slide chpt09

46
1 F F inite Element inite Element Method Method FEM FOR 3D SOLIDS for readers of all backgrounds for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 9:

Upload: sadiq-sarfaraz

Post on 28-Nov-2015

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Slide Chpt09

1

FFinite Element Methodinite Element Method

FEM FOR 3D SOLIDS

for readers of all backgroundsfor readers of all backgrounds

G. R. Liu and S. S. Quek

CHAPTER 9:

Page 2: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek2

CONTENTSCONTENTS INTRODUCTION TETRAHEDRON ELEMENT

– Shape functions– Strain matrix– Element matrices

HEXAHEDRON ELEMENT– Shape functions– Strain matrix– Element matrices– Using tetrahedrons to form hexahedrons

HIGHER ORDER ELEMENTS ELEMENTS WITH CURVED SURFACES

Page 3: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek3

INTRODUCTIONINTRODUCTION

For 3D solids, all the field variables are dependent of x, y and z coordinates – most general element.

The element is often known as a 3D solid element or simply a solid element.

A 3D solid element can have a tetrahedron and hexahedron shape with flat or curved surfaces.

At any node there are three components in the x, y and z directions for the displacement as well as forces.

Page 4: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek4

TETRAHEDRON ELEMENTTETRAHEDRON ELEMENT

3D solid meshed with tetrahedron elements

Page 5: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek5

TETRAHEDRON ELEMENTTETRAHEDRON ELEMENT

z=Z

x=Xz=Z

y=Y

w 4

v4

u4

w2

u2

u2

w 1

u1

v1

w3

u3

v3 i

j

l

k 1 =

4 =

2 =

3 =

fsy

fsz

fsx

Consider a four node tetrahedron element

1

1

1

2

2

2

3

3

3

4

4

4

node 1

node 2

node 3

node 4

e

u

v

w

u

v

w

u

v

w

u

v

w

d

Page 6: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek6

Shape functionsShape functions

( , , ) ( , , )hex y z x y zU N d

1 2 3 4

1 2 3 4

1 2 3 4

node 1 node 2 node 3 node 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

N N N N

N N N N

N N N N

N

where

Use volume coordinates (Recall Area coordinates for 2D triangular element)

1234

2341 V

VL P

1=i

2=j

3=k

4=l

P

y

z

x

Page 7: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek7

Shape functionsShape functions

Similarly,1234

1234

1234

1243

1234

1342 , ,

V

VL

V

VL

V

VL PPP

Can also be viewed as ratio of distances

234 134 1231241 2 3 4

1 234 1 234 1 234 1 234

, , , P P PPd d ddL L L L

d d d d

1=i

2=j

3=k

4=l

P

y

z

x

1 4321 LLLL

since

1234123124134234 VVVVV PPPP

(Partition of unity)

Page 8: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek8

Shape functionsShape functions

jkl

iLi nodes remote theat the 0

node home at the 1

44332211

44332211

44332211

zLzLzLzLz

yLyLyLyLy

xLxLxLxLx

(Delta function property)

1 4321 LLLL

4

3

2

1

4321

4321

4321

1 1 1 11

L

L

L

L

zzzz

yyyy

xxxx

z

y

x

Page 9: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek9

Shape functionsShape functions

Therefore,

where

z

y

x

dcba

dcba

dcba

dcba

V

L

L

L

L 1

6

1

4444

3333

2222

1111

4

3

2

1

1

det , det 1

1

1 1

det 1 , det 1

1 1

j j j j j

i k k k i k k

l l l l l

j j j j

i k k i k k

l l l l

x y z y z

a x y z b y z

x y z y z

y z y z

c y z d y z

y z y z

(Adjoint matrix)

(Cofactors)

i

j

k

l

i= 1,2

j = 2,3

k = 3,4

l = 4,1

Page 10: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek10

Shape functionsShape functions

l

k

j

i

l

k

j

i

l

k

j

i

z

z

z

z

y

y

y

y

x

x

x

x

V

1

1

1

1

det6

1(Volume of tetrahedron)

)(6

1zdycxba

VLN iiiiii Therefore,

Page 11: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek11

Strain matrixStrain matrix

Since, ( , , ) ( , , )hex y z x y zU N d

Therefore, ee BdLNdLU where NLNB

0

0

0

00

00

00

xy

xz

yz

z

y

x

44

44

44

4

4

4

33

33

33

3

3

3

22

22

22

2

2

2

11

11

11

1

1

1

0

0

0

00

00

00

0

0

0

00

00

00

0

0

0

00

00

00

0

0

0

00

00

00

2

1

bd

cd

bc

d

c

b

bd

cd

bc

d

c

b

bd

cd

bc

d

c

b

bd

cd

bc

d

c

b

VB

(Constant strain element)

