slides kth stability and transition

Upload: mikibenez

Post on 20-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Slides KTH stability and transition

    1/172

    Non modal stability

    !"#$ &'$()* + ,-*-' .#/01)

    !1((2 3!45 6-(*'-7 89: ;-#/$(1#-'1$? 6@??-A- !@()@(7 B8

  • 7/24/2019 Slides KTH stability and transition

    2/172

    4"*?1(-

    .*$C1?1*D @E F"1)

  • 7/24/2019 Slides KTH stability and transition

    3/172

    $( -H$0>?- @E 1(

  • 7/24/2019 Slides KTH stability and transition

    4/172

    P"0-'1#$?

  • 7/24/2019 Slides KTH stability and transition

    5/172

    61''"< #?@")< )-J-?@>1(A 1( $ L-* $#- ./"V?- RPK.KT

  • 7/24/2019 Slides KTH stability and transition

    6/172

    K( -H$0>?- @E 8-?J1(M:-?0@?*W

  • 7/24/2019 Slides KTH stability and transition

    7/172

    9'$(1>- F@N -H>-'10-(* RXYYZT

  • 7/24/2019 Slides KTH stability and transition

    8/172

    9'$(1>- F@N -H>-'10-(* RXYYZT

  • 7/24/2019 Slides KTH stability and transition

    9/172

    9'$(

  • 7/24/2019 Slides KTH stability and transition

    10/172

    6?$

  • 7/24/2019 Slides KTH stability and transition

    11/172

    &D>$

  • 7/24/2019 Slides KTH stability and transition

    12/172

    4-( F@N

  • 7/24/2019 Slides KTH stability and transition

    13/172

    9N@ #@(#->*< @E

  • 7/24/2019 Slides KTH stability and transition

    14/172

    .*$C1?1*D $($?D

  • 7/24/2019 Slides KTH stability and transition

    15/172

    :D)'@)D($01#

  • 7/24/2019 Slides KTH stability and transition

    16/172

    .*$C1?1*D

    .*$C?- P-"*'$?

    B(

  • 7/24/2019 Slides KTH stability and transition

    17/172

    4J-'J1-N

    .*$C1?1*D $($?D

  • 7/24/2019 Slides KTH stability and transition

    18/172

    .*$C1?1*D $($?D'@C?-0

    U = (U , V , W ) , T =T(xi)

    u

    t= F(u;U)

    u

    t = A(U)u

    u(xi, t) = u eit

    iu= A(U)u

    u(xi, t), T(xi, t)

  • 7/24/2019 Slides KTH stability and transition

    19/172

    !1(-$' 0 i = 0 i < 0

    B(

  • 7/24/2019 Slides KTH stability and transition

    20/172

    9/-'0$? 1(

  • 7/24/2019 Slides KTH stability and transition

    21/172

    9-'01

  • 7/24/2019 Slides KTH stability and transition

    22/172

    9-'01$(

  • 7/24/2019 Slides KTH stability and transition

    23/172

    x or y

    z

    T0

    T0 T

    d

    2(0&"%3456"-(.7 %-/'(*%&%'0

  • 7/24/2019 Slides KTH stability and transition

    24/172

    2(0&"%3456"-(.7 %-/'(*%&%'0

    Linear stability theory: above a critical Rayleigh number of

    1708 the conductive state becomes unstable to infinitesimal

    perturbations

    Energy stability theory: below a critical Rayleigh number of

    1708 finite-amplitude perturbations superimposed on the

    conductive state decay monotonically in energy

    Rayleighnumber: ratio between buoyancy forces (temperaturegradient) and viscous forces the governing parameter

  • 7/24/2019 Slides KTH stability and transition

    25/172

    2(0&"%3456"-(.7 %-/'(*%&%'0

    Linear stability theory: above a critical Rayleigh number of

    1708 the conductive state becomes unstable to infinitesimal

    perturbations

    Energy stability theory: below a critical Rayleigh number of

    1708 finite-amplitude perturbations superimposed on the

    conductive state decay monotonically in energy

    Rayleighnumber: ratio between buoyancy forces (temperaturegradient) and viscous forces the governing parameter

