sla7020m

10
12 SLA7020M SLA7021M Ratings Absolute Motor supply FET output Control TTL input Reference Output Power Channel Storage maximum Voltage breakdown voltage voltage voltage current dissipation temperature temperature ratings voltage (V) (V) (V) (V) (V) (A) (W) ( °C) (°C) Type No. VCC VDS VS VIN VREF IO PD Tch Tstg SLA7020M 1.5 SLA7021M 46 100 32 7 2 3 4.5 (No Fin) 150 –40 to +150 Characteristics (1) DC Characteristics Electrical Control Control FET turn-on voltage FET drain TTL input TTL input TTL input TTL input TTL input TTL input charac- current voltage leak current current current voltage voltage voltage voltage teristics (OUT) (OUT) (mA) (V) (V) (mA) (μA) (mA) (V) (V) (V) (V) VS = 30V (7020M) ID =1A, VS =14V VDSS = 100V VIH = 2.4V VIL = 0.4V ID = 1A VDSS = 100V VDSS = 100V ID = 1A (7021M) ID =3A, VS =14V VS = 30V VS = 30V VS = 30V IS VS VDS IDSS IIH IIL VIH VIL VIH VIL Type No. min typ max min typ max min typ max min typ max min typ max min typ max min typ max min typ max min typ max min typ max SLA7020M 0.6 SLA7021M 5.5 10 15 10 19 30 0.85 4 40 –0.8 2.0 0.8 2.0 0.8 (2) AC Characteristics Electrical FET diode Switching time charac- forward voltage teristics (V) (μs) (7020M) I SD = 1A VS = 24V (7021M) I SD = 3A ID = 1A VSD Tr Tstg Tf Type No. min typ max min typ max min typ max min typ max SLA7020M 1.1 0.5 0.7 0.1 SLA7021M 2.3 Unipolar Driver ICs WITH MOSFETs

Upload: luiz-caldeira

Post on 07-Dec-2015

214 views

Category:

Documents


2 download

DESCRIPTION

datasheet sla7020m

TRANSCRIPT

Page 1: SLA7020M

12

SLA7020MSLA7021M Ratings

Absolute Motor supply FET output Control TTL input Reference Output Power Channel Storagemaximum Voltage breakdown voltage voltage voltage current dissipation temperature temperature

ratings voltage(V) (V) (V) (V) (V) (A) (W) (°C) (°C)

Type No. VCC VDS VS VIN VREF IO PD Tch Tstg

SLA7020M 1.5

SLA7021M46 100 32 7 2

34.5 (No Fin) 150 –40 to +150

Characteristics (1) DC Characteristics

Electrical Control Control FET turn-on voltage FET drain TTL input TTL input TTL input TTL input TTL input TTL inputcharac- current voltage leak current current current voltage voltage voltage voltageteristics (OUT) (OUT)

(mA) (V) (V) (mA) (µA) (mA) (V) (V) (V) (V)

VS = 30V(7020M) ID =1A, VS =14V VDSS = 100V VIH = 2.4V VIL = 0.4V

ID = 1A VDSS = 100V VDSS = 100V ID = 1A(7021M) ID =3A, VS =14V VS = 30V VS = 30V VS = 30V

IS VS VDS IDSS IIH IIL VIH VIL VIH VIL

Type No. min typ max min typ max min typ max min typ max min typ max min typ max min typ max min typ max min typ max min typ max

SLA7020M 0.6SLA7021M

5.5 10 15 10 19 300.85

4 40 –0.8 2.0 0.8 2.0 0.8

(2) AC Characteristics

Electrical FET diode Switching timecharac- forward voltageteristics (V) (µs)

(7020M) ISD = 1A VS = 24V(7021M) ISD = 3A ID = 1A

VSD Tr Tstg Tf

Type No. min typ max min typ max min typ max min typ max

SLA7020M 1.10.5 0.7 0.1

SLA7021M 2.3

Unipolar Driver ICs

WITH MOSFETs

User
新建印章
Page 2: SLA7020M

13

SLA7020M and SLA7021M

Block diagram

Internal circuit diagram (enclosed with chain line)

