slide11 icc2015

26
User Scheduling for Massive MIMO OFDMA Systems with Hybrid Analog-Digital Beamforming Tadilo Endeshaw Bogale Institute National de la Recherche (INRS), Canada June 9, 2015, (ICC 2015)

Upload: tadilo-endeshaw-bogale

Post on 27-Jul-2015

41 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Slide11 icc2015

User Scheduling for Massive MIMO OFDMASystems with Hybrid Analog-Digital Beamforming

Tadilo Endeshaw Bogale

Institute National de la Recherche (INRS), Canada

June 9, 2015, (ICC 2015)

Page 2: Slide11 icc2015

Presentation outline

Presentation outline

1 IntroductionScenario and ObjectiveSystem Model and Problem Formulation

2 Proposed Solution

3 Performance Analysis

4 Simulation Results

5 Conclusions

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 2 / 11

Page 3: Slide11 icc2015

Introduction Scenario and Objective

System Scenario and Objective

BS

a1 · · · aM

MS1

MS2

MSKt

h 1

h2

hK

t

...

System Scenario

MS1, MS2, MSKt are decentralized in spaceDownlink Communications⇒ Downlink Multiuser systemMS1, MS2, MSKt have single antennas⇒ Downlink Multiuser MISO systemBS has N antennas but Na < N RF chains⇒ BS use hybrid analog-digital architecture

(To get better performance (Clear later!))Channel between Tx and Rx is Freq. Selective

BS

a1 · · · aM

MS1

MS2

MSKt

h 1

h2

hK

t

...

System Scenario

MS1, MS2, MSKt are decentralized in spaceDownlink Communications⇒ Downlink Multiuser systemMS1, MS2, MSKt have single antennas⇒ Downlink Multiuser MISO systemBS has N antennas but Na < N RF chains⇒ BS use hybrid analog-digital architecture

(To get better performance (Clear later!))Channel between Tx and Rx is Freq. Selective

Objective

Schedule Kt MSs (Ki ,∀i)To maximize the Overall Data RateS.t. Per sub-carrier Power constraint

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 3 / 11

Page 4: Slide11 icc2015

Introduction Scenario and Objective

System Scenario and Objective

BS

a1 · · · aM

MS1

MS2

MSKt

h 1

h2

hK

t

...

System Scenario

MS1, MS2, MSKt are decentralized in spaceDownlink Communications⇒ Downlink Multiuser systemMS1, MS2, MSKt have single antennas⇒ Downlink Multiuser MISO systemBS has N antennas but Na < N RF chains⇒ BS use hybrid analog-digital architecture

(To get better performance (Clear later!))Channel between Tx and Rx is Freq. Selective

BS

a1 · · · aM

MS1

MS2

MSKt

h 1

h2

hK

t

...

System Scenario

MS1, MS2, MSKt are decentralized in spaceDownlink Communications⇒ Downlink Multiuser systemMS1, MS2, MSKt have single antennas⇒ Downlink Multiuser MISO systemBS has N antennas but Na < N RF chains⇒ BS use hybrid analog-digital architecture

(To get better performance (Clear later!))Channel between Tx and Rx is Freq. Selective

Objective

Schedule Kt MSs (Ki ,∀i)To maximize the Overall Data RateS.t. Per sub-carrier Power constraint

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 3 / 11

Page 5: Slide11 icc2015

Introduction System Model and Problem Formulation

System Model and Problem FormulationSource Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 4 / 11

Page 6: Slide11 icc2015

Introduction System Model and Problem Formulation

System Model and Problem Formulation

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 4 / 11

Page 7: Slide11 icc2015

Introduction System Model and Problem Formulation

System Model and Problem Formulation

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 4 / 11

Page 8: Slide11 icc2015

Introduction System Model and Problem Formulation

System Model and Problem Formulation

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 4 / 11

Page 9: Slide11 icc2015

Introduction System Model and Problem Formulation

System Model and Problem Formulation

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 4 / 11

Page 10: Slide11 icc2015

Introduction System Model and Problem Formulation

System Model and Problem Formulation

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

REREFENCES1 X. Zhang, A. F. Molisch, and S-Y. Kung, ”Variable-phase-shift-based RF-Baseband codesign for MIMO antenna

selection” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091 - 4103, Nov. 2005.

2 T. E. Bogale, L. Le, A. Haghighat, and L. Vandendorpe ”On the Number of RF Chains and Phase Shifters, andScheduling Design with Hybrid Analog-Digital Beamforming,” IEEE Trans. (Submitted),http://arxiv.org/abs/1410.2609.