    89:".%1"-'/ /4+$ '4" +-/"' +;

  • 7/24/2019 Slides KTH stability and transition

    26/172

    C&(-" C+%/",%&&" D+$

    Reynoldsnumber: ratio between inertial forces and viscous forces thegoverning parameter

  • 7/24/2019 Slides KTH stability and transition

    27/172

    C&(-" C+%/",%&&" D+$

    Linear stability theory: above a critical Reynolds number of

    5772 the parabolic profile becomes unstable to infinitesimal

    perturbations

    Energy stability theory: below a critical Reynolds number of

    49.6 finite-amplitude perturbations superimposed on the

    parabolic profile decay monotonically in energy

    Reynoldsnumber: ratio between inertial forces and viscous forces thegoverning parameter

  • 7/24/2019 Slides KTH stability and transition

    28/172

    C&(-" C+%/",%&&" D+$

    Linear stability theory: above a critical Reynolds number of

    5772 the parabolic profile becomes unstable to infinitesimal

    perturbations

    Energy stability theory: below a critical Reynolds number of

    49.6 finite-amplitude perturbations superimposed on the

    parabolic profile decay monotonically in energy

    Reynoldsnumber: ratio between inertial forces and viscous forces thegoverning parameter

    89:".%1"-'/ /4+$ ',.*,&"-' :('

  • 7/24/2019 Slides KTH stability and transition

    29/172

    9N@ @>>@

  • 7/24/2019 Slides KTH stability and transition

    30/172

    Energy equation

  • 7/24/2019 Slides KTH stability and transition

    31/172

    Linear growth mechanisms

  • 7/24/2019 Slides KTH stability and transition

    32/172

    ."C#'1G#$? *'$(

  • 7/24/2019 Slides KTH stability and transition

    33/172

    ."C#'1G#$? *'$(

  • 7/24/2019 Slides KTH stability and transition

    34/172

    ."C#'1G#$? *'$(

  • 7/24/2019 Slides KTH stability and transition

    35/172

    P@(M0@)$? $>>'@$#/

  • 7/24/2019 Slides KTH stability and transition

    36/172

    !1(-$' '@C?-0

    .*$'* E'@0 ?1(-$'1@(-(G$?

    U

    d

    dtq = Lq

    q= exp(tL)q0; q(t= 0) = q0

  • 7/24/2019 Slides KTH stability and transition

    37/172

    P@'0 @E 0$*'1H -H>@(-(G$?

    =(>"* @"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    38/172

    P@'0 @E 0$*'1H -H>@(-(G$?

    =(>"* @"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    39/172

    ;$*'1H (@'0

    m"#?1)-$(

  • 7/24/2019 Slides KTH stability and transition

    40/172

    m1A-(J$?"-< J< ,'@>$A$*@'P@'0

    ;$*'1H -H>@(-(G$? )1l#"?* *@ #@0>"*-

    .D

  • 7/24/2019 Slides KTH stability and transition

    41/172

    m1A-(J$?"-< J< ,'@>$A$*@'P@'0

    B>>-' $() ?@N-' C@"()< @E

    Lower bound

    G(t)

    e2tmax || exp(tL)||2

    || exp(tL)||2 =|| exp(tSS1)||2

    ||S||2||S1||2e2tmaxUpper bound

    9/- -(-'AD #$((@* )-#$D $* $ E$

  • 7/24/2019 Slides KTH stability and transition

    42/172

    &@"()< @E */- 0$*'1H -H>@(-(G$?

    e2tmax || exp(tL)||2 ||S||2||S1||2e2tmax

    Two distinct cases:

    (S) =||S||2||S1||2Condition number:

    (S

    ) = 1

    ,::". (-7 &+$". *+,-7

  • 7/24/2019 Slides KTH stability and transition

    43/172

    &@"()< @E */- 0$*'1H -H>@(-(G$?

    e2tmax || exp(tL)||2 ||S||2||S1||2e2tmax

    Two distinct cases:

    (S) =||S||2||S1||2Condition number:

    ,::". (-7 &+$". *+,-7

  • 7/24/2019 Slides KTH stability and transition

    44/172

    P@(M(@'0$?1*D

    (S) =||S||2||S1||2 = 1

    (S) =||S||2

    ||S1

    ||2

    1

    H+.1(& /'(*%&%'0 :.+*&"1E

    @'*/@A@($? -1A-(J-#*@'$

  • 7/24/2019 Slides KTH stability and transition

    58/172

    6?$

  • 7/24/2019 Slides KTH stability and transition

    59/172

    &D>$

  • 7/24/2019 Slides KTH stability and transition

    60/172

    4>G0$? 1(1G$? #@()1G@(

    Initial condition that results in the maximumenergyamplification at a given time

    ||q(t)||2 =||q0||2 = 1

    q(t) = exp(tL)q0

    exp(tL) q0 = || exp(tL)|| q(t)

    >'@>$A$*@' 1(>"* $0>?1]#$G@( @"*>"*

  • 7/24/2019 Slides KTH stability and transition

    61/172

    4>G0$? 1(1G$? #@()1G@(

    exp(t

    L) q0 = || exp(t

    L)|| q(t

    )

    >'@>$A$*@' 1(>"* $0>?1]#$G@( @"*>"*

    Singular value decomposition of a matrix

    V = UA = UVH

    Au1v1

    1 = ||A||2

  • 7/24/2019 Slides KTH stability and transition

    62/172

    4>G0$? 1(1G$? #@()1G@(

    exp(t

    L) q0 = || exp(t

    L)|| q(t

    )

    >'@>$A$*@' 1(>"* $0>?1]#$G@( @"*>"*

    Singular value decomposition of a matrix

    u1v1

    svd(exp(tL)) = UVH

    exp(tL)

    G(t) =|| exp(tL)||

  • 7/24/2019 Slides KTH stability and transition

    63/172

    4>G0$? 1(1G$? #@()1G@(

    exp(t

    L) q0 = || exp(t

    L)|| q(t

    )

    >'@>$A$*@' 1(>"* $0>?1]#$G@( @"*>"*

    Singular value decomposition of a matrix

    u1v1

    svd(exp(tL)) = UVH

    exp(tL)

    G(t) =|| exp(tL)||

    Optimal initial conditionleft principal

    singular vector

    Optimal final conditionright principalsingular vector

  • 7/24/2019 Slides KTH stability and transition

    64/172

    4>G0$? )1

  • 7/24/2019 Slides KTH stability and transition

    65/172

    Lift-upmechanism in shear layers(Ellingsen & Palm 1975, Landahl 1980)

    Particle displaced in thewall-normal directionretain their horizontal

    momentum

    Streamwise vorticesinduce streamwise

    streaks

    In boundary layers: wall-normal shear is O(Re)

    streak growth O(Re)

    Streamwisevortices

    Streamwisestreaks

    P@(M;@)$? ^'@N*/

  • 7/24/2019 Slides KTH stability and transition

    66/172

    4"*?1(-

    .*$C1?1*D @E F"1)

