016001600Footing

    Roof Beam-1- 200 300

    Roof Beam-2-