slides electrical drives e

Upload: jean-claude-sangano

Post on 05-Apr-2018

242 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/2/2019 Slides Electrical Drives E

    1/32

    1

    Electrical drives

    Prof. A.GENON

    Universit de Lige (Belgique)

    2010

    [email protected]

    Power electronic systems

    Analogic command

    Numerical commnd

    LAPLACE TRANSFORM

    s is a complex variable

    Definition

    [ ]

    ==

    0

    )()()( dtetftfLsFst

    )(tf )(sF

    Linarit )()( 2211 tfktfk + )()( 2211 sFksFk +

    Translation retarde )0()( 00 tttf )(0 sFest

    Drivation)(tf

    dt

    d

    )(ssF

    Intgration

    t

    dttf0

    )( s

    sF )(

    Valeur initiale )(lim0

    tft

    )(lim ssFs

    Valeur finale )(lim tft

    )(lim0

    ssFs

    Computational rules

    = dsesFj

    tfst

    )(2

    1)(

    [ ] == )(

    s)(Res)(

    2

    1)(

    i

    sFdeples

    ststesFdsesF

    jtf

    [ ]( )

    [ ]iss

    stk

    ik

    k

    esFssds

    d

    ksF

    =

    = )()(

    !1

    1)(Res

    1

    1

    si

    Inverse transformation

    NoteNote : is a counterclockwise contour containing the origin ot thecomplex plane and all the poles of the function F(s)(Bromwich

    contour .

    Electrical Drives 2010 - A.GENON 1

  • 8/2/2019 Slides Electrical Drives E

    2/32

    2

    TABLES

    Inverse transformation

    partial fraction expansion

    =i

    i

    ps

    rsF )(

    =

    )()(lim sFpsr i

    psi

    i

    ,

    = tpi iertf )( .

    )()(

    )(sH

    sE

    sS=

    Transfer functionContinuous system stability

    I m

    R e

    1

    Routh-Hurwitz criterion

    1

    71

    6

    13

    1

    51

    4

    12

    1

    31

    2

    11

    =

    =

    =n

    nn

    nn

    n

    nn

    nn

    n

    nn

    nn

    a

    aa

    aadtm

    Aa

    aa

    aadtm

    Aa

    aa

    aadtm

    A

    11

    1411

    71

    23

    11

    1311

    51

    22

    11

    1211

    31

    21A

    AA

    aadtm

    AA

    AA

    aadtm

    AA

    AA

    aadtm

    A

    nnnnnn

    =

    =

    =

    21

    2421

    1411

    33

    21

    2321

    1311

    32

    21

    2221

    1211

    31A

    AA

    AAdtm

    AA

    AA

    AAdtm

    AA

    AA

    AAdtm

    A

    =

    =

    =

    01

    1

    1 ... asasasaDsoitn

    n

    n

    n +++=

    ...

    ......

    ......

    ......

    ...

    ...

    ...

    ...

    321

    232221

    131211

    531

    42

    nnn

    nnn

    nnn

    AAA

    AAA

    AAA

    aaa

    aaa

    The necessary and sufficientcondition to ensure the stability of asystem is that

    the coefficients of the denominatorofthe transfer function

    and

    the elements of the first column of theRouth table

    are positive or have the same sign.

    Rout-Hurwitz criterion

    Electrical Drives 2010 - A.GENON 2

  • 8/2/2019 Slides Electrical Drives E

    3/32

    3

    Z TRANSFORMATIONNotion of sampled signal

    [ ]

    =

    =0

    )()(k

    EkTtkftf

    Definition

    [ ] [ ]

    [ ]

    [ ] )00(

    )(

    )()()(

    0

    00

  • 8/2/2019 Slides Electrical Drives E

    4/32

    4

    TABLES

    Inverse Z transform

    partial fraction expansion

    because

    [ ]

    =

    =

    =

    1

    )()(limavec

    )(

    k

    ii

    izz

    i

    i

    i

    zrkf

    zFzzr

    zz

    rzF

    i

    ii

    k

    i

    i

    k

    i

    zzzz

    zzzF

    zz

    zzF

    =

    =

    =

    1)(

    )(

    11

    Inverse Z transform

    Polynomial division

    IfF(z) can be written as the ratio of two

    polynomials and if the degree of the

    numerator is lower or equal of the degree of

    he denominator the polynomial division

    gives :

    [ ] kfkf

    zfzffzDzNzF

    =

    +++== K

    22

    110

    )()()(

    Stability of sampled-data systems in

    open loopSampling does not modify the stability of a system inSampling does not modify the stability of a system in

    open loop.open loop.

    A continuous system is stable in open loop when the real part of

    all the poles is negative. As :

    ( ) ( )EiEiTTjTs

    iTjTeeez EiEiiEi

    sincos ===

    1

  • 8/2/2019 Slides Electrical Drives E

    5/32

    5

    Closed loop stability :

    Routh-Hurwitz criterionRH allows to determine if the roots of a polynomial have

    negative real parts.

    Appying to the characteristic polynomials the following

    transformation : z=(1+w)/(1-w) | w=(z-1)/(z+1) one

    transforms the inside part of the unit circle onto the negative

    real part of the w plane.

    Indeed, if :

    ( )

    ( )( ) ( )

    0sin1cos

    sin21

    1sincos

    1sincos

    1

    1

    10

    22

    2

  • 8/2/2019 Slides Electrical Drives E

    6/32

    1

    Chapter 3

    Mixed systems

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Is it possible to consider discrete

    systems as if they were

    continuous ?

    If yes, under what conditions?

    Pad approximation2/1

    2/12/

    2/

    E

    E

    sT

    sTsT

    sT

    sT

    e

    eez

    E

    E

    E

    +

    ==

    We observe that the gray areas overlap satisfactorily. We

    deduce that the approximation is valid for:

    4/4/5,00 EE TetT

    Example of a discrete regulator:

    the numerical PID

    Transfer function of a numerical PID

    [ ] [ ] [ ] [ ] [ ]( )

    )1(

    /)/2()/(

    )(

    )()(

    )(1

    )(1

    )()(

    1

    2

    0

    ++++

    ==

    +

    +=

    ++= =

    zz

    TKzTKKzTKTKK

    zE

    zYzG

    zEz

    z

    T

    KzE

    z

    zTKzEKzY

    kekeT

    KieTKkeKky

    EDEDPEDEIPRR

    E

    DEIPR

    E

    D

    k

    i

    EIPR

    1

    )(

    )(

    )()(

    +

    ==z

    KzTKK

    zE

    zYzG PEIPRRPI :

    Continuous treatment of a discrete system :

    example of the numerical PID

    ( ) ( )

    +++++

    +=

    +

    =

    ++++

    =

    4/2/2/1

    1)(

    2/1

    2/1

    )1(

    /)/2()/()(

    2

    2

    EIEPDI

    EIP

    E

    R

    E

    E

    EDEDPEDEIPR

    TKTKKss

    KTKK

    sTsG

    sT

    sTz

    zz

    TKzTKKzTKTKKzG

    Hypothesis : Pad conditions are met

    If we compare with an analog PID,

    we obtain*

    ***

    )(

    )()( D

    IP

    RR Ks

    s

    KK

    sE

    sYsG ++==

    4/2/ 2*

    *

    *

    EIEPDD

    II

    EIPP

    TKTKKK

    KK

    TKKK

    ++=

    =

    +=

    Electrical Drives 2010 - A.GENON 6

  • 8/2/2019 Slides Electrical Drives E

    7/32

    2

    Q: What must be done if a continuous

    system is controlled by a discrete regulator?