  • 7/24/2019 Slides KTH stability and transition

    67/172

    I-#->GJ1*D

    =(*-'-

  • 7/24/2019 Slides KTH stability and transition

    68/172

    4>G0$? '-@(

  • 7/24/2019 Slides KTH stability and transition

    69/172

    &@"()< @E '-

  • 7/24/2019 Slides KTH stability and transition

    70/172

    &@"()< @E '-

  • 7/24/2019 Slides KTH stability and transition

    71/172

    &@"()< @E '-

  • 7/24/2019 Slides KTH stability and transition

    72/172

    4>G0$? E@'#1(A

    .1(A"?$' J$?"- )-#@0>@"*=(>"*

    ||qp|| =|| f|| = 1

  • 7/24/2019 Slides KTH stability and transition

    73/172

    I-

  • 7/24/2019 Slides KTH stability and transition

    74/172

    I-

  • 7/24/2019 Slides KTH stability and transition

    75/172

    6@0>@(-(*MN1

  • 7/24/2019 Slides KTH stability and transition

    76/172

    6@0>@(-(*MN1"*M@"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    77/172

    K)L@1(*

  • 7/24/2019 Slides KTH stability and transition

    78/172

    K)L@1(*

  • 7/24/2019 Slides KTH stability and transition

    79/172

    mH>$(

  • 7/24/2019 Slides KTH stability and transition

    80/172

    BGJ1*D

    ut

    +L(U,Re)u+p= 0

    u = 0

    Linearized Navier-Stokes(u, p)

    (f+

    ,m

    +

    )Differentiable fields

    0 = u

    t

    +L(U,Re)u+pf+ + ( u)m+Sum and multiply

    Integrate by parts overtime and space

  • 7/24/2019 Slides KTH stability and transition

    81/172

    BGJ1*D

    Integrate by parts over time and space

    L(U,Re)u= U u+ u U 1

    Re

    2u

    L+

    (U,Re)f+

    =U

    f+

    U

    f+

    +

    1

    Re2

    f+

    J=U(uf+) + 1

    Re(f+ u uf+) +m+u+pf+

    where

    Z0

    ZD

    u

    t +L(U,Re)u+p

    f+ + ( u)m+

    =

    Z t

    0

    ZD

    u

    f+

    t +L+(U,Re)f+ +m+

    +p( f+)

    +

    Z t

    0

    uf+

    t +

    ZD

    J

  • 7/24/2019 Slides KTH stability and transition

    82/172

    BGJ1*D

    Integrate by parts over time and spaceZ0

    ZD

    u

    t +L(U,Re)u+p

    f+ + ( u)m+

    =

    Z t

    0

    ZD

    u

    f+

    t +L+(U,Re)f+ +m+

    +p( f+)

    +

    Z t

    0

    uf+

    t +

    ZD

    J

    Definition of adjoint problem

    Assume volume forcing, mass source and integrate in timeu

    t+L(U,Re)u+p= f u = Q

    u(t) f+(t) u(0) f+(0) =

    Z t

    0

    ZD

    f f+ + Qm+

    +

    ZD

    J n

  • 7/24/2019 Slides KTH stability and transition

    83/172

    BGJ1*D

    u(t) f+(t) u(0) f

    +(0) =Z t0

    ZD

    f f

    + + Qm+

    +ZD

    J n

    Assume initial condition for adjoint system f+

    (t) =u(t)

    u(t) u(t) =u(0) f+(0) +

    Z t

    0

    ZD

    f f+ + Qm+

    +

    ZD

    J n

    E ) ] ?) E

  • 7/24/2019 Slides KTH stability and transition

    84/172

    u(t) u(t) =u(0) f+(0) +

    Z t

    0

    ZD

    f f+ + Qm+

    +

    ZD

    J n

    BGJ1*D

    u(t) f+(t) u(0) f

    +(0) =Z t0

    ZD

    f f

    + + Qm+

    +ZD

    J n

    Assume initial condition for adjoint system f+

    (t) =u(t)

    djoint velocity gives sensitivity to initial condition and forcing

    u2(t)

    u(0)

    =f+(0) u2(t)

    f

    =f+

    E ) ] ?) E

  • 7/24/2019 Slides KTH stability and transition

    85/172

    u(t) u(t) =u(0) f+(0) +

    Z t

    0

    ZD

    f f+ + Qm+

    +

    ZD

    J n

    BGJ1*D

    u(t) f+(t) u(0) f

    +(0) =Z t0

    ZD

    f f

    + + Qm+

    +ZD

    J n

    Assume initial condition for adjoint system f+

    (t) =u(t)

    djoint pressure gives sensitivity to mass source

    u2(t)