Source Tx (Digital part) RF Chain Tx (Analog part)

Freq. Dom.

data source

D(1,:)

D(2,:)

D(K,:)

••

Freq. Dom.

BF

1

2

Na

••

IFFT (row)

& add CP

1

2

Na

••

RF1

analog

RF2

analog

RFNa

analog

••

AnalogBF

AnalogBF

AnalogBF

••

N

N

N

••

2

2

2

1

1

1

1

2

N

••

••

••

••

••

••

H

1 Discard CP& take FFT

di1 Decoded11, · · · , dNf1

2 Discard CP& take FFT

di2 Decoded12, · · · , dNf2

K Discard CP& take FFT

diK Decoded1K , · · · , dNfK

••

d1, · · · ,dNfB1, · · · ,BNf A

dik = hHikABidi + nik

FH F

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

For one Sub-carrier (Flat fading)

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax

Kt : Total number of usersK : Scheduled usersAssume that we have Na = K RF chains

First Possibility

maxA,B

K∑k=1

log(1 + γk )

s.t tr{BHAHAB} ≤ Pmax , |Aij |2 = 1

Disadvantage:How far from digital scheduler which isan optimal approach?(Not clearly known for general channel)

Second Possibility

maxBd

K∑k=1

log(1 + γk )

s.t tr{(Bd )HBd} ≤ Pmax

Exploit the solution of digital scheduler:Fact: rank(Bd ) ≤ K for any schedulerClever Method [1]: Bd = UD, U ∈ CN×2K ,D ∈ R2K×K , D = blkdiag matrix∴ 2K RF chain: No performance lossVIP: No need to constrain |Aij |2 = 1

Observations

U and D are not uniqueQuestion: Can we make U and D uniqueand reduce RF chain < 2KAnswer: Yes, by employing [2]x = ej cos−1( x

2 ) + e−j cos−1( x2 ), for −2 ≤ x ≤ 2

⇒ Bd = UD, with |Uij |2 = 1 andD = blkdiag two consecutive diag elementsare the same⇒ K RF chain is enough [2]∴ Scheduling without |Aij |2 = 1 (Simpler)

Problem Formulation

maxA,Bi

Nf∑i=1

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (ABi)

s.t tr{BHi AHABi} ≤ Pi

Ki : Users served by sub-carrier iB = [B1,B2, · · · ,BNf ], Bi ∈ CNa×Si

γik : SINR of i th sub-carrier k th userA ∈ CNa×N : Realized using PSs only

(Expected to be more constrained!)

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 4 / 11

Page 11: Slide11 icc2015

Proposed Solution

Proposed Solution

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Conclusions

A user may be scheduledin one (more) sub-carriersProposed solution maynot be global optimal

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 5 / 11

Page 12: Slide11 icc2015

Proposed Solution

Proposed Solution

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Conclusions

A user may be scheduledin one (more) sub-carriersProposed solution maynot be global optimal

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 5 / 11

Page 13: Slide11 icc2015

Proposed Solution

Proposed Solution

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Conclusions

A user may be scheduledin one (more) sub-carriersProposed solution maynot be global optimal

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 5 / 11

Page 14: Slide11 icc2015

Proposed Solution

Proposed Solution

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Conclusions

A user may be scheduledin one (more) sub-carriersProposed solution maynot be global optimal

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 5 / 11

Page 15: Slide11 icc2015

Proposed Solution

Proposed Solution

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Input: Hki ,Ki ,Pi ,Na

Solve Relaxed Problem

rank(B) ≤ Na?

Get A,Bi : From SVD(B)

FINISH

Yes

Determine A

Given A: Optimize Bi

FINISH

No

Determination of A

Sort f (B1) ≥ f (B2) ≥, · · · ,≥ f (BNf )

Get Bd = [B1, B2, · · · , BS]

S: Min No of SC with rank(B) ≥ Na

Compute SVD(B) = UΛVH

Λ arranged in decreasing order.Set A: First Na columns of U

Relaxed Problem

Assume the system as if it is DB(i.e., implicitly uses Na = N and A = I)⇒ Scheduling independently for each SC

maxBi

Ki∑k=1

log(1 + γik ) , f (Bi),

s.t tr{BHi Bi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamformingSet B = [B1, B2, · · · , BNf ]

Optimize Bi for fixed A

For fixed A: Each sub-carrier canperform scheduling independently

maxBi

Ki∑k=1

log(1 + γik ) ,Nf∑

i=1

f (Bi)

s.t tr{BHi AHABi} ≤ Pi

Gready based SchedulerZero forcing (ZF) beamforming

Conclusions

A user may be scheduledin one (more) sub-carriersProposed solution maynot be global optimal