    R: We must determine the discrete transfer

    function of the continuous system ....

    Discrete transfer function of the continuous

    system preceded by a holding element

    ( )

    ( )( )( )

    ( )( )

    ==

    =

    =

    =

    =

    ==

    =

    =

    ==

    i i

    i

    i

    i

    i

    i

    i

    i

    i

    Tp

    i

    i

    tp

    i

    i

    i ii

    i

    i i

    iS

    Ts

    S

    Ts

    Ts

    EEE

    zz

    z

    p

    rzGzzG

    zzz

    zz

    p

    rzG

    ez

    etup

    rtg

    pssp

    r

    ps

    r

    ss

    sGsG

    sGesGs

    esG

    s

    esGTtututg

    Ei

    i

    E

    E

    E

    1)()1()(

    1

    1)(

    1)()(

    111)()(

    )()1()(1

    )(

    1)()()()(

    1

    1

    1

    1

    1

    1

    ExampleExample : command

    of a DC motor by a

    C

    Discrete transfer function of the continuous

    system preceded by a holding element :

    EXAMPLE : 2nd order filter

    ( )( )

    ( )( )

    21

    2211

    2211

    122211

    /

    2

    /

    1

    21

    21212121

    )1()1(

    )1()1(

    )1()1(

    )(

    /1

    11

    /1

    11

    11

    1)(

    2

    1

    TT

    zTzTK

    zTzT

    zzTzzTn

    ez

    ez

    zzzz

    nzKzG

    TsTTTsTTsTsTsG

    TT

    TT

    S

    E

    E

    =

    =

    =

    =

    =

    ++

    +=

    ++=

    Analog to digital conversion

    Proper sampling requires that the sampling frequency

    is much higher than the highest frequency the signal tobe sampled (3 to 4 times).

    If necessary, we must first filter the signal to be

    sampled.

    Shannon theorem

    Analog to digital conversion

    Quantization error[ ]

    ( )

    ( )

    NSBBS

    VBS

    VV

    qeVAR

    qdVVpVqdVVpVeeVAR

    dVVpVqdVVpVeeE

    Vq

    V

    dVdVVp

    dB

    N

    q

    q

    N

    V

    q

    q

    N

    V

    N

    eff

    eff

    02,626,4log10/

    28

    3/

    22

    12)(

    12)()(12)()()(

    0)()(12)()()(

    12

    )dVVV,signal(Prob)(

    10

    2

    2

    max

    22/3

    2/

    2

    0

    2

    2/3

    2/0

    max

    max

    max,

    max,

    max

    max

    +==

    =

    =

    =

    ==

    ===

    ===

    =

    +==

    S/B= signal to noise ratio

    Analog to digital conversion

    Signal to noise ratio

    NSBBSdB 02,626,4log10/ 10 +==

    Nombre de bits Rapport signal/bruit

    4 21 dB

    8 45 dB

    16 93 dB

    Electrical Drives 2010 - A.GENON 7

  • 8/2/2019 Slides Electrical Drives E

    8/32

    3

    Parallel analog to digital converter

    10 bits 1024 comparators !!!

    very fast

    Successive approximations ADC

    necessits a sample and hold element

    works by successive comparisons and accuracy increase with each iteration

    Ve > Vref/2, bit1=1

    Ve< Vref/2+Vref/4, bit2=0

    Ve> Vref/2+Vref/8, bit3=1

    etc

    slower conversion (10us for 12 bits)

    Ramp compare ADC

    1. Integration of Ve during a fixed time t1-t02. Negative integration with a known voltage Vrefand measure of elapsed time

    t2-t13. Relative slow, but can be very precise

    01

    12

    tt

    ttVVrefe

    =

    Digital to analog converter

    Much easier to achieve than the reverse

    +++=16842

    0123 BBBBVVrefS

    Electrical Drives 2010 - A.GENON 8

  • 8/2/2019 Slides Electrical Drives E

    9/32

    1

    Chapter 4

    COMMAND CIRCUITS

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Conventional circuits

    Transistor amplifier : common emitter

    Conventional circuits

    Transistor amplifier : common collector

    Conventional circuits

    Push-pull

    Conventional circuits

    Use of a triac

    Transistor chopper command

    optocoupler

    comM UU #

    PWM command

    Electrical Drives 2010 - A.GENON 9

  • 8/2/2019 Slides Electrical Drives E

    10/32

    2

    Transistor chopper command

    The LM555 IC

    PWM command1

    )2(

    44.1

    CRRf

    BA +=

    astable monostable

    Transistor inverter command

    2sin

    221,

    UU

    UU

    M

    M

    =

    =

    THYRISTOR command THYRISTOR chopper command

    THYRISTOR rectifier command

    One compares the control signal Ucom to a

    sinusoidUrwhose value is maximum at the

    instant of natural switching

    (ex : -V2 for Th1).

    Then

    com

    r

    C

    r

    comC

    Cc

    UU

    U

    U

    UU

    UU

    max

    0

    max

    0

    0

    arccoscos

    cos

    =

    =

    ==

    Electrical Drives 2010 - A.GENON 10

  • 8/2/2019 Slides Electrical Drives E

    11/32

    1

    Chapter 5

    Analogic controllers

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Introduction

    C o m p a r a t e u r

    R g u l a t e u r

    C i r c u i t s d e

    c o m m a n d e

    C o n v e r t i s s e u r

    l e c t r o n i q u e

    d e p u i s s a n c e

    O r g a n e s

    d e m e s u r e

    S y s t m e

    r g l e r

    +

    -

    U

    c

    The comparator and the analog controller are often combined

    in one element.

    The purpose of analogic controllers is to compare a reference

    and a measurement and to develop a corrective signal applied

    to the command circuits.

    The analog controllers are mostly designed with operational

    amplifiers.

    The operational amplifierExample : The uA709

    +

    R

    R

    R

    1

    2

    3

    Q

    Q

    Q

    Q

    Q

    Q

    Q

    Q

    Q Q

    Q

    Q

    Q

    Q

    1

    2

    3

    4

    5

    6

    7

    8

    9

    1 0

    1 1

    1 2

    1 3

    1 4

    C

    C

    +

    V

    E -

    V

    A -

    V

    S

    V

    A +

    V

    E +

    The operational amplifier

    +

    U

    s

    U

    e

    -

    In its field of linearity, the ideal OA has the following

    characteristics:

    infinite gain, therefore no differential input voltage;

    infinite input impedance, therefore no input current.