    Q

    =m+

    E )L 1 ] ?) E G 1

  • 7/24/2019 Slides KTH stability and transition

    86/172

    u(t) u(t) =u(0) f+(0) +

    Z t

    0

    ZD

    f f+ + Qm+

    +

    ZD

    J n

    BGJ1*D

    u(t) f+(t)

    u(0) f

    +(0) =Z t0

    ZD

    f f

    + + Qm+

    +ZD

    J n

    Assume initial condition for adjoint system f+

    (t) =u(t)

    Gradient of adjoint field gives sensitivity to boundary

    conditions

    u2(t)

    uwall=

    1

    Ref+ +m+ n

    4 ?1

  • 7/24/2019 Slides KTH stability and transition

    87/172

    4"*?1(-

    .*$C1?1*D @E F"1)

  • 7/24/2019 Slides KTH stability and transition

    88/172

    .*'"#*"'$? $'$0-*-'QI-D(@?)< ("0C-'7 C$

  • 7/24/2019 Slides KTH stability and transition

    89/172

    .*'"#*"'$? $'$0-*-'QI-D(@?)< ("0C-'7 C$

  • 7/24/2019 Slides KTH stability and transition

    90/172

    .*'"#*"'$? $'$0-*-'QI-D(@?)< ("0C-'7 C$

  • 7/24/2019 Slides KTH stability and transition

    91/172

    .*'"#*"'$?

  • 7/24/2019 Slides KTH stability and transition

    92/172

    .*'"#*"'$?

  • 7/24/2019 Slides KTH stability and transition

    93/172

    .-(

  • 7/24/2019 Slides KTH stability and transition

    94/172

    .-(

  • 7/24/2019 Slides KTH stability and transition

    95/172

    3?@N #/$'* E@'

  • 7/24/2019 Slides KTH stability and transition

    96/172

    3?@N $'@"() $ #D?1()-'

    XO C$

  • 7/24/2019 Slides KTH stability and transition

    97/172

    3?@N $'@"() $ #D?1()-'

    XO C$

  • 7/24/2019 Slides KTH stability and transition

    98/172

    3?@N $'@"() $ #D?1()-'

    XO C$

  • 7/24/2019 Slides KTH stability and transition

    99/172

    3?@N $'@"() $ #D?1()-'

    XO C$

  • 7/24/2019 Slides KTH stability and transition

    100/172

    3?@N $'@"() $ #D?1()-'

    XO C$

  • 7/24/2019 Slides KTH stability and transition

    101/172

    3?@N $'@"() $ #D?1()-'

    XO C$

  • 7/24/2019 Slides KTH stability and transition

    102/172

    4-( F@N

  • 7/24/2019 Slides KTH stability and transition

    103/172

    D D

    Oscillators !Modal analysis

    M !$'A-G0$? E@'#1(A R>

  • 7/24/2019 Slides KTH stability and transition

    104/172

    ^?@C$??D "(>'@$#/ 1)-(G]-< $-#1]# $G$? >@

  • 7/24/2019 Slides KTH stability and transition

    105/172

    !$A'$(A- 1)-(G*D $()