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 5 / 11

Page 16: Slide11 icc2015

Performance Analysis

Performance AnalysisApproaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Performance: Rayleigh Channel

Rayleigh Fading Channel:

Lemma 1: ZF beamforming, Rayleigh fading hHk and large Kt ,

we have

RHBi ≥ RASB

i when KHBi = KASB

i , and

RHBi = RDB

i when KHBi = KDB

i

KHBi = KDB

i may not hold, ⇒ Average performance makes senseTheorem 1: ZF beamforming with Pi = P,Ki = K and Rayleighfading channel hH

k , we have

E{RASB} ≤ KNf log2

(1 +

PK

E{χNa−K+1max (Kg)}

)E{RDB} ≤ KNf log2

(1 +

PK

E{χN−K+1max (Kg)}

)E{RHB} ≤ K S log2

(1 +

PK

E{χN−K+1max (Ks)}

)+ K (Nf − S) log2

(1 +

PK

E{χNa−K+1max (Kg)}

)where E{χM

max (L)}: Max. of L independent χ2 each with M DOF,S ≥ 1, Kg = dKt

K e and Ks = dKt NfKNae

Simulation: Bound is tight

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Performance: Rayleigh Channel

Rayleigh Fading Channel:

Lemma 1: ZF beamforming, Rayleigh fading hHk and large Kt ,

we have

RHBi ≥ RASB

i when KHBi = KASB

i , and

RHBi = RDB

i when KHBi = KDB

i

KHBi = KDB

i may not hold, ⇒ Average performance makes senseTheorem 1: ZF beamforming with Pi = P,Ki = K and Rayleighfading channel hH

k , we have

E{RASB} ≤ KNf log2

(1 +

PK

E{χNa−K+1max (Kg)}

)E{RDB} ≤ KNf log2

(1 +

PK

E{χN−K+1max (Kg)}

)E{RHB} ≤ K S log2

(1 +

PK

E{χN−K+1max (Ks)}

)+ K (Nf − S) log2

(1 +

PK

E{χNa−K+1max (Kg)}

)where E{χM

max (L)}: Max. of L independent χ2 each with M DOF,S ≥ 1, Kg = dKt

K e and Ks = dKt NfKNae

Simulation: Bound is tight

Performance: ULA Channel

Rayleigh:DB Scheduler: Likely chooses usersclose to orthogonal each otherProposed HB achieves lower sum rate

(Mainly due to rank(H) > Na)∴ if rank(H) ≤ Na then RHB

i ≈ RDBi

ULA: Condition rank(H) / Na existsLemma 2: When d = λ

2 and the AOD ofthe Kt users satisfy sin (θkm) ∈n sin (θ)[− 1

2N ,1

2N ], n = 1,2, · · · ,Na,where θ is an arbitrary angle,

KHBi = KDB

i and RHBi = RDB

i , ∀i

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 6 / 11

Page 17: Slide11 icc2015

Performance Analysis

Performance Analysis

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Performance: Rayleigh Channel

Rayleigh Fading Channel:

Lemma 1: ZF beamforming, Rayleigh fading hHk and large Kt ,

we have

RHBi ≥ RASB

i when KHBi = KASB

i , and

RHBi = RDB

i when KHBi = KDB

i

KHBi = KDB

i may not hold, ⇒ Average performance makes senseTheorem 1: ZF beamforming with Pi = P,Ki = K and Rayleighfading channel hH

k , we have

E{RASB} ≤ KNf log2

(1 +

PK

E{χNa−K+1max (Kg)}

)E{RDB} ≤ KNf log2

(1 +

PK

E{χN−K+1max (Kg)}

)E{RHB} ≤ K S log2

(1 +

PK

E{χN−K+1max (Ks)}

)+ K (Nf − S) log2

(1 +

PK

E{χNa−K+1max (Kg)}

)where E{χM

max (L)}: Max. of L independent χ2 each with M DOF,S ≥ 1, Kg = dKt

K e and Ks = dKt NfKNae

Simulation: Bound is tight

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Performance: Rayleigh Channel

Rayleigh Fading Channel:

Lemma 1: ZF beamforming, Rayleigh fading hHk and large Kt ,

we have

RHBi ≥ RASB

i when KHBi = KASB

i , and

RHBi = RDB

i when KHBi = KDB

i

KHBi = KDB

i may not hold, ⇒ Average performance makes senseTheorem 1: ZF beamforming with Pi = P,Ki = K and Rayleighfading channel hH

k , we have

E{RASB} ≤ KNf log2

(1 +

PK

E{χNa−K+1max (Kg)}

)E{RDB} ≤ KNf log2

(1 +

PK

E{χN−K+1max (Kg)}

)E{RHB} ≤ K S log2

(1 +

PK

E{χN−K+1max (Ks)}

)+ K (Nf − S) log2

(1 +

PK

E{χNa−K+1max (Kg)}

)where E{χM

max (L)}: Max. of L independent χ2 each with M DOF,S ≥ 1, Kg = dKt

K e and Ks = dKt NfKNae

Simulation: Bound is tight

Performance: ULA Channel

Rayleigh:DB Scheduler: Likely chooses usersclose to orthogonal each otherProposed HB achieves lower sum rate

(Mainly due to rank(H) > Na)∴ if rank(H) ≤ Na then RHB

i ≈ RDBi

ULA: Condition rank(H) / Na existsLemma 2: When d = λ

2 and the AOD ofthe Kt users satisfy sin (θkm) ∈n sin (θ)[− 1

2N ,1

2N ], n = 1,2, · · · ,Na,where θ is an arbitrary angle,

KHBi = KDB

i and RHBi = RDB

i , ∀i

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 6 / 11

Page 18: Slide11 icc2015

Performance Analysis

Performance Analysis

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Performance: Rayleigh Channel

Rayleigh Fading Channel:

Lemma 1: ZF beamforming, Rayleigh fading hHk and large Kt ,

we have

RHBi ≥ RASB

i when KHBi = KASB

i , and

RHBi = RDB

i when KHBi = KDB

i

KHBi = KDB

i may not hold, ⇒ Average performance makes senseTheorem 1: ZF beamforming with Pi = P,Ki = K and Rayleighfading channel hH

k , we have

E{RASB} ≤ KNf log2

(1 +

PK

E{χNa−K+1max (Kg)}

)E{RDB} ≤ KNf log2

(1 +

PK

E{χN−K+1max (Kg)}

)E{RHB} ≤ K S log2

(1 +

PK

E{χN−K+1max (Ks)}

)+ K (Nf − S) log2

(1 +

PK

E{χNa−K+1max (Kg)}

)where E{χM

max (L)}: Max. of L independent χ2 each with M DOF,S ≥ 1, Kg = dKt

K e and Ks = dKt NfKNae

Simulation: Bound is tight

Approaches

Three approaches examined:Antenna Selection Beamforming (ASB):Implicitly assumes A = IN×Na

Proposed Hybrid Beamforming (HB)Digital Beamforming (DB):Assumes N RF chains and A = IN

Intuitive expectationP(ASB) ≤ P(HB) ≤ P(DB)

To what extent?In what scenario?

Performance: Rayleigh Channel

Rayleigh Fading Channel:

Lemma 1: ZF beamforming, Rayleigh fading hHk and large Kt ,

we have

RHBi ≥ RASB

i when KHBi = KASB

i , and

RHBi = RDB

i when KHBi = KDB

i

KHBi = KDB

i may not hold, ⇒ Average performance makes senseTheorem 1: ZF beamforming with Pi = P,Ki = K and Rayleighfading channel hH

k , we have

E{RASB} ≤ KNf log2

(1 +

PK

E{χNa−K+1max (Kg)}

)E{RDB} ≤ KNf log2

(1 +

PK

E{χN−K+1max (Kg)}

)E{RHB} ≤ K S log2

(1 +

PK

E{χN−K+1max (Ks)}

)+ K (Nf − S) log2

(1 +

PK

E{χNa−K+1max (Kg)}

)where E{χM

max (L)}: Max. of L independent χ2 each with M DOF,S ≥ 1, Kg = dKt

K e and Ks = dKt NfKNae

Simulation: Bound is tight

Performance: ULA Channel

Rayleigh:DB Scheduler: Likely chooses usersclose to orthogonal each otherProposed HB achieves lower sum rate

(Mainly due to rank(H) > Na)∴ if rank(H) ≤ Na then RHB

i ≈ RDBi

ULA: Condition rank(H) / Na existsLemma 2: When d = λ

2 and the AOD ofthe Kt users satisfy sin (θkm) ∈n sin (θ)[− 1

2N ,1

2N ], n = 1,2, · · · ,Na,where θ is an arbitrary angle,

KHBi = KDB

i and RHBi = RDB

i , ∀i

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 6 / 11

Page 19: Slide11 icc2015

Simulation Results

Simulation ResultsParameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Other Results

Effect of power allocation policyObservation: Adaptive superior to Equal powerEffect of Kt