    P controller

    KR

    R

    UU

    UsG

    RRR

    emc

    sR

    e

    ==

    =

    +=

    1

    10

    )(

    121

    PI controller

    +=

    +=

    +=

    =

    =

    ni

    n

    i

    n

    emc

    sR

    e

    sTT

    T

    Ts

    Ts

    CRs

    CRs

    UU

    UsG

    RR

    11

    11)(

    21

    1

    11

    0

    Tn=R1C1Ti=ReC1

    frequency response step response

    Electrical Drives 2010 - A.GENON 11

  • 8/2/2019 Slides Electrical Drives E

    12/32

    2

    PI controller PI

    +=

    +=

    +=

    =

    =

    ni

    n

    i

    n

    emc

    sR

    e

    sTT

    T

    Ts

    Ts

    CRs

    CRs

    UU

    UsG

    RR

    11

    11)(

    21

    1

    11

    0

    If the values ofTn=R1C1 and Ti=ReC1are known :

    selectRe between 10 and 100 kohms

    C1=Ti/ReR1=Tn/C1

    PI controller (adjustable coefficients)

    ( )ss U

    sCRRR

    sCRR

    UU

    sCRRSi

    ++

    +

    =

    +

  • 8/2/2019 Slides Electrical Drives E

    13/32

    3

    PI controller (adaptation of 1 time constant)

    111

    1

    11

    11

    11)(

    0/1

    CRUKTCRT

    Ts

    Ts

    CRUKs

    CRssG

    sCR

    UUK

    R

    UU

    UUKU

    evmin

    i

    n

    evm

    R

    svm

    e

    cm

    svmi

    ==

    +=

    +=

    =+

    +

    =

    PI controller (adaptation of 2 time constants)

    CRUKT

    CRUKT

    Ts

    Ts

    CRUKs

    CRUKssG

    UU

    U

    evimi

    vnmn

    i

    n

    evim

    vnmR

    mc

    s

    2

    111

    2

    111 11)(

    =

    =

    +=

    +==

    Adaptive controller with variable structure

    i

    n

    e

    RsT

    sT

    RR

    RsCR

    RRRRsC

    sG+

    =

    +

    ++

    =1

    1

    )(

    12

    12

    122

    ie

    RsTCsRR

    RsG

    1)( 3 ==

    FET1 ON

    FET2 ON

    Adaptive controller with variable structure

    Note:The sources of the JFETs are connected to the input of the OA (virtual ground)

    The diode between drain and ground prevents the drain potential to become too

    high

    When the JFET leads, the diode does not because UDS is very low

    First order passive filter

    sTsRCU

    U

    e

    s

    +=

    +=

    1

    1

    1

    1

    Active filter of second order

    ( )( ) ( )( )2121 111

    14/1

    1

    sTsTsRCsRCU

    U

    e

    s

    ++=

    ++=

    Electrical Drives 2010 - A.GENON 13

  • 8/2/2019 Slides Electrical Drives E

    14/32

    4

    PID + second order active filter

    ( )( )( )( ) ( )[ ]

    ( )( )( )( )

    i

    vn

    eeemc

    s

    sT

    sTsT

    sTsT

    CsR

    CRRsCsRCsRCsRCsR

    CsRCsRUU

    U

    ++

    ++=

    ++++++

    ++=

    11

    11

    1

    111.

    14/1

    1

    21

    1

    12123122211

    23

    PID + reference filter

    PID with clipping circuit

    If one LED leads, the voltage Us is clamped as shown on

    the diagram

    The diodes do not

    conduct if:

    ( )( ) 01

    01

    222

    111

    >+=

  • 8/2/2019 Slides Electrical Drives E

    15/32

    1

    Chapter 6

    Digital controllers

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Main configurations

    Classic method

    Consist to use a digital PI or PID

    Suitable for systems with 1 or 2 dominant

    time constants and who have a well damped

    oscillating behaviour

    Main configurations.

    State control The orders issued by the regulator depends

    - from the values of the state variables of the system thatare either measured or estimated (state estimator)

    - sometimes from the measurable or estimabledisturbances

    The control signal (CS) is a linear combination of

    quantities of orders and disturbances The SC is usually an integral component to cancel

    the error in steady state

    Suitable for control of all systems

    Main configurations.

    State control

    EXAMPLE : the BOOST converter

    State variables : Ue et Us

    The reference is Usc ; Uem and Usm are measured

    The duty cycle to impose is The integral term Ki is added, so

    sc

    em

    U

    U=1

    =

    1

    es

    UU

    )(

    1

    1 smscii

    i

    sc

    em

    UUkKK

    KU

    U

    +=

    +=

    Main configurations

    Sliding mode control

    Suitable for systems with a

    pulse device (chopper or

    inverter)

    The output of the controller is

    a logical variable depending

    from the reference and the

    state variables

    Main configurations

    Cascade control

    Electrical Drives 2010 - A.GENON 15

  • 8/2/2019 Slides Electrical Drives E

    16/32

    2

    Main configurations

    Trajectory pursuit control

    For fine tuning (robots)

    Example: if acceleration and speed are good but position

    is too late, R3 acts to increase the speed

    RST controlClassic control:

    RST control:

    More possibilities, numeric, etc

    +Um

    UsUcN(z)

    D(z)

    R(z)

    S(z)

    +Um

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    )()()()(

    )()(

    )(

    )(

    zSzDzRzN

    zTzN

    zU

    zU

    c

    m

    +=

    )()()()(

    )()(

    )(

    )(

    zSzDzRzN

    zRzN

    zU

    zU

    c

    m

    +=

    RST control : effect of disturbances

    + ++++

    Um

    P2P1

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    For a null static error in case of disturbance, 1/ S (z) must

    contain at least one integrator, and :

    )(')1()( zSzzS =

    RST control : effect of disturbances

    + ++++

    Um

    P2P1

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    Against disturbances, the RST behaviour is the same as

    its of a conventional controller

    )()()()(

    )()()(

    )()()()(

    )()()(

    )()()()(

    )()()()( 21

    zDzSzNzR

    zDzSzP

    zDzSzNzR

    zNzSzP

    zDzSzNzR

    zNzTzUzU cm

    ++

    ++

    +=

    RST control : causality+ +

    +++Um

    P2P1

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    tztztztzT

    rzrzrzrzR

    szszszzS

    zUzRzUzTzUZS mcs

    ++++=

    ++++=

    ++++=

    =

    ......)(

    ......)(

    ......)(

    )()()()()()(

    2

    2

    1

    10

    2

    2

    1

    10

    2

    2

    1

    1

    ( ) ( )( ) )(......

