slender structures load carrying principles - tu delft

46
Hans Welleman 1 Slender Structures Load carrying principles Basic systems: Serial Parallel v2019-1

Upload: others

Post on 05-May-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Slender Structures Load carrying principles - TU Delft

Hans Welleman 1

Slender Structures

Load carrying principles

Basic systems:

• Serial

• Parallel

v2019-1

Page 2: Slender Structures Load carrying principles - TU Delft

Content (preliminary schedule)

Basic cases

– Extension, shear, torsion, cable

– Bending (Euler-Bernoulli)

Combined systems

- Parallel systems

- Special system – Bending (Timoshenko)

Continuously Elastic Supported (basic) Cases

Cable revisit and Arches

Matrix Method

Hans Welleman 2

Page 3: Slender Structures Load carrying principles - TU Delft

Learning objectives

Extend the technique for basic models to systems

Find the ODE for a specific system and the boundary

conditions for the specific application

Solve the more advanced ODE’s (by hand and

MAPLE)

Investigate consequences/limitations of the model

and check results with limit cases

Hans Welleman 3

Page 4: Slender Structures Load carrying principles - TU Delft

Basic Cases

Second order DE

Extension

Shear

Torsion

Cable

Hans Welleman 4

Fourth order DE

Bending

2

2

2

2

2

2

2

2

d

d

d

d

d

d

d

d

xt

uEA q

x

wk q

x

GI mx

zH q

x

ϕ

− =

− =

− =

− =

4

4

d

d

wEI q

x=

Page 5: Slender Structures Load carrying principles - TU Delft

Model

(ordinary) Differential Equation – (O)DE

– Boundary conditions

– Matching conditions

Hans Welleman 5

Page 6: Slender Structures Load carrying principles - TU Delft

Combined Spring Systems (1 dof)

Serial springs

Hans Welleman 6

1 2

1 1 2 2

1 21 2

; ;

N N F

k u k u F

F Fu u

k k

= =

∆ = ∆ =

∆ = ∆ =

1 21 2

1 2

1 2

1 2

1 1 1

e

e

F Fu u u

k k

u F Fk k k

k kk

k k

= ∆ + ∆ = +

= + =

=+

Page 7: Slender Structures Load carrying principles - TU Delft

Combined Spring System (1 dof)

Parallel springs

Hans Welleman 7

1 2

1 2

u u u

N N F

∆ = ∆ =

+ =

( )1 1 2 2

1 2

1 2

e

e

k u k u F

k k u F

k u F

k k k

∆ + ∆ =

+ =

=

= +

constrained rotation

Page 8: Slender Structures Load carrying principles - TU Delft

Result

Serial

– Load bearing capacity is equal to weakest element (bothelements take the same load)

– Total deformation is summation of each element

– Equivalent stiffness :

Parallel

– Total load carrying capacity is summation of each element

– Both elements have the same deformation

– Equivalent stiffness :

Hans Welleman 8

1 2

1 1 1

ek k k= +

1 2ek k k= +

Page 9: Slender Structures Load carrying principles - TU Delft

Slightly more advanced ….

1 22

1

1

force equilibrium

N N F bN F

moment equilibrium l

N l Fb

+ = = −

=

2 1 1 21 2

1 2

2 1 2 1 2

1 2

2 1 2 1 2 1 22 2

1 2 1 2

22 21 2

2 2 2 22 1 1 2

or

( )

( )

1with : e

e

u u u uu u a u u b

l l

Fk l b kFb

k lk k lk kFbu a

lk k l

Fblk Fk a l b Fabk k al k bl k ab k abu F

l k k l k k

k k la bu F F k

kl k l k a k b k

∆ − ∆ ∆ − ∆ = ∆ + = ∆ +

−−

= +

+ − − + − −= =

= + = = +

Hans Welleman 9

( ) ( )

1 21

1 1 1 2

122

2 2 1 2

N FbkFbu

k lk lk k

F l b Fk l bNu

k lk lk k

∆ = = =

− −∆ = = =

Page 10: Slender Structures Load carrying principles - TU Delft

Non-dimensional relations1

Hans Welleman 10

Study this from the notes !