Observation: Rate increases as Kt increasesEffect of Na

Observation: Rate increases as Na increases

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 7 / 11

Page 20: Slide11 icc2015

Simulation Results

Simulation Results

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Other Results

Effect of power allocation policyObservation: Adaptive superior to Equal powerEffect of Kt

Observation: Rate increases as Kt increasesEffect of Na

Observation: Rate increases as Na increases

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 7 / 11

Page 21: Slide11 icc2015

Simulation Results

Simulation Results

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Other Results

Effect of power allocation policyObservation: Adaptive superior to Equal powerEffect of Kt

Observation: Rate increases as Kt increasesEffect of Na

Observation: Rate increases as Na increases

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 7 / 11

Page 22: Slide11 icc2015

Simulation Results

Simulation Results

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Parameter Settings

Number of antennas: 64Channel: Lk = 8 tap, Nf = 64,Scheduled users: Ki = Kmax = 8Power: Pi = P,∀iSINR: SNR = Nf P

Kmaxσ2

Total number of users: Kt = 8Policy: Equal power allocation

Rayleigh: Theory Vs Simulation

−1.5 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.50

10

20

30

40

50

60

70

80

90

SNR (dB)

Per

Sub

carr

ier

AS

R (

b/s/

hz)

SimulationTheory (Upper bound rate)

DB

Existing ASB

Proposed HB

ULA: Selected phases, Ls = 8

0 5 10 15 200

10

20

30

40

50

60

70

80

SNR (dB)

Per

subc

arrie

r A

SR

(b/

s/hz

)

Existing ASBProposed HBDB

Other Results

Effect of power allocation policyObservation: Adaptive superior to Equal powerEffect of Kt

Observation: Rate increases as Kt increasesEffect of Na

Observation: Rate increases as Na increases

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 7 / 11

Page 23: Slide11 icc2015

Conclusions

Conclusions

In this work, we accomplish the following main tasks.We propose greedy like user scheduling algorithm with hybridanalog-digital beamformingThe proposed hybrid scheduling achieves better than antennaselection approachWe analyze the performance of the proposed hybrid schedulingfor Rayleigh and ULA channelsTheoretical results are confirmed via extensive simulations

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 8 / 11

Page 24: Slide11 icc2015

Conclusions

References I

O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,Spatially sparse precoding in millimeter wave MIMO systems,IEEE Trans. Wireless Commun. 13 (2014), no. 3, 1499 – 1513.

T. E. Bogale and L. B. Le, Beamforming for multiuser massiveMIMO systems: Digital versus hybrid analog-digital, Proc. IEEEGlobal Telecommun. Conf. (GLOBECOM) (Austin, Tx, USA), 10 –12 Dec. 2014.

T. E. Bogale, L. B. Le, A. Haghighat, and L. Vandendorpe, On thenumber of RF chains and phase shifters, and scheduling designwith hybrid analog-digital beamforming, IEEE Trans. WirelessCommun. (Submitted) (2014).

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 9 / 11

Page 25: Slide11 icc2015

Conclusions

References II

S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, andA. Ghosh, Millimeter wave beamforming for wireless backhaul andaccess in small cell networks, IEEE Trans. Commun. 61 (2013),no. 10.

T. L. Marzetta, Noncooperative cellular wireless with unlimitednumbers of base station antennas, IEEE Trans. Wireless Commun.9 (2010), no. 11, 3590 – 3600.

S. Thoen, L. Van der Perre, B. Gyselinckx, and M. Engels,Performance analysis of combined Transmit-SC/Receive-MRC,IEEE Trans. Commun. 49 (2001), no. 1, 5 – 8.

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 10 / 11

Page 26: Slide11 icc2015

Conclusions

References III

V. Venkateswaran and A-J. V. Veen, Analog beamforming in MIMOcommunications with phase shift networks and online channelestimation, IEEE Trans. Signal Process. 58 (2010), no. 8, 4131 –4143.

T. Yoo and A. Goldsmith, On the optimality of multiantennabroadcast scheduling using zero-forcing beamforming, IEEE Trans.Sel. Area. Commun. 24 (2006), no. 3, 528 – 541.

E. Zhang and C. Huang, On achieving optimal rate of digitalprecoder by RF-Baseband codesign for MIMO systems, Proc.IEEE Veh. Technol. Conf. (VTC Fall), 2014, pp. 1 – 5.

X. Zhang, A. F. Molisch, and S-Y. Kung, Variable-phase-shift-basedRF-Baseband codesign for MIMO antenna selection, IEEE Trans.Signal Process. 53 (2005), no. 11, 4091 – 4103.

Tadilo (ICC 2015, London, UK) User Scheduling June 9, 2015, (ICC 2015) 11 / 11