    )(......)(......1

    2

    2

    1

    10

    2

    2

    1

    10

    2

    2

    1

    1

    zUzrzrzrzr

    zUztztztztzUzszszs

    m

    cs

    ++++

    ++++=++++

    [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]

    ++++++

    +++++++++++

    +=+

    1......211

    1......211

    1.....11

    210

    210

    21

    kUrkUrkUrkUr

    kUtkUtkUtkUt

    kUskUskUskU

    mmmm

    cccc

    ssss

    often ==

    RST control : causality+ +

    +++Um

    P2P1

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    ( )

    tztztztzT

    rzrzrzrzR

    szszszzS

    zUzRzUzTzUZS

    zUzRzUzTzS

    zU

    mcs

    mcs

    ++++=

    ++++=

    ++++=

    =

    =

    ......)(

    ......)(

    ......)(

    )()()()()()(

    )()()()()(

    1)(

    2

    2

    1

    10

    2

    2

    1

    10

    2

    2

    1

    1

    [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]

    ++++++

    +++++++++++

    +=+

    1......211

    1......211

    1.....11

    210

    210

    21

    kUrkUrkUrkUr

    kUtkUtkUtkUt

    kUskUskUskU

    mmmm

    cccc

    ssss

    1

    1

    +

    +

    If at position k+1, Uc and/or Um are not available :

    often 1==

    Electrical Drives 2010 - A.GENON 16

  • 8/2/2019 Slides Electrical Drives E

    17/32

    3

    RST control : Closed loop transfer fuction

    The closed loop transfer function may be selected with some

    liberties but :

    - avoid to delete zeros of N (z) too close to the unit circle

    - meet the following condition :

    +Um

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    )(

    )(

    )()()()(

    )()(

    )(

    )(

    zD

    zN

    zSzDzRzN

    zTzN

    zU

    zU

    m

    m

    c

    m =+

    =

    [ ] [ ] [ ] [ ])()()()( zNzDzNzD mm

    RST control : Closed loop transfer fuction+

    Um

    UsUc

    N(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    1)1(

    )1(=

    m

    m

    D

    N

    )1/()( = zzzUc

    1)1(

    )1(

    )(

    )(

    1)1(lim)(

    1

    ==

    =

    m

    m

    m

    m

    zm

    D

    N

    zD

    zN

    z

    zzU

    If a null static error against the reference is suited,

    the following condition must be met :

    Indeed, if UC (z) isa unit step :

    RST control : Summary+

    UmUsUc

    N(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    )(

    )(

    )()()()(

    )()(

    )(

    )(

    zD

    zN

    zSzDzRzN

    zTzN

    zU

    zU

    m

    m

    c

    m =+

    =

    == 1== or

    )(')1()( zSzzS = if a null static error against disturbances is wished

    [ ] [ ] [ ] [ ])()()()( zNzDzNzD mm

    1)1(

    )1(=

    m

    m

    D

    N

    ATTENTION : avoid to delete badly damped zeros

    if a null static error against reference is wished

    RST control : synthesis example

    Consider a small motor with a transfer

    function between the reference and the

    speed is :

    ( )( )( )45.1264.18

    29.1445.20)(

    ++

    +=

    ss

    ssG

    s

    It is proposed to control this engine with a digital controller having a sampling period of

    100ms.

    It is proposed to use a RST controller with a zero static error against the disturbances and

    command.

    In closed loop, a time constant of 50ms is wished

    REMARKS

    The transfer function has the following characteristics:

    A first time constant of 54ms (time constant electric)

    A second time constant of 690ms (mechanical time constant)

    A zero corresponds to a delay of 775ms

    We note that the sampling period is not negligible against the time constants of the system.

    RST control : synthesis example

    ( )( )( ) ( ) ( )45.1

    195.0

    264.18

    640.20

    45.1264.18

    29.1445.20)(

    +

    +=

    ++

    +=

    ssss

    ssG

    s

    865.045.1195.0

    161.0264.18640.20

    1

    1

    222

    111

    ====

    ====

    E

    E

    Tp

    Tp

    ezpr

    ezpr

    ( )( )( ) )(

    )(

    161.0865.0

    878.0930.0

    865.0

    018.0

    161.0

    948.01)(

    zD

    zN

    zz

    z

    zzzz

    z

    p

    rzG

    i i

    i

    i

    i =

    =

    =

    =

    Transfer function of the engine preceded by a holding element

    RST control : synthesis example+

    Um

    UsUc

    N(z)

    D(z)

    1

    T(z)

    R(z)

    S(z)

    A first-order behaviour is wanted (possible because the difference of

    degrees between the numerator and denominator in OL is equal to 1).

    Moreover, the zero of the numerator OL (0.878) is sufficiently distant

    from the unit circle so it can be removed safely:

    am

    m

    c

    m

    zz

    a

    zD

    zN

    U

    U

    ==

    )(

    )(

    ( )( )( )161.0865.0878.0930.0

    )()(

    =zz

    zzDzN

    Electrical Drives 2010 - A.GENON 17

  • 8/2/2019 Slides Electrical Drives E

    18/32

    4

    RST control : synthesis example

    135.045.0/1.0/ ===

    eezTBFT

    aE

    135.0)(

    )(

    ==z

    a

    zD

    zN

    U

    U

    m

    m

    c

    m

    A time constant of 450 ms is expected

    135.01

    )1(

    )1(

    ==z

    a

    D

    N

    m

    m 865.0=a135.0

    865.0

    )(

    )(

    ==zzD

    zN

    U

    U

    m

    m

    c

    m

    A null static error against the reference is expected

    .

    +Um

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    RST control : synthesis example

    +Um

    UsUc

    N(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    )()()()(

    )()(

    )(

    )(

    zDzSzNzR

    zNzT

    zD

    zN

    U

    U

    m

    m

    c

    m

    +==

    ( )

    ( )( )161.0865.0

    878.0930.0

    )(

    )(

    =

    zz

    z

    zD

    zN

    ( )( ) ( )( ) 135.0

    865.0

    161.0865.0)(878.0)(930.0

    878.0)(930.0

    =

    +

    =

    zzzzSzzR

    zzT

    U

    U

    c

    m

    To eliminate the numerators zero and to have a zero static error against

    disturbances, S(z) must have the following form :

    ( )( )

    878.0

    878.1

    1

    878.01)(

    2

    1

    0

    =

    =

    =

    =

    s

    s

    s

    zzzS

    21

    2

    0

    21

    2

    0

    )(

    )(

    rzrzrzR

    tztztzT

    ++=

    ++=

    ( )( ) ( )( ) 135.0

    865.0

    161.0865.0)1(930.0

    930.0

    21

    2

    0

    21

    2

    0

    =

    +++

    ++=

    zzzzrzrzr

    tztzt

    U

    U

    c

    m

    ( )( ) ( )( ) ( ) 2

    2

    21

    2

    0

    21

    2

    0

    135.0

    865.0

    161.0865.0)1(930.0

    930.0

    zz

    z

    zzzrzrzr

    tztzt

    U

    U

    c

    m

    =

    +++

    ++=

    RST control : synthesis example

    +Um

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    ( )( ) ( )( ) 135.0

    865.0

    161.0865.0)1(930.0

    930.0

    21

    2

    0

    21

    2

    0

    =

    +++

    ++=

    zzzzrzrzr

    tztzt

    U

    U

    c

    m

    By identifying the coefficients :

    ( )( ) ( )( ) ( ) 22120

    221

    20

    135.0161.0865.0)1(930.0

    865.0930.0

    zzzzzrzrzr

    ztztzt

    =+++

    =++

    049.10

    253.10

    033.2930.0

    22

    11

    00

    ==

    ==

    ==

    rt

    rt

    rt

    RST control : synthesis example

    [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]111111 21021021 +++++=+ kUrkUrkUrkUtkUtkUtkUskUskU mmmcccsss