1T.J. Folkerts, A more general form for parallel springs, American Journal of Physics, 70(5):493-494, 2002

Page 11: Slender Structures Load carrying principles - TU Delft

Application

Hans Welleman 11

b = spring length in deformed state

l = additional cables (no stress)

a = chord which will be cut

What will happen to the block depending upon the values of a,b

and l.

Source : Johan Blaauwendraad, BD magazine 2, nov 1998.

neglect unloaded spring length

Page 12: Slender Structures Load carrying principles - TU Delft

Combine basic cases

Parallel system

– Bending and cable

– Bending and shear

Special “serial” system

– Bending and shear, Timoshenko Beam

Hans Welleman 12

Page 13: Slender Structures Load carrying principles - TU Delft

System with cable + bending

Same deflection, therefore P-system

Capacity is sum of elements

Hans Welleman 13

2

2

d

dcable

wH q

x− =

4

4

d

dbending

wEI q

x=

4 2

4 2

d d

d dbending cable

w wEI H q q q

x x− = + =

+

Page 14: Slender Structures Load carrying principles - TU Delft

A simple example

Hans Welleman 14

Influence of cable force H on deflection at midspan

Page 15: Slender Structures Load carrying principles - TU Delft

General solution ?

Hans Welleman 15

4 2

4 2

4 22 2

4 2

d d( ) ( ) sin

d d

sind d

with :d d

b c o

o

w w xEI H q x q x q

x x l

xq

w w Hl

x x EI EI

π

π

α α

− = + =

− = =

wh(x) = ………………………………………

wp(x) = ………………………………………

Page 16: Slender Structures Load carrying principles - TU Delft

reduction factor

Result

only bending

Hans Welleman 16

4

2 4

2

1sin

1

oq l xw

Hl EI l

EI

π

π

π

= ⋅

+

4

4sino

bending only

q l xw

EI l

π

π− =

reduction

factor

2

2

H

EI

l

π

2

2

1

1bending onlyw w

Hl

EIπ

−= ⋅

+

Page 17: Slender Structures Load carrying principles - TU Delft

Parallel system cable + bending

Suspension Bridge

Hans Welleman 17

Clifton Suspension Bridge (1864) crossing the Avon at Bristol.

Designed by Isambard Kingdom Brunel [source: The Telegraph.co.uk]

Page 18: Slender Structures Load carrying principles - TU Delft

Model

Hans Welleman 18

Same deflection, therefore P-system

Capacity is sum of elements

Assumption

Self weight p is taken by cable

only during construction

After completion total load p

and q is taken by the system

2

2

d

d

zH p

x− =

4 2

4 2

( )d w d z wEI H q p

dx dx

+− = +

4 2

4 2

d w d wEI H q

dx dx− =

Page 19: Slender Structures Load carrying principles - TU Delft

Some Math

Hans Welleman 19

4 2

4 2

d w d wEI H q

dx dx− =

General solution

Homogeneous solution

Particular solution, assume constant q

Page 20: Slender Structures Load carrying principles - TU Delft

I found as an answer

wh(x) = ………………………………………

wp(x) = ………………………………………

Hans Welleman 20

Page 21: Slender Structures Load carrying principles - TU Delft

Examples

Wheel load on cables with bending stiffness,

Constrained bending with tension,

Offshore risers,

High rise buildings

Hans Welleman 21

1A.L. Bouma, Mechanica van Constructies, Elasto-static van slanke structuren, VSSD, ISBN 9789040712784, 2000

1

Page 22: Slender Structures Load carrying principles - TU Delft

Wheel load

Hans Welleman 22

Model and boundary conditions?

Influence of H on deflection?

Influence of dimension of wheel?

Page 23: Slender Structures Load carrying principles - TU Delft

Constrained bending with tension

Hans Welleman 23

Model and boundary conditions?

Influence of H on deflection?

Influence of H on moment ditribution?

Page 24: Slender Structures Load carrying principles - TU Delft

Riser

Offshore, pipe from well

Deep water

In tidal water with currents

Hans Welleman 24

6

11 2

3

300 m

12 10 N

3.6 m

45 mm

2 10 N/m

1 m/s (1.9 knots)

1.8 10 N/m

l

H

Diam

thickness

E

current

q

=

= ×

=

=

= ×

=

= ×

334.4 10 N/m (submerged tube weight)p = ×

Page 25: Slender Structures Load carrying principles - TU Delft

Model

Assume constant H

Define boundary conditions

Find deformed position h answer 6.75 m

What if H is not constant …

Let’s use MAPLE ….