Page 12: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek12

Element matricesElement matrices

e

T Te eV

dV V k B cB B cB

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

d de e

Te

V V

V V

N N N N

N N N Nm N N

N N N N

N N N N

where

ji

ji

ji

ij

NN

NN

NN

00

00

00

N

Page 13: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek13

Element matricesElement matrices

1 2 3 4

! ! ! !d 6

( 3)!e

m n p qeV

m n p qL L L L V V

m n p q

Eisenberg and Malvern [1973] :

2 0 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0 0 1 0

2 0 0 1 0 0 1 0 0 1

2 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0

2 0 0 1 0 0 1

2 0 0 1 0 020

2 0 0 1 0

2 0 0 1

. 2 0 0

2 0

2

ee

V

sy

m

Page 14: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek14

Element matricesElement matrices

Alternative method for evaluating me: special natural coordinate system

z

x z = Z

y

i

j

l

k

1 =

4 =

2 =

3 =

= 0

= 1

= 1

= c o n s ta n t

P

Q

Page 15: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek15

Element matricesElement matrices

z

x z = Z

y

i

j

l

k

1 =

4 =

2 =

3 =

= 0

= 0

= 1

= c o n s ta n t

P

Page 16: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek16

Element matricesElement matrices

z

x z=Z

y

i

j

l

k

1 =

4 =

2 =

3 =

=1

=1

=1

=0

=constant

P

Q R

Page 17: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek17

Element matricesElement matrices

z

x z=Z

y

i

j

l

k

1 =

4 =

2 =

3 =

=0 =0 =1

=1 =0 =1

=1 =1 =1

=0

=constant

P [xP(x3

x2)+x2, yP(y3

y2)+y2,0]

O

B

B [xB(xP

x1)+x1, yB[(yP

y1)y1],0]

O [x=(1 )(x4 xB)xB, y=(1 )(y4

yB)yB, z=(1 )z4]

=constant

=constant

0

)(

)(

223

223

P

P

P

z

yyyy

xxxx

0

)()()(

)()()(

1122311

1122311

B

PB

PB

z

yyyyyyyyy

xxxxxxxxx

4

321214444

321214444

)1(

)()()()(

)()()()(

zz

yyyyyyyyyyy

xxxxxxxxxxx

B

B

)1(

)1(

)1(

4

3

2

1

N

N

N

N

Page 18: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek18

Element matricesElement matrices

Jacobian:

z

y

x

z

y

x

z

y

x

J

2

4

312141313121

312141313121

6

0 0

]det[

V

z

yyyyyy

xxxxxx

J

1 1 1

0 0 0d det d d d

e

T Te

V

V m N N N N [J]

11 12 13 14

1 1 1 21 22 23 242

0 0 031 32 33 34

41 42 43 44

6 d d de eV

N N N N

N N N Nm

N N N N

N N N N

Page 19: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek19

Element matricesElement matrices

l

f

f

f

l

sz

sy

sx

e d ][43

T

Nf

z=Z

x=Xz=Z

y=Y

w 4

v4

u4

w2

u2

u2

w 1

u1

v1

w3

u3

v3 i

j

l

k 1 =

4 =

2 =

3 =

fsy

fsz

fsx

For uniformly distributed load:

13

13

13

13

13

13

432

1

0

0

0

0

0

0

f

sz

sy

sx

sz

sy

sx

e

f

f

ff

f

f

l

Page 20: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek20

HEXAHEDRON ELEMENTHEXAHEDRON ELEMENT

3D solid meshed with hexahedron elements

P P’

P’’ P’’’

Page 21: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek21

Shape functionsShape functions

eNdU

1

2

3

4

5

6

7

8

displacement components at node 1

displacement components at node 2

displacement components at node 3

displacement components at node 4

displacement co

e

e

e

ee

e

e

e

e

d

d

d

dd

d

d

d

d

mponents at node 5

displacement components at node 6

displacement components at node 7

displacement components at node 8

1

1

1

( 1, 2, ,8) ei

u

v i

w

d

17

5 8

6 4

2

0

z

y

x

3

0

fsz

fsyfsx

87654321 NNNNNNNNN

)8,,2,1(

00

00

00

i

N

N

N

i

i

i

iN

Page 22: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek22

Shape functionsShape functions

4(-1, 1, -1)

(1, -1, 1)6

(1, -1, -1)2

1 7

5 8

6 4

2 0

z

y

x

3

0

fsz

fsy fsx

8(-1, 1, 1)

7 (1, 1, 1)

(-1, -1, 1)5

(-1, -1, -1)1

3(1, 1, -1)

iii

iii

iii

zNz

yNy

xNx

),,(

),,(

),,(

8

1

8

1

8

1

)1)(1)(1(

8

1iiiiN

(Tri-linear functions)