6

RS r5

C3

+

Reg Reg

INA

OU

TA

OU

TA

1 5 8

VCC

VS

14

INB

7

RS

A

2 3 4 12 13 11

C1 C2

C4r3

r2r6

r4

Vb(5V)

r1

TD

A

REFA

GND

A

GND

B

REFB

TD

B

RS

B

RS

9

10 15

OU

TB

OU

TB

+– +

–+–

+–

DbDa

Vs=10~30V

R·C for settingchopper OFFtime

VS

r1

r2

r5/r6

C3/C4

Vb

Reference voltage

r3/r4

C1/C2

R·C for protectionagainst choppingmalfunctions

REF Current peakdetectorcircuit

Td

Chopper OFFtime control

circuit

GND

Excitation signaltransfer circuit

IN OUT OUT

Auxiliarypower supply

Excitationsignal

VCC

Motor mainpower supply

RS

RS

Current detection resistor

Current control andcounter EMF

canceller circuit

Motor

Da/Db

User
新建印章
Page 3: SLA7020M

14

SLA7020M and SLA7021M

Diagram of standard external circuit (Recommended circuit constants)

External dimensions (Unit: mm)

Excitation signal time chart2-phase excitation

clock 0 1 2 3 0 1INA H H L L H HINB L H H L L H

1-2 phase excitation

clock 0 1 2 3 4 5 6 7 0 1 2 3INA H H H H L L L L H H H HtdA L L L H L L L H L L L HINB L L H H H H L L L L H HtdB L H L L L H L L L H L L

• tdA and tdB are signals before the inverter stage.

r1 510Ωr2 100Ω (VR)r3 47kΩr4 47kΩr5 2.4kΩr6 2.4kΩC1 470pFC2 470pFC3 2200pFC4 2200pF

7020M 7021MDa. Db EK03 RK34

Rs 1Ω typ 0.68Ω typ

Forming number No. 853 Forming number No. 855

Epoxy resin package

8 1 6 10 15VS OUTA OUTB OUTBOUTA

RSA REFA REFB RSB GA GB

7 3 13 9 4 12

C4

r6r5

r2

r1r4r3

C1 C2

TdA

TdB

INA

INB

INA

INB

5

14

VCC (46V max)

VREF (5V)

RsRs

C3

SLA7020MSLA7021M

11

2

Opencollector

tdA tdB

Db

VS (10~30V)

Da

31±0.2

24.4±0.2

16.4±0.2

3.2±0.15φ

16±

0.2

13±

0.2

9.9

±0.

2 Type No.Lot No.

3.2±0.15×3.8φ 4.8±0.2

1.7±0.1

2.45±0.2

R-End 6.7±0

.5

9.7

+1

–0.5

(3)

0.55+0.2–0.1

4±0.7

1.15+0.2–0.1

14×P2.03±0.7=28.42±1.0

0.65+0.2–0.1

31.3±0.2

1 2 3 · · · · · · · 15 123 · · · · · · · 15

14×P2.03±0.4=28.42±0.8

0.65+0.2–0.1

3±0.

6

0.55

+0.

2–0

.1

2.2±0.4

6.3±0.6

7.5±0.6

4.6±

0.6

1.6±

0.6

1.15+0.2–0.1

User
新建印章
Page 4: SLA7020M

17

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Fig. 1 Waveform of coil current (Phase A excitation ON)

Fig. 3 Circuit for fixing the coil current

Fig. 4 Circuit for fixing the coil current

Fig. 5 Circuit for fixing the coil current

Fig. 2 Circuit for fixing the coil current

Application Note

Determining the output currentFig. 1 shows the waveform of the output current (motor coilcurrent). The method of determining the peak value (lo) ofthe output current based on this waveform is shown below.

<Parameters for determining the output current lo>

Vb : Reference supply voltager1, r2 : Voltage-divider resistors for the reference supply

voltageRs : Current detection resistor

(1) Normal rotation modelo is determined as follows when current flows at themaximum level during motor rotation. See Fig. 2, 3 and4.

r2 Vblo = • ................................................... q

r1+r2 Rs

(2) Power down modeThe circuits in Fig. 5, 6 and 7 (rx and Tr) are added inorder to decrease the coil current. lo is then determinedas follows.

1 VbIOPD = • ....................................... w

r1(r2+rx) Rs1+

r2•rx

To determine rx, equation w can be modified to obtainequation e.

1rx = .............................. e

1 Vb 1–1 –

r1 Rs•lOPD r2

. .

. .

0

Phase A

Phase A

IO

SLA7022MUSLA7029MSMA7022MUSMA7029MSLA7020MSLA7021M

RS

C3r2

r1

r6

r5

Vb(5V)

7,(9)

3,(13)

SLA7024MSLA7026MSLA7027MU

RS

C3r2

r1r6

r5

Vb(5V)

9,(10)

3,(14)

SDK03M

RS

C3r2

r1r6

r5

Vb(5V)

10

3

13 15

SLA7022MUSLA7029MSMA7022MUSMA7029MSLA7020MSLA7021M

RS

C3

r2

r1

r6

r5

Vb(5V)

7,(9)

3,(13)

rX

TrPower downsignal

. .