Hans Welleman 25

Page 26: Slender Structures Load carrying principles - TU Delft

Result

Hans Welleman 26

linear H

constant H

Page 27: Slender Structures Load carrying principles - TU Delft

High Rise

Shear frame combined with bending element

(elevator or staircase tower)

Hans Welleman 27

Page 28: Slender Structures Load carrying principles - TU Delft

Model?

Assume rigid links

Same deflection, therefore P-system

Summation of capacity

Hans Welleman 28

Page 29: Slender Structures Load carrying principles - TU Delft

Solve this problem

ODE

Boundary Conditions

Solution and interpretation

Let’s use MAPLE ….

Hans Welleman 29

Page 30: Slender Structures Load carrying principles - TU Delft

Displacement w(x)

Hans Welleman 30

primarily bending

shear

Page 31: Slender Structures Load carrying principles - TU Delft

Bending

moment M(x)

Hans Welleman 31

total moment

moment in bending element

change of sign!!

Page 32: Slender Structures Load carrying principles - TU Delft

Shear V(x)

Hans Welleman 32

total shear Vtot

VbVs

Help!!

Remarkable !

??

Page 33: Slender Structures Load carrying principles - TU Delft

Results

Fight between shear and bending

Concentrated force in the top link

All shear load to foundation of the tower

Change of sign in moment distribution

Hans Welleman 33

Page 34: Slender Structures Load carrying principles - TU Delft

Beams with bending and shear

deformation, Timoshenko beam

Hans Welleman 34

Displacement w(x) is result of:

Deformation due to shear

Deformation due to bending

Therefore “looks like” a serial system

'

'

shear

bending

w

w

γ

ϕ

=

= −

+d

d

w

xγ ϕ= −

Page 35: Slender Structures Load carrying principles - TU Delft

Combined system

Hans Welleman 35

Constitutive relation

Kinematic relation

Equilibrium

d(1)

d

d

d

w

x

x

γ ϕ

ϕκ

= +

=

d

d

d

d

eff eff

wV GA GA

x

M EI EIx

γ ϕ

ϕκ

= = +

= =

d

d

d

d

Vq

x

MV

x

= −

=

Page 36: Slender Structures Load carrying principles - TU Delft

Static determinate beams

Hans Welleman 36

2

2

2

2

d

d

d d d 1 d

d d d d

d

d

with: eff

w

x

w V M

x x x k x EI

w q M

x k EI

k GA

γ ϕ

γ ϕ

= − ⇔

= − = −

= − −

=

Rewrite:- use KR and CR for V

- use vertical EQ

k Euler Bernoulli beam

EI Shear beam

→ ∞

→ ∞

Page 37: Slender Structures Load carrying principles - TU Delft

Example

Hans Welleman 37

2

2

d

d

w q M

x k EI= − −

Moment distribution ?2

2

d( )

d

Mq x

x= −

Page 38: Slender Structures Load carrying principles - TU Delft

Result

This makes sense ….

Hans Welleman 38

22

2 2

2 4

2 4

sin sind

d

sin sin

o o

o o

x xq q l

w l l

kx EI

q l q lx xw

l lk EI

π π

π

π π

π π

= − −

= +

shear bending

Page 39: Slender Structures Load carrying principles - TU Delft

Check this out

Hans Welleman 39

use MAPLE !

What about static

indeterminate

systems ??

Page 40: Slender Structures Load carrying principles - TU Delft

Take a closer look …

Hans Welleman 40

Page 41: Slender Structures Load carrying principles - TU Delft

Lets check system again ..