Page 23: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek23

Strain matrixStrain matrix

87654321 BBBBBBBBB

whereby

0

0

0

00

00

00

xNyN

xNzN

yNzN

zN

yN

xN

ii

ii

ii

i

i

i

ii LNB

Note: Shape functions are expressed in natural coordinates – chain rule of differentiation

ee BdLNdLU

Page 24: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek24

Strain matrixStrain matrix

z

z

Ny

y

Nx

x

NN

z

z

Ny

y

Nx

x

NN

z

z

Ny

y

Nx

x

NN

iiii

iiii

iiii

Chain rule of differentiation

z

Ny

Nx

N

N

N

N

i

i

i

i

i

i

J

where

z

z

z

y

y

y

x

x

x

J

Page 25: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek25

Strain matrixStrain matrix8 8 8

1 1 1

( , , ) , ( , , ) , ( , , )i i i i i ii i i

x N x y N y z N z

Since,

or

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

i

ii

Nz

Nz

Nz

Ny

Ny

Ny

Nx

Nx

Nx

J

1 1 1

2 2 23 5 6 7 81 2 4

3 3 3

4 4 43 5 6 7 81 2 4

5 5 5

6 6 61 2 3 4 5 6 7 8

7 7 7

8 8 8

x y z

x y zN N N N NN N Nx y z

x y zN N N N NN N Nx y z

x y zN N N N N N N N

x y z

x y z

J

Page 26: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek26

Strain matrixStrain matrix

i

i

i

i

i

i

N

N

N

z

Ny

Nx

N

1J

0

0

0

00

00

00

xNyN

xNzN

yNzN

zN

yN

xN

ii

ii

ii

i

i

i

ii LNB

Used to replace derivatives w.r.t. x, y, z with derivatives w.r.t. , ,

Page 27: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek27

Element matricesElement matrices

1 1 1T T

1 1 1d det[ ]d d d

e

e

V

A

k B cB B cB J

Gauss integration: ),,(d)d,(1 1 1

1

1

1

1

1

1 jjikji

n

i

m

j

l

k

fwwwfI

1 1 1

1 1 1d det d d d

e

T Te

V

V

m N N N N [J]

Page 28: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek28

Element matricesElement matrices

For rectangular hexahedron:

det eabc V [J]

88

7877

686766

58575655

4847464544

282726252433

28272625242322

1817161514131211

.

m

mm

mmm

mmmm

mmmmm

mmmmmm

mmmmmmm

mmmmmmmm

m

sy

e

Page 29: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek29

Element matricesElement matrices

(Cont’d)

where

ddd

00

00

00

ddd

00

00

00

00

00

00

ddd

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ji

ji

ji

j

j

j

i

i

i

jiij

NN

NN

NN

abc

N

N

N

N

N

N

abc

abc NNm

Page 30: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek30

Element matricesElement matrices

(Cont’d)

or

ij

ij

ij

ij

m

m

m

00

00

00

m

where

)1)(1)(1(8

d)1)(1(d)1)(1(d)1)(1(64

ddd

31

31

31

1

1

1

1

1

1

1

1

1

1

jijiji

jijiji

jiij

hab

abc

NNabcm

Page 31: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek31

Element matricesElement matrices

(Cont’d)

E.g.216

8)111)(111)(111(8 3

131

31

33

abcabcm

216

1216

2216

4

216

8

46352817

184538276857473625162413

483726155814786756342312

8877665544332211

abcmmmm

abcmmmmmmmmmmmm

abcmmmmmmmmmmmm

abc

mmmmmmmm

Page 32: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek32

Element matricesElement matrices

(Cont’d)

8

48.

248

4248

42128

242148

1242248

21244248

216

sy

abcex

m

Note: For x direction only

(Rectangular hexahedron)

Page 33: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek33

Element matricesElement matrices

l

f

f

f

l

sz

sy

sx

e d ][43

T

Nf

17

5 8

6 4

2

0

z

y

x

3

0

fsz

fsyfsx

13

13

13

13

13

13

432

1

0

0

0

0

0

0

f

sz

sy

sx

sz

sy

sx

e

f

f

ff

f

f

l

For uniformly distributed load:

Page 34: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek34

Using tetrahedrons to form hexahedronsUsing tetrahedrons to form hexahedrons

Hexahedrons can be made up of several tetrahedrons

1

5

6

8 1 4

3

8

1

2 3

4

5

7

8

3

1 6

8

6

3

2

1

6

3

6 7

8 Hexahedron made up of 5 tetrahedrons:

Page 35: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek35

Using tetrahedrons to form hexahedronsUsing tetrahedrons to form hexahedrons

1

2 3

4

5

7

8

6

1

2

4

5 8

6

2 3

7

8

6 4

1 4

5

6

1

2

4 6

5 8

6 4

Break into three

Hexahedron made up of six tetrahedrons:

Element matrices can be obtained by assembly of tetrahedron elements

Page 36: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek36

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Tetrahedron elements

1

9

8

7 10

2

5

6

3

4

5 2 3

6 1 3

7 1 2

8 1 4

9 2 4

10 3 4

(2 -1) for corner nodes 1,2,3,4

4

4

4 for mid-edge nodes

4

4

4

i i iN L L i

N L L

N L L

N L L

N L L

N L L

N L L

10 nodes, quadratic:

Page 37: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek37

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Tetrahedron elements (Cont’d)20 nodes, cubic:

12

9 95 1 1 3 11 1 1 42 2

9 96 3 1 3 12 4 1 42 2

9 97 1 1 2 13 22 2

98 2 1 22

99 2 2 32

910 3 2 32

(3 1)(3 2) for corner nodes 1,2,3,4

(3 1) (3 1)

(3 1) (3 1)

(3 1) (3 1)

(3 1)

(3 1)

(3 1)

i i i iN L L L i

N L L L N L L L

N L L L N L L L

N L L L N L L

N L L L

N L L L

N L L L

2 4

914 4 2 42

915 3 3 42

916 4 3 42

17 2 3 4

18 1 2 3

19 1 3 4

20 1 2 4

for edge nodes(3 1)

(3 1)

(3 1)

27

27 for center surface nodes

27

27

L

N L L L

N L L L

N L L L

N L L L

N L L L

N L L L

N L L L

1

13 12

7

15

2

9

6 3

4

5

8

10

11

14

16

17

18

195

20

Page 38: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek38

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Brick elements

Lagrange type:

i(I,J,K)

(0,0,0)

(n,m,p)

(n,0,0)

(n,m,0)

(nd=(n+1)(m+1)(p+1) nodes)

1 1 1 ( ) ( ) ( )D D D n m pi I J K I J KN N N N l l l

0 1 1 1

0 1 1 1

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )n k k nk

k k k k k k k n

l

where

Page 39: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek39

HIGHER ORDER HIGHER ORDER ELEMENTSELEMENTS

Brick elements (Cont’d)

Serendipity type elements:

4(-1, 1, -1)

(1, -1, 1)6

(1, -1, -1)2

8(-1, 1, 1)

7 (1, 1, 1)

(-1, -1, 1)5

(-1,-1,-1)1

3(1, 1, -1)

9(1,0,-1)

10(0,1,-1)

11(-1,0,-1) 12(0-1,-1)

13 143

15

16

17 18

19 20

18

214

214

(1 )(1 )(1 )( 2)

for corner nodes 1, , 8

(1 )(1 )(1 ) for mid-side nodes 10,12,14,16

(1 )(1

j j j j j j i

j j j

j

N

j

N j

N

214

)(1 ) for mid-side nodes 9,11,13,15

(1 )(1 )(1 ) for mid-side nodes 17,18,19,20

j j

j j j

j

N j

20 nodes, tri-quadratic:

Page 40: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek40

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Brick elements (Cont’d)

2 2 2164

2964

13

2964

(1 )(1 )(1 )(9 9 9 19)

for corner nodes 1, , 8

(1 )(1 9 )(1 )(1 )

for side nodes with , 1 and 1

(1 )(1 9

j j j j

j j j j

j j j

j

N

j

N

N

13

2964

13

)(1 )(1 )

for side nodes with , 1 and 1

(1 )(1 9 )(1 )(1 )

for side nodes with , 1 and 1

j j j

j j j

j j j j

j j j

N

32 nodes, tri-cubic:

Page 41: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek41

ELEMENTS WITH CURVED ELEMENTS WITH CURVED SURFACESSURFACES

1

4

9 8

7 10

2 5

6 3

7 18

16

12 15

14 11

13

5 17 19

20

6

10 9

8

2

1

4 3

9 8

7 10

2

5

6 3

1

4

13 7 18 16

12 15

14 11

5 17 19

20

6

10

9

8

2

1 4

3

Page 42: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek42

CASE STUDYCASE STUDY

Stress and strain analysis of a quantum dot heterostructure

Material E (Gpa)

GaAs 86.96 0.31

InAs 51.42 0.35

GaAs substrate

GaAs cap layer

InAs wetting layer

InAs quantum dot

Page 43: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek43

CASE STUDYCASE STUDY

Page 44: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek44

CASE STUDYCASE STUDY30 nm

30 nm

Page 45: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek45

CASE STUDYCASE STUDY

Page 46: Slide Chpt09

Finite Element Method by G. R. Liu and S. S. Quek46

CASE STUDYCASE STUDY