    $)L@1(* -_"$G@( AD >

    ./-))1(A 0@)- =Q N$J-0$U-' J

  • 7/24/2019 Slides KTH stability and transition

    110/172

    6@(-'$*@' -H>'-

  • 7/24/2019 Slides KTH stability and transition

    111/172

    6@(-'$*@' -H>'-

  • 7/24/2019 Slides KTH stability and transition

    112/172

    .*'"#*"'$? J$'1$G@(< @E */- C$

  • 7/24/2019 Slides KTH stability and transition

    113/172

    5$U- #@(*'@? CD 0-$(< @E

  • 7/24/2019 Slides KTH stability and transition

    114/172

    ;@)- =

    .-(

  • 7/24/2019 Slides KTH stability and transition

    115/172

    ;@)- =

    .-(

  • 7/24/2019 Slides KTH stability and transition

    116/172

    ;@)- =

    9@*$? .-(

  • 7/24/2019 Slides KTH stability and transition

    117/172

    ;@)- ==

    .-(

  • 7/24/2019 Slides KTH stability and transition

    118/172

    ;@)- ==

    .-(

  • 7/24/2019 Slides KTH stability and transition

    119/172

    ;@)- ==

    9@*$? .-(

  • 7/24/2019 Slides KTH stability and transition

    120/172

    .10"?$G@(< @E $ @

  • 7/24/2019 Slides KTH stability and transition

    121/172

    P@1?1]-''-G0$? '-@(?1]-'

    &'$()* -* $?O7 `@"'($? @E 3?"1) ;-#/O7 [\XX

    ^'$)1-(* @E */- '-

  • 7/24/2019 Slides KTH stability and transition

    122/172

    4>G0$? E@'#1(A $() '-@( @E @>G0$? E@'#1(A $() '-@(

  • 7/24/2019 Slides KTH stability and transition

    123/172

    F247%" 1#)9,*.G ?,H@I2 -J-9(

    #.*'-$0N1?$*-

  • 7/24/2019 Slides KTH stability and transition

    124/172

    F247%" 1#)9,*.G KA@/%:-+

    #6@(J-#GJ- (@(M(@'0$?1*D7 [h E@'#1(A $* E'-_"-(#D 3cX\\O

    #3@'#1(A $#GJ- C-*N--( C'$(#/ = $() ==

    Brandt et al, JFM, 2011

    .-(

  • 7/24/2019 Slides KTH stability and transition

    125/172

    9.MN$J-

    ^-(-'$?1W- *@ G0-M>-'1@)1# $() G0-M)->-()-(* F@N< I-?$*- (@(M0@)$? $($?DG01W$G@( >'@C?-0"*M@"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    128/172

    > > D

    .--U @>G0$? -(-'AD $0>?1]#$G@(

    G(t) = maxq0

    hq, qi

    hq0, q0i

    =(>"*M@"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    129/172

    > > D

    .--U @>G0$? -(-'AD $0>?1]#$G@(

    G(t) = maxq0

    hq, qi

    hq0, q0i

    = maxq0

    hA(t)q0, A(t)q0ihq0, q0i

    =(>"*M@"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    130/172

    > > D

    .--U @>G0$? -(-'AD $0>?1]#$G@(

    G(t) = maxq0

    hq, qi

    hq0, q0i

    = maxq0

    hA(t)q0, A(t)q0ihq0, q0i

    = maxq0

    hAH(t)A(t)q0, q0i

    hq0, q0i

    =(>"*M@"*>"* $($?D

  • 7/24/2019 Slides KTH stability and transition

    131/172

    E@' G0-M)->-()-(* "* $($?D

  • 7/24/2019 Slides KTH stability and transition

    132/172

    E@' G0-M)->-()-(* '@C?-0

  • 7/24/2019 Slides KTH stability and transition

    133/172

    E@' G0-M)->-()-(* '@C?-0

  • 7/24/2019 Slides KTH stability and transition

    134/172

    $)L@1(*

    >'@C?-0

    (n)

    )1'-#*>'@C?-0

    '@C?-0

  • 7/24/2019 Slides KTH stability and transition

    135/172

    g$'1$G@($? E@'0"?$G@( @E */- @>G0$? A'@N*/ >'@C?-0more general

    J =

    ||q||2

    ||q0||2 maxWe wish to maximize

    with the constraintd

    dt

    q=L(t)q

    Listen Carlo Cossu on Friday!

