slab - rectangular - 4 edges supporeted

Upload: kushan-dhanushka-nanayakkara

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Slab - Rectangular - 4 Edges Supporeted

    1/6

    2.2.1 DESIGN INFORMATION

    Material Properties

    Characteristic strength of concrete, =   N/mm2

    Characteristic strength of steel, =   N/mm2

    Density of concrete, =   kN/m3

    Nominal maximum size of aggregate = mm

    Exposure condition =

    Fire resistance = hours

    Base Slab Section Properties

    Thickness of slab = mm

    Length of slab = mm

    Width of slab = mm

    Reinforcement Properties

    Reinforcement design width, = mm

    Bottom r/f span shortway = T bars

    Top r/f span shortway = T bars

    Bottom r/f span longway = T bars

    Top r/f span longway = T bars

    2.2.2 DESIGN LOADS

    Superimposed dead load per unit area =   kN/m2

    Live load per unit area =   kN/m2

    ly   = 5029 mm

    Type of Panel = Two adjacent edges discontinuous

    Design Loading

    Dead load =   kN/m2

    Live load =   kN/m2

    Ultimate design load =   kN/m2

    =   1.186ly/lx =

    Output

    ρct   24

    BS8110:1985

    Table 3.1

    2/6/2016

    PROJECT

    STRUCTURE ELEMENT REF

    DESIGNED BY

    h 125

    12

     4 2  4 2  m m

    CODES BS 8110 : PART 1 :1985 KUSHAN CHECKED BY

    Reference Calculations

    f y   460

    f cu   25

    Durability Requirement

    ØB2

    Clause 2.7.6

    2.5

    Discontinuous

           C     o     n      t       i     n     u     o     u     s

    D  i    s  c  o n t   i    n u o u s 

    ØB1

    ly   5029

    lx   4242

    bt

    ØT2   12

    ØT1

    1000

    12

    12

    3

           P     o     s

           i      t       i     o     n

        ‐       1

    Position ‐ 2

     P  o s  i    t   i    o n‐ 3 

    Position ‐ 4

    gk

    qk

    n

    ly/lx   1.19

     l     x 

    =

    Continuous

    5.5

    3

    12.5

    hagg   20

    Mild

    2

  • 8/17/2019 Slab - Rectangular - 4 Edges Supporeted

    2/6

    Output

    2/6/2016

    PROJECT

    STRUCTURE ELEMENT REF

    DESIGNED BYCODES BS 8110 : PART 1 :1985 KUSHAN CHECKED BY

    Reference Calculations

    2.2.3 DETERMINATION OF COVER

    Grade of concrete =

    Exposure condition =

    Fire resistance = hours → Cover <

    Nominal maximum size of aggregate = mm → Cover <

    Maximum bar size = mm → Cover <

    Minimum nominal cover = mm

    Check for minimum dimension of slab for fire resistance

    → OK

    =   h ‐ cover ‐ ØT1/2

    = 125 ‐ 25 ‐ 12/2

    = mm   94mm

    =   h ‐ cover ‐ ØT1 ‐ ØT2/2

    = 125 ‐ 25 ‐ 12 ‐ 12/2

    = mm   82mm

    =   h ‐ cover ‐ ØB1/2

    = 125 ‐ 25 ‐ 12/2

    = mm   94mm

    =   h ‐ cover ‐ ØB1 ‐ ØB2/2

    = 125 ‐ 25 ‐ 12 ‐ 12/2

    = mm   82mm

    Bending moment coefficients (β)

    For Position ‐ 1 =

    For Position ‐ 2 =

    For Position ‐ 3 =

    For Position ‐ 4 =

    For Position ‐ 5 =

    For Position ‐ 6 =

    Table 3.15

    Effective depth for bottom reinforcement

    long span direction

    dB2

    82   dB2 =

    82   dT2 =

    Effective depth for top reinforcement short

    span direction

    Effective depth for top reinforcement long

    span direction

    Effective depth for bottom reinforcement

    short span direction

    dB1

    94   dB1 =

    Clause 3.3.1.3   20 20

    Clause 3.3.1.2   12 12

    25   Cover = 25mm

    Figure 3.2Requirement for minimum thickness of 125mm thick

    slab for 2 hours fire resistance  = 125 mm

    94

    Table 3.4  25

    → Cover < 25Mild

    Table 3.5   2 25

    ≤ 125 mm

    OK

    dT1

    dT1 =

    βsx

    βsy

    0.000

    βsx

    0.046

    0.045

    βsx

    βsy

    βsy

    dT2

    0.000

    0.062

    0.034

    5

    4

    2

    1   3

    6

  • 8/17/2019 Slab - Rectangular - 4 Edges Supporeted

    3/6

    Output

    2/6/2016

    PROJECT

    STRUCTURE ELEMENT REF

    DESIGNED BYCODES BS 8110 : PART 1 :1985 KUSHAN CHECKED BY

    Reference Calculations

    Bottom Reinforcement

    Shortway direction

    Bending moment in shortway direction =   βsxnlx2

    = 0.046 x 12.5 x (4242/1000)^2

    = kNm /m width

    =   M/bd2f cu

    = 10.41x10^6/[1000x94^2x25]