User
新建印章
Page 5: SLA7020M

18

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Application Note

Fig. 6 Circuit for fixing the coil current

Fig. 7 Circuit for fixing the coil current

Fig. 8 and 9 show the graphs of equations q and w ,respectively.

Fig. 8 Output current Io vs. Current detection resistor Rs

Fig. 9 Output current lOPD vs. Variable current resistor rx

NOTE:Ringing noise is produced in the current detection resistorRs when the MOSFET is switched ON and OFF throughchopping. This noise is also generated in feedback signalsfrom Rs which may therefore causes the comparator tomalfunction.To prevent chopping malfunctions, r5(r6) and C3(C4) areadded in order to act as noise filter.However, when the values of these constants are increased,the response from Rs to the comparator becomes slow.Hence, the value of the output current lo is higher to someextent than the computed value.

SLA7024MSLA7026MSLA7027MU

C3

r2

r1 r6

r5

Vb(5V)

9,(10)

3,(14)

rX

TrPower downsignal

SDK03M

RS

C3

r2

r1

r6

r5

Vb(5V)

10

3

rX

TrPower downsignal

13 15

4

3

2

1

00 1 2 3 4

Current detection resistor RS (Ω)

Out

put c

urre

nt IO

(A

)

SLA7024M, SLA7026M, SLA7029M, SLA7027MU,SLA7022MU, SLA7020M, SLA7021M, SMA7029M,SMA7022MU, SDK03M

IO= r1+r2 RS

r1=510Ωr2=100Ωrx=∞Vb=5V

r2 · Vb

2

1.5

1

0.5

00 2.0 4.0 6.0 8.00

Variable current resistor rX (Ω)O

utpu

t cur

rent

IOP

D (

A)

SLA7024M, SLA7026M, SLA7029M, SLA7027MU, SLA7022MU, SLA7020M, SLA7021M, SMA7029M, SMA7022MU, SDK03M

1000 1200

RS =0.5Ω

RS =0.8Ω

RS =1Ω

IOPD= 1+ RS

r1=510Ωr2=100ΩVb=5V

1 · Vb

r1(r2+rX)r2 · rX

User
新建印章
Page 6: SLA7020M

19

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Application Note

Determining the chopper frequencyDetermining TOFF: SLA7000M series, SMA7000M series andSDK03M are self-excited choppers. The chopping OFFtime TOFF is fixed by r3/C1 and r4/C2 connected to terminalTd.TOFF can be computed through the following formula:

2 2TOFF = –r3•C1Rn(1– ) = –r4•C2Rn(1– )

Vb Vb

The circuit constants and the TOFF value shown below arerecommended.

TOFF = 12 µsr3 = 47 KΩC1 = 500 pFVb = 5 V

Thermal designAn outline on the method of computing heat dissipation isshown below.

(1) Obtain the PH that corresponds to the motor coil currentIO from Fig. 11 “Heat dissipation per phase PH vs. Out-put current lo”.

(2) The power dissipation Pdiss is obtained through thefollowing formula.

• SLA7000M and SMA7000M series2-phase excitation : Pdiss = 2PH + 0.015 x Vs (W)

31-2 phase excitation : Pdiss = PH + 0.015 x Vs (W)

2

• SDK03M2-phase excitation : Pdiss = PH + 0.015 x Vs (W)

31-2 phase excitation : Pdiss = PH + 0.015 x Vs (W)

4

(3) Obtain the temperature rise that corresponds to thecomputed Pdiss from Fig. 12 “Temperature rise curve.”

Fig. 10 Chopper frequency vs. Motor coil resistance

. .

. .

. .

. .

Fig. 11 Heat dissipation per phase PH vs. Output current lo

. .