    ^?@C$? 0@)-

  • 7/24/2019 Slides KTH stability and transition

    136/172

    ;@'@C?-0< N1*/ 1(/@0@A-(-@"< )1'-#G@(?-H A-@0-*'D

    6$((@* "G0$?-() @( 0@'- */$(

    @(- )1'-#G@( u+(x, y)

    6@0>"*$G@($? 1

  • 7/24/2019 Slides KTH stability and transition

    137/172

    One vs two inhomogeneous directions:state vector, matrix, operation count

    L CN

    2N

    2

    O(N4)L CNN

    O(N2)

    O(N3) O(N6)

    Matrix size

    Operation count

    State vectorq=

    q1

    q2

    qN

    q=

    q1,1

    q1,2

    qN,N

    6@0>"*$G@($? 1

  • 7/24/2019 Slides KTH stability and transition

    138/172

    One vs two inhomogeneous directions:state vector, matrix, operation count

    " Direct eigenvalue algorithms become too expensive

    "

    Iterative algorithms,Arnoldi technique

    L CN

    2N

    2

    O(N4) O(N6)

    storage

    CPU time

    K'(@?)1 $?A@'1*/0

  • 7/24/2019 Slides KTH stability and transition

    139/172

    K#G@( @E */- ?1(-$' @>-'$*@' N1*/1( $( @'*/@(@'0$? C$

  • 7/24/2019 Slides KTH stability and transition

    140/172

    K#G@( @E */- ?1(-$' @>-'$*@' N1*/1( $( @'*/@(@'0$? C$'-

  • 7/24/2019 Slides KTH stability and transition

    141/172

    Only multiplication by L are necessary

    System eigenvalues approximated

    by eigenvalues of H

    Eig(L) Eig(H)

    mH$0>?- 1( [hQ F@N 1( sML"(#G@(

  • 7/24/2019 Slides KTH stability and transition

    142/172

    Base flow

    Lashgari et al, in preparation

    mH$0>?- 1( [hQ F@N 1( sML"(#G@(

  • 7/24/2019 Slides KTH stability and transition

    143/172

    Spectrum

    Lashgari et al, in preparation

    " Steady two-dimensional bifurcation

    mH$0>?- 1( [hQ F@N 1( sML"(#G@(

  • 7/24/2019 Slides KTH stability and transition

    144/172

    Eigenfunction

    Lashgari et al, in preparation

    "

    Steady two-dimensional bifurcation

    mH$0>?- 1( [hQ F@N 1( sML"(#G@(

  • 7/24/2019 Slides KTH stability and transition

    145/172

    New asymmetric state

    Lashgari et al, in preparation

    "

    Steady two-dimensional bifurcation

    sML"(#G@(Q mH$0>?- 1( [7iha

  • 7/24/2019 Slides KTH stability and transition

    146/172

    Lashgari et al, in preparation

    Asymmetric state unstable to 3D periodic disturbances

    Snapshot method based on linear DNS

    mH$0>?- 1( ZhQ `-* 1( #'@

  • 7/24/2019 Slides KTH stability and transition

    147/172

    Bagheri et al, JFM, 2011, Schlatter et al.

    Use DNS and compute spectrum of matrix exponentialq= exp(tL)q0

    ."00$'D

  • 7/24/2019 Slides KTH stability and transition

    148/172

    .*$C1?1*D @E F"1) '@C?-0-()-(* >'@C?-0Q -1A-(J$?"- >'@C?-0 1( G0-O mHb

    6?$

  • 7/24/2019 Slides KTH stability and transition

    168/172

    ,$'$??-?

  • 7/24/2019 Slides KTH stability and transition

    169/172

    4''M.@00-'E-?) $() ._"1'- -_"$G@(

  • 7/24/2019 Slides KTH stability and transition

    170/172

    P@(0@)$?

  • 7/24/2019 Slides KTH stability and transition

    171/172

    =(>"*M@"*>"* $>>'@$#/

    P@((@'0$? @>-'$*@'