    =

    =   [0.5+(0.25‐K/0.9)1/2

    ]d

    = [0.5+(0.25‐0.047/0.9)^0.5]d

    = d

    = mm

    As,req   =   M/0.87f yZ

    = (10.41x10^6)/(0.87x460x88.79)

    =   mm2/m width

    Hence required steel % for bending moment =   100As,req/bd

    = 100x293/(1000x94)

    = %

    = lesser of (3d or 750)

    = mm

    mm2/m width

    Longway direction

    Bending moment in shortway direction =   βsynlx2

    = 0.034 x 12.5 x (4242/1000)^2= kNm /m width

    =   M/bd2f cu

    = 7.65x10^6/[1000x82^2x25]

    =

    =   [0.5+(0.25‐K/0.9)1/2

    ]d

    = [0.5+(0.25‐0.045/0.9)^0.5]d

    = d

    = mm

    As,req   =   M/0.87f yZ

    = (7.65x10^6)/(0.87x460x77.6210687992582)

    =   mm2/m width

    Hence required steel % for bending moment =   100As,req/bd

    = 100x246/(1000x82)

    = %

    = lesser of (3d or 750)

    = mm

    mm2/m width

    equation 14   msy

    7.65

    Clause 3.4.4.4   K

    0.045

    Clause 3.4.4.4   Z

    Bottom r/f in longway direction, provide T12 @ 200 mm C/C Providing

    0.95

      Z 78

    OK

    246

    565.5

    Clause 3.4.4.4   Required steel area to carry bending

    moment,

    246

    0.30

    Required minimum percentage of tension

    reinforcement= ≤ 0.30 %0.13 %

    %

    OK

    754.0Bottom r/f in shortway direction, provide T12 @ 150 mm C/C Providing

    282

    0.31

    Required minimum percentage of tension

    reinforcement= 0.13 % ≤ 0.31

    Required steel area to carry bending

    moment,

    293

    Clause 3.4.4.4

    Clause 3.4.4.4

    Clause 3.4.4.4

    equation 14

    K

    0.047

    Z

    0.94

      Z 89

    msx

    10.41

    The maximum spacing of reinforcement for slabs with

    less than 200mm thick

    The maximum spacing of reinforcement for slabs with

    less than 200mm thick

    Clause

    3.12.11.2.6

    Clause

    3.12.11.2.6

    K < 0.156, and compression r/f are not required

    K < 0.156, and compression r/f are not required

  • 8/17/2019 Slab - Rectangular - 4 Edges Supporeted

    4/6

    Output

    2/6/2016

    PROJECT

    STRUCTURE ELEMENT REF

    DESIGNED BYCODES BS 8110 : PART 1 :1985 KUSHAN CHECKED BY

    Reference Calculations

    Top Reinforcement

    Shortway direction

    Bending moment in shortway direction =   βsxnlx2

    = 0.062 x 12.5 x (4242/1000)^2

    = kNm /m width

    =   M/bd2f cu

    = 13.94x10^6/[1000x94^2x25]

    =

    =   [0.5+(0.25‐K/0.9)1/2

    ]d

    = [0.5+(0.25‐0.063/0.9)^0.5]d

    = d

    = mm

    As,req   =   M/0.87f yZ

    = (13.94x10^6)/(0.87x460x86.87)

    =   mm2/m width

    Hence required steel % for bending moment =   100As,req/bd

    = 100x401/(1000x94)

    = %

    = lesser of (3d or 750)

    = mm

    mm2/m width

    Longway direction

    Bending moment in shortway direction =   βsynlx2

    = 0.045 x 12.5 x (4242/1000)^2= kNm /m width

    =   M/bd2f cu

    = 10.12x10^6/[1000x82^2x25]

    =

    =   [0.5+(0.25‐K/0.9)1/2

    ]d

    = [0.5+(0.25‐0.06/0.9)^0.5]d

    = d

    = mm

    As,req   =   M/0.87f yZ

    = (10.12x10^6)/(0.87x460x76.087546223696)

    =   mm2/m width

    Hence required steel % for bending moment =   100As,req/bd

    = 100x332/(1000x82)

    = %

    = lesser of (3d or 750)

    = mm

    mm2/m widthTop r/f in longway direction, provide T12 @ 200 mm C/C Providing 565.5