    +Um

    UsUcN(z)

    D(z)

    1T(z)

    R(z)

    S(z)

    [ ] [ ] [ ] [ ] [ ] [ ] [ ]1049.1253.11033.21215.01878.0878.11 ++++=+ kUkUkUkUkUkUkU mmmcsss

    049.10

    253.10

    033.2930.0

    22

    11

    00

    ==

    ==

    ==

    rt

    rt

    rt

    878.0

    878.1

    1

    2

    1

    0

    =

    =

    =

    s

    s

    s

    Numerical command circuits

    Microprocessor :

    fas t (3GHz)

    32 to 128 bits logic

    requires external devices

    expensive

    Microcontroller

    contains CPU + itsminimum environment

    autonomy

    relatively slow (10MHz, 8 bit)

    inexpensive

    Numerical command circuits

    DSP (Digital Signal Processor)

    Evolved microcontroller, rapidity

    Contains special functions (FFT, ...)

    FPGA (Field Programmable Gate Array)

    Circuit with logic functions which may be interconnected byprogramming (VHDL = Very High Speed Description Language)

    ASIC (Application Specific Integrated Circuit)

    For large series

    Electrical Drives 2010 - A.GENON 18

  • 8/2/2019 Slides Electrical Drives E

    19/32

    1

    Chapter 7

    Electrotechnical applications

    of regulators

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Cascade control

    Rectifiers 4 quadrants AC/DC controller with

    current circulation

    4 quadrants AC/DC controller with

    current circulation

    4 quadrant AC/DC controller without current

    circulation

    LOGICLOGIC : the 2 bridges may never

    conduct at the same time dead time

    Electrical Drives 2010 - A.GENON 19

  • 8/2/2019 Slides Electrical Drives E

    20/32

    2

    1 quadrant chopper with 2 position controller1 quadrant chopper with PWM controller

    4 quadrant chopper with PWM controller

    7

    1

    6

    !

    6

    "

    6

    *)

    6

    8

    -

    1

    J

    J

    7

    J

    J

    J

    J

    8

    )

    J

    8

    *

    J

    6

    @ 6

    ,

    !

    6

    "

    ,

    "

    6

    !

    ,

    !

    6

    "

    ,

    6

    ,

    6

    ,

    6

    VVVU )12()1( ==

    (other command modes exist)

    Inverter with 2 position controller

    Inverter with PWM controller

    Electrical Drives 2010 - A.GENON 20

  • 8/2/2019 Slides Electrical Drives E

    21/32

    1

    Chapter 8

    Command of switched power supplies

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Boost converter command

    v

    o

    i

    o

    i

    D

    i

    L

    v

    i

    C

    R

    i

    T

    L

    D

    If the switching frequency is sufficiently high, the system can be studied as a

    continuous process although command is discreet

    [ ]

    +=

    +=

    ))(1)(()(1

    ))(1)(()(1

    tgR

    vitg

    R

    v

    Cdt

    dv

    tgvvtgvLdt

    di

    oi

    oo

    oiiL g=1 : switch ON

    g=0 : switch OFF

    To study this kind of system, we proceed by averaging over one sample period :

    =t

    TtdttX

    TtX )(

    1)(

    Boost converter command

    v

    o

    i

    o

    i

    D

    i

    L

    v

    i

    C

    R

    i

    T

    L

    D

    [ ]

    +=

    +=

    ))(1)(()(1

    ))(1)(()(1

    tgR

    vitg

    R

    v

    Cdt

    dv

    tgvvtgvLdt

    di

    oi

    oo

    oiiL

    =t

    TtdttX

    TtX )(

    1)(+

    [ ]

    +

    +=

    =

    C

    i

    RC

    v

    C

    tgi

    RC

    v

    dt

    vdL

    v

    L

    vtgvv

    Ldt

    id

    LoLoo

    oioi

    L

    )1())(1(

    )1())(1(

    1

    v

    i

    ( 1 - @ )

    v

    o

    i

    o

    i

    L

    ( 1 - @ )

    i

    L

    v

    i

    C

    R

    L

    Boost converter command[ ]

    +

    +=

    =

    C

    i

    RC

    v

    C

    tgi

    RC

    v

    dt

    vdL

    v

    L

    vtgvv

    Ldt

    id

    LoLoo

    oioi

    L

    )1())(1(

    )1())(1(

    1

    v

    i

    ( 1 - @ )

    v

    o

    i

    o

    i

    L

    ( 1 - @ )

    i

    L

    v

    i

    C

    R

    L

    This model is not linear.

    Thus, we proceed to the linearization in the vicinity of a static equilibrium point:

    +=

    +=

    +=

    +=

    ~

    ~

    ~

    ~

    (

    (

    (

    (

    LLL

    ooo

    iii

    iii

    vvv

    vvv

    R

    vi

    vv

    oL

    io

    (

    ((

    (

    (

    (

    =

    =

    )1(

    1

    +=

    +

    =

    C

    i

    C

    i

    RC

    v

    dt

    vdL

    v

    L

    v

    L

    v

    dt

    id

    LLoo

    ooiL

    ~)1(

    ~~~

    ~)1(~~

    ~

    ((

    (

    (

    By eliminating the static current between these relationships and assuming

    constant vi, we obtain the transfer function:

    LCs

    RCs

    LC

    v

    C

    is

    voL

    o

    22 )1(1

    )1(

    ~

    ~

    (

    (

    (

    (

    ++

    =

    +

    Boost converter command

    This transfer function has 1 positive zero and 2 complex poles generally weakly

    damped.

    This system is very difficult to regulate.

    Therefore generally one prefer to use a current control rather than a duty cycle

    control.

    LCs

    RCs

    LC

    v

    C

    is

    voL

    o

    22 )1(1

    )1(

    ~

    ~

    (

    (

    (

    (

    ++

    =

    v

    o

    i

    o

    i

    D

    i

    L

    v

    i

    C

    R

    i

    T

    L

    D

    Current control

    principle

    Let T be the period of hash and the conduction time. The switch is closed at the

    beginning of the period and the current increases. The switch is opened when the

    current reaches the value ip-mc .

    The slope mc is chosen to ensure stable operation.

    v

    o

    i

    o

    i

    D

    i

    L

    v

    i

    C

    R

    i

    T

    L

    D

    iL

    T=

    ip -mc

    m1 -m2

    0

    To ensure stable operation, it is necessary that the

    current is amortized if any disturbance happens

    =

    >

    1

    12

    22112

    mmmmc

    mc is not necessary if 0,5

    Electrical Drives 2010 - A.GENON 21

  • 8/2/2019 Slides Electrical Drives E

    22/32

    2

    Current control

    Transfer function

    v

    o

    i

    o

    i

    D

    i

    L

    v

    i

    C

    R

    i

    T

    L

    DThe transfer function between the outputvoltage and the current iL can be found after

    local averaging and linearization of the

    equations:iL

    T=

    ip -mc

    m1-m2

    0

    ( )( )csbsas

    Ki

    v

    p

    o

    ++

    =~

    ~

    This transfer function has a positive zero and two real poles (one at low frequency

    and one at higher frequency).