Hans Welleman 41

( , ) ( )

( , ) ( )

u x z z x

w x z w x

ϕ=

=

displacements and shear deformation :

very nice !

theory of

elasticity

1 12 2

d d d2 2

d d dxz

u w w

z x xγ ε ϕ

= = + = +

Page 42: Slender Structures Load carrying principles - TU Delft

Differential equations

Hans Welleman 42

2

2

d dand

d d

d d(2)

d d

eff eff

eff

V wq V GA GA

x x

wGA q

x x

γ ϕ

ϕ

= − = = +

+ = −

2

2

d

d dand

d d

d

d d0 (1)

dd

eff eff

eff

wV GA GA

M xV

xM EI

x

wEI GA

xx

γ ϕ

ϕ

ϕϕ

= = + =

=

− + =

unknown displacement

fields:

w(x) and ϕ(x)

Page 43: Slender Structures Load carrying principles - TU Delft

System of coupled DE

Hans Welleman 43

2

2

2

2

d d0 (1)

d d

d d(2)

d d

eff

eff

wEI GA

x x

wGA q

x x

ϕϕ

ϕ

− + =

+ = −

What about the

boundary conditions ?

Page 44: Slender Structures Load carrying principles - TU Delft

Example

Hans Welleman 44

l = 8 m; q = 10 kN/m

GAeff = 500..50000 kN/m

EI = 10000 kNm2

Conclusion?

Page 45: Slender Structures Load carrying principles - TU Delft

MAPLE

Hans Welleman 45

> restart;

Aug 2017, © Hans Welleman

Timoshenko beam, shear and bending, example during lecture

> DV1:=EI*diff(phi(x),x$2)-GA*(diff(w(x),x)+phi(x))=0;

> DV2:=GA*(diff(w(x),x$2)+diff(phi(x),x))=-q;

> sol1:=dsolve({DV1,DV2},{w(x),phi(x)}): assign(sol1):

> w:=(w(x)); phi:=(phi(x));

standard relations for rotation, shear deformation and curvature:

> Gamma:=diff(w,x)+phi: kappa:=diff(phi,x):

> alpha_bending:=phi: alpha_shear:=diff(w,x):

sectional forces:

> V:=GA*Gamma: M:=EI*kappa:

boundary condition, clamped at the left, simply supported at the right:

> x:=0: eq1:=w=0: eq2:=phi=0:

> x:=L: eq3:=w=0: eq4:=M=0:

> sol2:=solve({eq1,eq2,eq3,eq4},{_C1,_C2,_C3,_C4}): assign(sol2); x:='x':

> L:=10: q:=8: EI:=10000: GA:=500:

> plot(-w,x=0..L,title="deflection w(x)");

> plot(-M,x=0..L,title="M");

> x:=0: evalf(M); evalf((-1/8)*q*L^2);

> x:='x': plot([Gamma,alpha_shear,alpha_bending],x=0..L,title="gamma,

dw/dx_shear,

dw/dx_bending",legend=["gamma","dw/dx_shear","dw/dx_bending"]);

Page 46: Slender Structures Load carrying principles - TU Delft

Numerical verification

Hans Welleman 46

COORDINATES 101

GENE 101 NODE 1 X 0.0 STEP 0.1 Y 0.0 STEP 0.0 Z 0.0

STEP 0.0

ELEMENTS 100

GENE 100 BEAM 1 NNODE 2 1 STEP 1 2 STEP 1

BEAM 1

1 E 2.0 IZ 5000 AX 100 AY 500 rho 0 NU 0.0 FREE

ELLOAD 100

GENE 100 STARTELE 1 STEP 1 DIRE YL FIXED Q 8

SUPPORTS 4

NODE 1 X FIXED

NODE 1 Z FIXED

NODE 1 PHIY FIXED

NODE 101 Z FIXED

EXECUTE 1

STATIC LINEAR

PRINT 4

DISPLACEMENTS ALL

SUPPORTREACTIONS ALL

LOADING ALL

STRESSES ALL

end

+-------------------------------------------------------------------+

| CALCULATION RESULTS |

+-------------------------------------------------------------------+

---------------------------------------------------------------------

DISPLACEMENTS

---------------------------------------------------------------------

dof/node-dir displacements

---------------------------------------------------------------------

NODE 51 X +0.000000e+000

NODE 51 Z +2.651042e-001

NODE 51 PHIY +9.895833e-003

---------------------------------------------------------------------

SUPPORT REACTIONS

---------------------------------------------------------------------

dof/node-dir support reactions

---------------------------------------------------------------------

NODE 1 X +0.000000e+000

NODE 1 Z -4.625000e+001

NODE 1 PHIY +6.250000e+001

NODE 101 Z -3.375000e+001

---------------------------------------------------------------------