    Clause 3.4.4.4   Required steel area to carry bending

    moment,

    332

    0.40

    Required minimum percentage of tension

    reinforcement= 0.13 % ≤ 0.40 %

    0.060

    Clause 3.4.4.4   Z

    0.93

      Z 76

    OK

    246

    Top r/f in shortway direction, provide T12 @ 250 mm C/C Providing 452.4

    equation 14   msy

    10.12

    Clause 3.4.4.4   K

    Required minimum percentage of tension

    reinforcement= 0.13 % ≤ 0.43 %

    OK

    282

    0.92

      Z 87

    Clause 3.4.4.4   Required steel area to carry bending

    moment,

    401

    0.43

    equation 14   msx

    13.94

    Clause 3.4.4.4   K

    0.063

    Clause 3.4.4.4   Z

    Table 3.27

    The maximum spacing of reinforcement for slabs with

    less than 200mm thick

    The maximum spacing of reinforcement for slabs with

    less than 200mm thick

    Clause

    3.12.11.2.6

    Clause

    3.12.11.2.6

    K < 0.156, and compression r/f are not required

    K < 0.156, and compression r/f are not required

  • 8/17/2019 Slab - Rectangular - 4 Edges Supporeted

    5/6

    Output

    2/6/2016

    PROJECT

    STRUCTURE ELEMENT REF

    DESIGNED BYCODES BS 8110 : PART 1 :1985 KUSHAN CHECKED BY

    Reference Calculations

    Nominal reinforcement for discontinuous edge

    Shortway direction

    = lesser of (3d or 750)= mm

    Top r/f in shortway direction for discontinuous edge, provide T12 @ 250 mm C/C providing

    mm2/m width

    Longway direction

    = lesser of (3d or 750)

    = mm

    Top r/f in longway direction for discontinuous edge, provide T12 @ 200 mm C/C providing

    mm2/m width

    Shear resistance of slab

    Shear force coefficients (β)

    For Position ‐ 1 =

    For Position ‐ 2 =

    For Position ‐ 3 =

    For Position ‐ 4 =

    Maximum design shear force in slab =   βv,maxnlx

    = 0.47 x 12.5 x 4.242

    = kN/m width

    Minimum effective depth in slab = mm

    =   Vmax/bdmin

    = (24.69x10^3)/(1000x82)

    =   N/mm2

    Minimum of (0.8√f cu or 5 N/mm2)   =   N/mm

    3 >

    Table 3.27  Required minimum percentage of tension

    reinforcement= 0.13 %

    452.4

    Clause3.12.11.2.6

    The maximum spacing of reinforcement for slabs withless than 200mm thick   282

    Clause

    3.12.11.2.6

    The maximum spacing of reinforcement for slabs with

    less than 200mm thick   246

    565.5

    βvx   0.47

    Vmax

    Table 3.16

    βvy   0.40

    βvx   0.31

    βvy   0.26

    Maximum possible design shear stress in

    slab

    4.00

    Ok

    vmax

    0.301

    24.69

    v

    Ok

    dmin   82

    2

    3

    4

    1

  • 8/17/2019 Slab - Rectangular - 4 Edges Supporeted

    6/6

    Output

    2/6/2016

    PROJECT

    STRUCTURE ELEMENT REF

    DESIGNED BYCODES BS 8110 : PART 1 :1985 KUSHAN CHECKED BY

    Reference Calculations

    → = (100x452.39)/(1000x94)

    = < 3

    = 400/82

    = > 1

    → Ok

    vc, min   =   0.79[100As/bd]1/3

    [400/d]1/4

    [f cu/25]1/3

    /γm

    = {0.79[0.5]^(1/3)x[4.9]^(1/4)x[25/25]^(1/3)}/1.25

    =   N/mm2

    > → OK

    Deflection

    Actual (Span/effective depth) ratio   le/d   =

    Basic (Span/effective depth) ratio =

    1

    βo

    1

    1

    =   N/mm2

    Allowable (Span/effective depth) ratio = 26x1.78= ≥   le/d

    2.2.4 SUMMARY OF REINFORCEMENT

    Span shortway r/f = @ 150 mm C/C

    Span longway r/f = @ 200 mm C/C

    Continuous edge shortway r/f = @ 250 mm C/C

    Continuous edge longway r/f = @ 200 mm C/C

    If necessary provide

    Discontinuous edge shortway r/f = @ 250 mm C/C

    Discontinuous edge longway r/f = @ 200 mm C/C

    equation 7   Design service stress   f s   =

    5f yAs, reqx8As, prov

    BS8110:1985

    Part ‐ 1 Table

    3.9 Conditions to

    Satisfy

    0.481265

    Ok

    400/dmin

    4.878049

    Table 3.9

    0.74

    (100As/bd)min   100As,max/bdmin

    Minimum possible design shear

    stress capacity of slab,

    Table 3.10

    T12

    T12

    T12

    T12

    2.0120[0.9 + M/bd

    2]

    = 0.55 +  477 ‐ 111.72

    120[0.9 + (13.94x10^6)/(1000x94^2)]

    = 1.78

    =  5x460x293

    x8x452.39

    111.7235

    Table 3.11  Modification factor for tension

    reinforcements,  = 0.55

    T12

    T12

    46.2

    Deflection of slab is adequate OK

    +[477 ‐ f s]

    vmax   OK

    45.13

    26.00