    Under these conditions, the system is much easier to

    control

    Current control

    The IC LM5021

    Example : forward converter

    with current control

    Electrical Drives 2010 - A.GENON 22

  • 8/2/2019 Slides Electrical Drives E

    23/32

    1

    Chapter 9

    COMMAND OF INDUCTION MOTORS

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Speed variation history.

    1. Ward-Lonard

    2. DC motor drives

    3. AC motor drives

    Dynamics of induction motor :

    3 phase model

    For each coil :

    iiiidt

    dIRU +=

    +=6

    ijjijiii IMIL

    Dynamics of induction motor :

    3 phase model

    ;

    ;

    .

    ;

    ;.

    =

    xyz

    XYZ

    RtSR

    SRS

    xyz

    XYZ

    I

    I

    ZZ

    ZZ

    U

    U

    3,3

    33;;;;

    =

    =

    =

    =

    z

    y

    x

    xyz

    Z

    Y

    X

    XYZ

    z

    y

    x

    xyz

    Z

    Y

    X

    XYZ

    I

    I

    I

    I

    I

    I

    I

    I

    U

    U

    U

    U

    U

    U

    U

    U

    +

    +

    +

    =

    SSSS

    SSSS

    SSSS

    S

    sLRsMsM

    sMsLRsM

    sMsMsLR

    Z

    3333

    3333

    3333

    3

    ++

    +

    =RRRR

    RRRR

    RRRR

    R

    sLRsMsMsMsLRsM

    sMsMsLR

    Z

    3333

    3333

    3333

    3

    +

    +

    +

    =

    )cos()3/2cos()3/2cos(

    )3/2cos()cos()3/2cos(

    )3/2cos()3/2cos()cos(

    333

    333

    333

    3

    RSRRSRRSR

    RSRRSRRSR

    RSRRSRRSR

    SR

    sMsMsM

    sMsMsM

    sMsMsM

    Z

    Dynamics of induction motor : 2 phase model

    .

    xyzt

    XYZtAB

    ICI

    ICI

    *

    *

    =

    =

    =

    2/3

    2/3

    0

    2/1

    2/1

    1

    3

    2*C

    Dynamics of induction motor : 2 phase model

    .

    xyzt

    XYZtAB

    ICI

    ICI

    *

    *

    =

    =

    =

    2/3

    2/3

    0

    2/1

    2/1

    1

    32*C

    ( )( )( )

    ( )

    ( )

    ( )( )( )

    ( )

    ( )tgII

    tgII

    tgII

    tgII

    tgII

    tII

    tII

    tII

    tII

    tII

    MaxR

    MaxR

    MaxRz

    MaxRy

    MaxRx

    MaxSB

    MaxSA

    MaxSZ

    MaxSY

    MaxSX

    cos2

    3

    sin2

    3

    240sin

    120sin

    sin

    cos2

    3

    sin2

    3

    240sin

    120sin

    sin

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    ,

    =

    =

    +=

    +=

    =

    =

    =

    +=

    +=

    =

    Electrical Drives 2010 - A.GENON 23

  • 8/2/2019 Slides Electrical Drives E

    24/32

    2

    Induction motor : axes related to magnetic field

    =

    =

    B

    A

    tS

    B

    A

    aa

    aa

    qs

    ds

    I

    IP

    I

    I

    I

    I,

    )cos()sin(

    )sin()cos(

    =

    =

    I

    IP

    I

    I

    I

    ItR

    RaRa

    RaRa

    qr

    dr

    ,)cos()sin(

    )sin()cos(

    Induction motor : axes related to magnetic field

    =

    =

    B

    A

    tS

    B

    A

    aa

    aa

    qs

    ds

    I

    IP

    I

    I

    I

    I,

    )cos()sin(

    )sin()cos(

    =

    =

    I

    IP

    I

    I

    I

    ItR

    RaRa

    RaRa

    qr

    dr

    ,)cos()sin(

    )sin()cos(

    MaxRqr

    MaxRdr

    MaxSqs

    MaxSds

    II

    II

    II

    II

    ,

    ,

    ,

    ,

    2

    3

    2

    3

    2

    3

    2

    3

    =

    =

    =

    =

    ( ) tgt

    t

    Ra

    a

    ==

    =

    0

    Induction motor : axes related to magnetic field

    =

    qr

    dr

    qs

    ds

    r

    s

    RtSR

    SRS

    t

    t

    tr

    ts

    qr

    dr

    qs

    ds

    I

    I

    I

    I

    P

    P

    C

    C

    ZZ

    ZZ

    C

    C

    P

    P

    U

    U

    U

    U

    0

    0

    0

    0

    0

    0

    0

    0

    3,3

    33

    ,

    ,

    Induction motor : axes related to magnetic field

    =

    qr

    dr

    qs

    ds

    r

    s

    RtSR

    SRS

    t

    t

    tr

    tsqs

    ds

    I

    I

    I

    I

    P

    P

    C

    C

    ZZ

    ZZ

    C

    C

    P

    PU

    U

    0

    0

    0

    0

    0

    0

    0

    0

    0

    03,3

    33

    ,

    ,

    qrdrR

    qsdsS

    qsdsS

    jIII

    jUUU

    jIII

    +=

    +=

    +=En posant:

    On obtient

    Le couple vaut dsqrqsdr IMIIMIC =

    dt

    dgjIR

    dt

    djIRU

    RRRR

    S

    SSSS

    ++=

    ++=

    0

    RRSR

    RSSS

    ILIM

    IMIL

    +=

    +=

    Induction motor : axes related to magnetic field

    +

    +

    =

    =

    =

    qs

    ds

    a

    a

    a

    a

    a

    a

    qs

    ds

    S

    B

    A

    Z

    Y

    X

    I

    I

    I

    IPC

    I

    IC

    I

    I

    I

    )3/2sin(

    )3/2sin(

    )sin(

    )3/2cos(

    )3/2cos(

    )cos(**

    +

    +

    =

    =

    =

    qs

    ds

    a

    a

    a

    a

    a

    a

    qs

    ds

    S

    B

    A

    Z

    Y

    X

    U

    U

    U

    UPC

    U

    UC

    U

    U

    U

    )3/2sin(

    )3/2sin(

    )sin(

    )3/2cos(

    )3/2cos(

    )cos(**

    Induction motor

    In steady state conditions, we find the classical

    equations of the equivalent circuit

    )( MLX SS =

    )( MLXRR =

    MX =

    Electrical Drives 2010 - A.GENON 24

  • 8/2/2019 Slides Electrical Drives E

    25/32

    3

    Command of the induction motor

    GENERAL STRATEGY :

    We try to maintain constant and maximum the flux in the

    machine because the torque is proportional to flux.