Output current IO (A)

Hea

t dis

sipa

tion

per

phas

e P

H (

W)

Typ.Motor : 23LM-C004Holding mode

VCC =44V36V

24V 15V

SLA7024M, SLA7029M, SMA7029M and SLA7020M

0 0.2 0.4 0.6 0.8 1.0

1.2

1.0

0.8

0.6

0.4

0.2

0

60

50

40

30

20

10

00 2 4 6 8 10 12 14 16

15

20

25

303540

Motor coil resistance Rm (Ω)

ON

tim

e T

ON (

s)

VCC =24V

VCC =36V

TOFF =12 sRS =1Ω Lm

=1~3ms Rm

= =r3 C1

r4 C2

47kΩ 500PF

Cho

ppin

g fr

eque

ncy

(KH

z)µ

µH

eat d

issi

patio

n pe

r ph

ase

PH (

W)

Typ.Motor : 23PM-C503Rm=1.16 Ω/Lm=2.9mA/Holding mode

φφ

36V

15V

24V

SLA7026M and SLA7021M

VCC =44

V

4.0

3.0

2.0

1.0

00 1.0 2.0 3.0

Output current IO (A)

1.4

1.2

1

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 1

36V

24V

15V

VCC =44V

Hea

t dis

sipa

tion

per

phas

e P

H (

W)

SLA7022MU, SLA7027MU, SMA7022MU and SDK03M

Output current IO (A)

Typ.Motor : 23LM-C202Holding mode

User
新建印章
Page 7: SLA7020M

20

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Application Note

Fig. 12 Temperature rise curve Comparison of losses

0

Pow

er d

issi

patio

n P

H (

W)

Supply voltage VCC (V)

8

7

6

5

4

3

2

1

010 20 30 40 50

Motor : 23LM-C202IO : Output current2-phase excitation, holding mode

IO=1A

IO=1A

SLA7024M, SLA7029M,SMA7029M and SLA7020M

Sanken product : SI-7300A

∆Tj–

a

∆TC

–a

∆Tj

SLA7000M series

10 2 3 4 5

∆TC

Natural coolingWithout heatsink

150

100

50

0

Total power (W)

(°C

)∆T

j–a

∆TC

–a

∆Tj

SMA7000M series

10 2 3 4

∆TC

Natural coolingWithout heatsink

150

100

50

0

Total power (W)

(°C

)

∆Tj

SDK03M

10 2 3

∆TC

Glass epoxy board (mounted on level surface)(95×69×1.2mm)Natural cooling

150

100

50

0

Total power (W)

∆Tj–

a

∆TC

–a(°

C)

User
新建印章
Page 8: SLA7020M

21

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Application Note

Heat dissipation characteristics

50

40

30

20

10

0200 500 1K 2K

Cas

e te

mpe

ratu

re r

ise

∆TC

–a (

°C)

SDK03M

Response frequency (pps)

TC ( 9 pin)

Natural coolingGlass epoxy board (mounted on level surface)(95×69×1.2mm)Motor : PH265-01B (Rm=7 Ω/ , Lm=9mH/ )Motor current IO=0.8ATa=25°CVCC=24V, VS=24V2-phase excitation

φφ

30

25

20

15

10

5

0200 500 1K 2K

Cas

e te

mpe

ratu

re r

ise

∆TC

–a (

°C)

Motor : PH265-01B (Rm=7 Ω/ , Lm=9mH/ )Motor current IO=0.8ATa=25°CVCC=24V, VS=24V2-phase excitation

φ φ

SLA7024M, SLA7029M and SLA7020M

Response frequency (pps)

Without heatsinkNatural cooling

TC ( 4 pin)

35

30

25

20

15

10

5

0200 500 1K 2K

Cas

e te

mpe

ratu

re r

ise

∆TC

–a (

°C)

Motor : PH265-01B (Rm=7 Ω/ , Lm=9mH/ )Motor current IO=0.8ATa=25°CVCC=24V, VS=24V2-phase excitation

φ φ

SLA7022MU and SLA7027MU

Response frequency (pps)

Without heatsinkNatural cooling

TC ( 4 pin)

30

25

20

15

10

5

0200 500 1K 2K

Cas

e te

mpe

ratu

re r

ise

∆TC

–a (

°C)

Motor : PH265-01B (Rm=7 Ω/ , Lm=9mH/ )Motor current IO=0.8ATa=25°CVCC=24V, VS=24V2-phase excitation

φ φ

SMA7029M

Response frequency (pps)

Without heatsinkNatural cooling

TC ( 4 pin)

35

30

25

20

15

10

5

0200 500 1K 2K

Cas

e te

mpe

ratu

re r

ise

∆TC

–a (

°C)

Motor : PH265-01B (Rm=7 Ω/ , Lm=9mH/ )Motor current IO=0.8ATa=25°CVCC=24V, VS=24V2-phase excitation

φ φ

SMA7022MU

Response frequency (pps)

Without heatsinkNatural cooling

TC ( 4 pin)

50

40

30

20

10

0100 500 1K 5K

Cas

e te

mpe

ratu

re r

ise

∆TC

–a (

°C)

SLA7026M and SLA7021M

Response frequency (pps)

TC ( 4 pin)

Without heatsinkNatural cooling

Motor : 23PM-C705 (Rm=1.27 Ω/ , Lm=1.8mH/ )VCC=24V, VS=24V, IO=1.5A2-phase excitation

φ φ

User
新建印章
Page 9: SLA7020M

22

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Application Note

Supply voltage Vcc vs. Supply current Icc Torque characteristics

100

Pul

l-out

torq

ue (

kg-c

m)

SLA7027MU, SLA7022MU, SMA7022MU and SDK03M

Response frequency (pps)

2.0

1.5

1.0

0.5

05k 10k3k1k500

Motor : PX244-02 Output current IO =0.6A Motor supply voltage VCC =24V2-phase excitation

2k

100

Pul

l-out

torq

ue (

kg-c

m)

SLA7024M, SLA7029M, SMA7029M and SLA7020M

Response frequency (pps)

2.0

1.5

1.0

0.5

05k4k3k2k1k500

Motor : 23LM-C202 (1V/1.1A)Output current IO =0.8AMotor supply voltage VCC =24V2-phase excitation

100

Pul

l-out

torq

ue (

kg-c

m)

SLA7026M and SLA7021M

Response frequency (pps)

6.0

5.0

4.0

3.0

2.0

1.0

05k 10k3k1k500

Motor : 23PM-C705 Rm=1.27Ω/ Lm=1.8mH/ VCC =24VIO =2.5A2-phase excitation

φφ

0

Sup

ply

curr

ent I

CC (

mA

)

SLA7024M, SLA7029M, SMA7029M and SLA7020M

Supply voltage VCC (V)

500

400

300

200

100

010 20 30 40 50

Motor : 23LM-C004 (6V/1.2A)1-phase excitationHolding modeChopper period T = 47 sIO : Output current

IO=0.2AIO=0.5A

IO=1A

µ

0

Sup

ply

curr

ent I

CC (

A)

SLA7026M and SLA7021M

Supply voltage VCC (V)

1.5

1.0

0.5

010 20 30 40 50

Motor : 23PM-C503 Rm=1.16Ω/ Lm=2.9mH/ 1-phase excitation, holding modeIO : Output current

IO=1AIO=2A

IO=3A

φφ

0

Sup

ply

curr

ent I

CC (

mA

)

SLA7022MU, SLA7027MU, SMA7022MU and SDK03M

Supply voltage VCC (V)

500

400

300

200

100

010 20 30 40 50

Motor : 23LM-C202 (4V/1A)1-phase excitation, holding modeIO : Output current

IO=1A

0.4A0.2A

User
新建印章
Page 10: SLA7020M

23

SLA7024M, SLA7026M, SLA7027MU, SLA7022MU, SLA7029M,SMA7022MU, SMA7029M, SLA7020M, SLA7021M and SDK03M

Application Note

Chopper frequency vs. Output current

NOTEEither active high or active low excitation input signals canbe used for SLA7024M, SLA7026M, SLA7027MU and SDK03M.However, take note of the output that corresponds to aspecified input as shown in the table below.

• SLA7024M, SLA7026M and SLA7027MU

Active High

Input Output

INA (6 pin) OUTA (1 pin)

INA (5 pin) OUTA (8 pin)

INB (17 pin) OUTB (11 pin)

INB (16 pin) OUTB (18 pin)

Active Low

Input Output

INA (6 pin) OUTA (8 pin)

INA (5 pin) OUTA (1 pin)

INB (17 pin) OUTB (18 pin)

INB (16 pin) OUTB (11 pin)

• SDK03M

Active High

Input Output

IN1 (6 pin) OUT1 (1, 16 pin)

IN2 (5 pin) OUT2 (8, 9 pin)

Active Low

Input Output

IN1 (6 pin) OUT1 (8, 9 pin)

IN2 (5 pin) OUT2 (1, 16 pin)

Chopper frequency vs. Supply voltage

0

f (kH

z)

VCC (V)

50

40

30

20

10

010 20 30 40 50

Motor : 23LM-C202 (1V/1.1A)IO = 0.8A at VCC=24VRS=1Ω

0

f (kH

z)

IO (A)

50

40

30

20

10

00.2 0.4 0.6 0.8 1.0

Motor : 23LM-C202 (1V/1.1A)VCC=24VRS=1Ω

User
新建印章