    To act on the couple, we act on the stator current because :

    ),sin(.. IIkC =

    Command of the induction motor

    Four techniques are considered:

    1. Scalar control on voltage

    2. Vector control on voltage

    3. Scalar control on current

    4. Vector control on current

    Scalar control on voltage

    ( )

    ( ) ( )),(

    1

    11

    2

    22222

    2

    22

    22

    SS

    sRs

    R

    RR

    SS

    SSS

    RR

    SS

    SSSSSS

    gfMLLgLR

    RMgpC

    LgjR

    MgLjR

    RU

    LgjR

    MgLjR

    R

    j

    UIRU

    j

    R

    =+

    =

    +++

    =

    +++

    ==

    Scalar control on voltage : simplified version

    c

    a

    a

    a

    ctt

    Z

    Y

    X

    UUCP

    U

    U

    U

    +

    ==

    )3/2cos(

    )3/2cos(

    )cos(

    Scalar control on voltage :

    action on couple

    ( ) ( )),(

    )3/2cos(

    )3/2cos(

    )cos(

    2

    22222

    2

    SS

    sRs

    R

    c

    a

    a

    a

    ctt

    Z

    Y

    X

    gfMLLgLR

    RMgpC

    UUCP

    U

    U

    U

    R

    =+

    =

    +

    ==

    Scalar control on voltage :

    sophisticated version

    ( ) ( )),(

    )3/2cos(

    )3/2cos(

    )cos(

    2

    22222

    2

    SS

    sRs

    R

    c

    a

    a

    a

    ctt

    Z

    Y

    X

    gfMLLgLR

    RMgpC

    UUCP

    U

    U

    U

    R

    =+

    =

    +

    ==

    Electrical Drives 2010 - A.GENON 25

  • 8/2/2019 Slides Electrical Drives E

    26/32

    4

    Scalar control on voltage :

    speed control

    ( ) ( )),(

    )3/2cos(

    )3/2cos(

    )cos(

    2

    22222

    2

    SS

    sRs

    R

    c

    a

    a

    a

    ctt

    Z

    Y

    X

    gfMLLgLR

    RMgpC

    UUCP

    U

    U

    U

    R

    =+

    =

    +

    ==

    Vector control on voltage

    ( )

    ( ) ( )),(

    1

    11

    2

    22222

    2

    1

    22

    22

    SS

    sRs

    R

    RR

    SS

    SSqsdsS

    RR

    SS

    SSSSSS

    gfMLLgLR

    RMgpC

    LgjR

    MgLjR

    RjjUUU

    LgjR

    MgLjR

    R

    j

    UIRU

    j

    R

    =+

    =

    +++

    =+=

    +++

    ==

    Vector control on voltage

    +

    +

    ==

    qs

    ds

    a

    a

    a

    a

    a

    a

    ctt

    Z

    Y

    X

    U

    UUCP

    U

    U

    U

    )3/2sin(

    )3/2sin(

    )sin(

    )3/2cos(

    )3/2cos(

    )cos(

    Scalar control on current

    ( ) ( )),(

    2

    22222

    2

    12

    2

    SS

    sRs

    R

    S

    RR

    SS

    S

    RR

    SRSSS

    gfMLLgLR

    RMgpC

    LgjR

    MgjLI

    ILgjRMgjLIMIL

    R

    =+

    =

    +=

    +=+=

    Scalar control on current Scalar control on current

    Electrical Drives 2010 - A.GENON 26

  • 8/2/2019 Slides Electrical Drives E

    27/32

    5

    Scalar control on current

    t ( s e c )

    C o u p l e

    21 , 510 , 5

    2

    1 , 5

    1

    0 , 5

    0

    Vector control on current

    dt

    dgjIR

    dt

    djIRU

    R

    RRR

    S

    SSSS

    ++=

    ++=

    0

    RRSR

    RSSS

    ILIM

    IMIL

    +=

    +=

    dsqrqsdr IMIIMIC =

    In an axes system related to the rotor flux (d in the direction of the rotor flux):

    ( )dtg

    gMR

    LIC

    gMR

    LI

    R

    Ls

    MI

    a

    R

    RRqsR

    R

    RRqs

    R

    RRds

    +=

    ==

    =

    +=

    2

    )1(

    Vector control on current

    ( )dtg

    I

    I

    I

    I

    I

    a

    qs

    ds

    a

    a

    a

    a

    a

    a

    Z

    Y

    X

    +=

    +

    +

    =

    )3/2sin(

    )3/2sin(

    )sin(

    )3/2cos(

    )3/2cos(

    )cos(

    Vector control on current

    ( )dtg

    I

    I

    I

    I

    I

    a

    qs

    ds

    a

    a

    a

    a

    a

    a

    Z

    Y

    X

    +=

    +

    +

    =

    )3/2sin(

    )3/2sin(

    )sin(

    )3/2cos(

    )3/2cos(

    )cos(

    To reach overspeed

    conditions, one reduces the

    flux

    Electrical Drives 2010 - A.GENON 27

  • 8/2/2019 Slides Electrical Drives E

    28/32

    1

    Chapter 10

    Preparing the lab.

    Controlling a DC machine.

    Entranements lectriques

    Electrical drivesProf. A. GENON, ULg

    Transfer function of a DC motor with

    independent excitation

    ( )

    IkC

    CIksJN

    NkIsLRU

    r

    =

    =++=

    k

    1

    s J

    1 N

    Cr

    CIU

    R(1 + s Ta)k

    +-

    ou :

    ( ) ( )

    ( )r

    a

    CCsJ

    N

    IkC

    NkUsTR

    NkULsR

    I

    =

    =

    +

    =+

    =

    1

    )1(

    11

    Transfer function of a DC motor with

    independent excitation

    k

    1

    s J

    1 N

    Cr

    CIU

    R(1 + s Ta)k

    +-

    ( ) ( ) ra

    aC

    k

    sTR

    k

    U

    k

    RsTsJN

    22

    )1(1)1(

    +

    =

    +

    +

    ( )

    =

    2k

    RJTm

    ( )( ) r

    aam C

    k

    sTR

    k

    UsTsTN

    2

    )1()1(1

    +

    =++

    We have also :

    Principle of cascade control

    Niref

    +-

    +-

    Nrefmoteurrgulateur

    de vitessergulateurde courant

    convertisseur

    I

    General scheme

    Niref

    +-

    +-

    Nrefmoteurrgulateur

    de vitessergulateurde courant

    convertisseur

    I

    Technics

    To determine the parameters of the regulators,

    there exists 2 methods:

    analytical method based on model knowledge

    experimental method

    Electrical Drives 2010 - A.GENON 28

  • 8/2/2019 Slides Electrical Drives E

    29/32

    2

    ANALYTICAL METHOD FOR

    DETERMINING THE

    REGULATORS PARAMETERS

    Current regulator (1)

    K

    m i

    1 + s T

    m i

    K

    c o n v

    1 + s T

    c o n v

    1

    IU

    K

    i

    1 + s T

    i

    s T

    i

    i

    r e f

    R ( 1 + s T

    a )

    +

    -

    Current regulator (2)

    mi

    mi

    aconv

    conv

    i

    ii

    ref

    mes

    sT

    K

    sTRsT

    K

    sT

    sTK

    I

    I

    +++

    +=

    1)1(

    1

    1

    1

    amiconvcmi TTTT

  • 8/2/2019 Slides Electrical Drives E

    30/32

    3

    Current regulator (6)

    22221

    1

    cmicmiref

    mes

    TssTI

    I

    ++=

    If we apply a step at system input, we can observe

    an overshoot of4,3% a rise time of 4,7*Tcmi

    K

    m i

    1 + s T

    m i

    K

    c o n v

    1 + s T

    c o n v

    1

    IU

    K

    i

    1 + s T

    i

    s T

    i

    i

    r e f

    R ( 1 + s T

    a )

    +

    -

    Current regulator (6b)

    Time

    0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms

    V(LAPLACE4:OUT) V(V13:+)

    0V

    0.2V

    0.4V

    0.6V

    0.8V

    1.0V

    1.2V

    Behaviour of the closed current loop

    overshoot 4,3%

    rise time : 4,7*Tcmi= 4,7ms

    Current regulator (7)

    22221

    1

    cmicmiref

    mes

    TssTI

    I

    ++=

    Subsequently, we will approximate this transfer function with:

    cmimiref sTKI

    I

    21

    11

    +=

    K

    m i

    1 + s T

    m i

    K

    c o n v

    1 + s T

    c o n v

    1

    IU

    K

    i

    1 + s T

    i

    s T

    i

    i

    r e f

    R ( 1 + s T

    a )

    +

    -

    Speed regulator (1)

    Speed regulator (2)

    mncmic

    c

    mn

    min

    nn

    mn

    mn

    cmimin

    nn

    ref

    mes

    TTTavec

    sT

    K

    sJ

    k

    KsT

    sTK

    sT

    K

    sJ

    k

    sTKsT

    sTK

    N

    N

    +=

    +

    +

    +

    +

    +=

    2

    1

    11

    121

    111

    min

    min

    In OL :

    (by grouping small time constants)

    Speed regulator (3)

    To have a good performance in rejecting disturbances,

    one choose ususaly :

    min1

    11

    c

    mn

    min

    nn

    ref

    mes

    sT

    K

    sJ

    k

    KsT

    sTK

    N

    N

    +

    +

    mnn

    mimn

    cn

    RKT

    KTkK

    TT

    2

    4 min

    =

    =

    Electrical Drives 2010 - A.GENON 30

  • 8/2/2019 Slides Electrical Drives E

    31/32

    4

    Speed regulator (4)

    min1

    11

    c

    mn

    min

    nn

    ref

    mes

    sT

    K

    sJ

    k

    KsT

    sTK

    N

    N

    +

    +

    mnn

    mimn

    cn

    RKT

    KTkK

    TT

    2

    4 min

    =

    =

    3

    min

    32

    min

    2

    min

    min

    8841

    41

    ccc

    c

    ref

    mes

    TsTssT

    sT

    N

    N

    +++

    +=

    In CL

    As response to a step at the input, we observe:

    an overshoot of 43%

    a rise time of 3.2 * Tcmi(valid if the mechanical time constant is muchhigher thanother time

    constants)

    Speed regulator (4b)

    Overshoot : 43%

    Rise time : 3,2*Tcmin= 3,2ms

    Time

    0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms

    V(R18:1) V(V13:+)

    0V

    0.5V

    1.0V

    1.5V

    Closed Speed loop

    Speed regulator (5)

    3

    min

    32

    min

    2

    min

    min

    8841

    41

    ccc

    c

    ref

    mes

    TsTssT

    sT

    N

    N

    +++

    +=

    In CL

    As response to a step, we observe :

    an overshoot of 8%

    a rise time equal to 7,5*Tcmi

    To reduce the overshoot (due to the zero in the

    numerator), we can add a reference filter :

    min41

    1)(

    csTsF

    +=

    3

    min

    32

    min

    2

    min 8841

    1

    cccref

    mes

    TsTssTN

    N

    +++=

    Speed regulator (5b)

    Closed speed loop with reference filter

    Overshoot : 8%

    Rise time : 7,5*Tcmi = 7,5 ms

    Time

    0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms

    V(LAPLACE5:OUT) V(V13:+)

    0V

    0.2V

    0.4V

    0.6V

    0.8V

    1.0V

    1.2V

    EXPERIMENTAL METHOD FOR

    THE DETERMININATION OF

    REGULATORS PARAMETERS

    Reminder: transfer function of a

    PID

    ++= v

    n

    p sTsT

    KsH1

    1)(

    Electrical Drives 2010 - A.GENON 31

  • 8/2/2019 Slides Electrical Drives E

    32/32

    Critical oscillations method (1)

    Initialy, the system is in CL with :

    0

    v

    n

    p

    T

    T

    Klow

    Kp is increased gradually until the limit of

    oscillation. At this point, we note :

    periodnoscillatio

    pointat this

    =

    =

    crit

    pcrit

    T

    KK

    pv

    n

    p KsTsT

    KsH

    ++=

    11)(

    Critical oscillations method (2)

    The controller parameters are given in the

    following table (Ziegler-Nichols method) :

    Kp Tn Tv

    PcritK50.0

    PIcritK45.0 critT85.0

    PIDcrit

    K59.0crit

    T50.0 critT12.0

    Response to a step (1)

    The system is initialy in OL : a step K is applied

    at the system input and the response is observed.

    Tu,Tg and Ks are measured

    Response to a step (2)

    Coefficients following Ziegler-Nichols :

    Kp Tn Tv

    P

    us

    g

    TK

    T

    PI

    us

    g

    TK

    T90.0

    uT33.3

    PID

    us

    g

    TK

    T2.1

    uT2

    uT5.0

    Response to a step (3)

    Coefficients following Chien, Hrones and Resewick :

    Critre de qualit

    Rgulation apriodique de trs

    courte dure

    Rgulation avec dpassement

    de 20%

    Rejet de

    perturbation

    Suivi de

    consigne

    Rejet de

    perturbation

    Suivi de

    consigne

    P

    us

    g

    pTK

    TK 3.0=

    us

    g

    pTK

    TK 3.0=

    us

    g

    pTK

    TK 7.0=

    us

    g

    pTK

    TK 7.0=

    PI

    un

    us

    g

    p

    TT

    TK

    TK

    4

    6.0

    =

    =

    un

    us

    g

    p

    TT

    TK

    TK

    2.1

    35.0

    =

    =

    un

    us

    g

    p

    TT

    TK

    TK

    3.2

    7.0

    =

    =

    un

    us

    g

    p

    TT

    TK

    TK

    =

    = 6.0

    PID

    uv

    un

    us

    g

    p

    TT

    TT

    TK

    TK

    42.0

    4.2

    95.0

    =

    =

    =

    uv

    un

    us

    g

    p

    TT

    TT

    TK

    TK

    5.0

    60.0

    =

    =

    =

    uv

    un

    us

    g

    p

    TT

    TT

    TK

    TK

    42.0

    2

    2.1

    =

    =

    =

    uv

    un

    us

    g

    p

    TT

    TT

    TK

    TK

    47.0

    35.1

    95.0

    =

    =

    =

    Electrical Drives 2010 - A.GENON 32