small cell lte-tdd implementation over qoriq qonverge

34
External Use TM Small Cell LTE-TDD Implementation Over QorIQ Qonverge BSC9132 and BSC9131 Processors EUF-SDS-T0978 JAN.2015 Roy Shor | Software R&D

Upload: others

Post on 09-Jan-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

External Use

TM

Small Cell LTE-TDD Implementation

Over QorIQ Qonverge BSC9132 and

BSC9131 Processors

EUF-SDS-T0978

J A N . 2 0 1 5

Roy Shor | Software R&D

Page 2: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 1

Agenda

• Small Cell Introduction

• Freescale Small-Cell SoC Portfolio

• LTE L1 Software Architecture

• Demo Information

• Summary

Page 3: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 2

Small Cell Introduction

Page 4: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 3

Small Cells

• What is Small Cell?

− Wireless access points that operate in licensed spectrum (operator-managed)

− Provide improved cellular coverage, capacity and applications

• Why Small Cells?

− Consumer demand for data services is growing unabated, with penetration of smartphones exceeding 40% in many countries and over 300 million being shipped annually. A large ecosystem of application vendors has emerged, reliant on “always on”, high speed, low-latency wireless connectivity.

− The volume of data is continuing to grow rapidly: Cisco predicts that the volume of wireless data will exceed that of wired data by 2015

− Solution - spectrum re-use

Source:www.smallcellforum.org

Page 5: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 4

Frequency Reuse

• @20 MHz cell capacity

(DL\UL) is – 144\72 mbps

• For a given area the

throughput is N(number of

cells in the region)xCap(cell

capacity).

• In this example 15 cells

2160 \1080 mbps

Source:www.smallcellforum.org

Page 6: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 5

Frequency Reuse

• If smaller cells with same

capacity are used the overall

capacity in the area

increases

• In this example we

introduced Frequency reuse

to central cell

• Overall capacity at this cell

increased by a factor of 4

Source:www.smallcellforum.org

Page 7: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 6

Network Model According To SmallCell Forum

Source:www.smallcellforum.org

Page 8: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 7

LTE Femto in the Field

• Cost, physical size and range are the three dominant factors that define a small cell.

• LTE is expected to be the biggest driver for small cells.

• Most important reasons for deploying small cells are

1. Increase capacity (urban)

2. Increase coverage (rural)

3. Cover high-traffic public areas (urban+)

Femto cells deployments history

92 million small cells by 2016

Page 9: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 8

Freescale Small-Cell SoC Portfolio

Page 10: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 9

Freescale Soc Portfolio, From Femto To Macro

Page 11: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 10

Tested Integration

Commercial LTE L1 Software

Reference Board Design

BSC913x SoC

Freescale LTE Femto/Pico Offering

Partner L2 / L3 Stack

Complete LTE Femto/Pico

Solution

Partner RF Card

Page 12: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 11

BSC9131 – Femtocell SoC

Single Chip Femto Basestation • SMB Femtocell up to 16 users – BSC9131

• Multimode

Multi Standard Architecture • Standards support: LTE (Rel. 9), WCDMA (Rel. 99/7/8)

• LTE – 20 MHz single sector -100 Mbps / DL 50 Mbps

UL

• HSPA+ - 5 MHz single sector 42 Mbps / DL 11 Mbps UL

• Processing Layers: PHY-MAC-RLC-PDCP-NTP

• Enabled with 2x2 MiMO

• 2G/3G Sniffing and GPS Support

SoC Architecture • PowerTM e500 Core subsystem (800 MHz – 1 GHz)

• Starcore SC3850 Core subsystem (800 MHz – 1 GHz)

• MAPLE-B2F Baseband Accelerators Platform

­ eTVPE – Turbo/Viterbi Decoder

­ DEPE – Turbo Encoder w/ rate match

­ CRCPE – CRC check & insertion

­ FTPE – FFT/DFT

­ PDPE, PUPE

­ UMTS Chiprate

• Security engine - IPSec, Kasumi, Snow-3G

• Secured boot

• Single DDR3 Controller 32b 800MHz

• IEEE1588 v2, NTP

• USB 2.0

• 2x Ethernet RGMII and IEEE1588v2

• 3x JESD207/ADI/MAXPHY RF transceiver interfaces

Multicore Fabric

MAPLE-B2F

Baseband

Accelerators

LTE/UMTS/CDMA2K

DMA Security

Engine

v4.4

Power™

e500 Core

D-Cache I-Cache 32 KB 32 KB

Starcore

SC3850 DSP Core

D-Cache I-Cache

512 KB

Backside

L2 Cache 32 KB 32 KB

JE

SD

207/A

DI/

MA

XP

HY

US

B 2

.0

32-bit

DDR-3

800MHz 256 KB L2 cache

Clocks/Reset

I2C

SPI

GPIO

DUART Ethernet

1GE IEEE 1588

1GE

Page 13: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 12

Single Chip - Pico Basestation • Standards support: LTE (Rel. 8/9), WCDMA

(Rel. 99/7/8/9), 802.16e

• Bandwidth: 20MHz or 2x 10 MHz

• 100 LTE or 64/96 HSPA/AMR active users

• Multimode support

• LTE throughputs: 150Mbps DL / 75 Mbps UL

with 2x4 ant.

• HSPA+ throughputs: Dual carrier – 84 MbpsDL

/23 Mbps UL

• WiMAX 802.16e: up to 50Mbps DL/13 Mbps UL

• 2G/3G Sniffing and GPS Support

• Secured Boot & Trust Architecture support

• Proc. Layers: PHY-MAC-RLC-PDCP-Transport

Architecture • Dual PowerTM e500mc core (1 GHz/1.2 GHz)

• Dual Starcore SC3850 DSP (1 GHz/1.2 GHz)

• MAPLE-B2P Baseband Accelerators Platform

• Security engine - IPSec, Kasumi, Snow-3G

• Dual DDR3/3L, 32b,1.333GHz, w/ ECC

• IEEE1588 v2, NTP

• USB 2.0

• 4 SerDes lanes, combining:

• 2x Ethernet 1G SGMII

• 2x CPRI v4.1 @ 6.144G antenna

interface

• 1x PCIe @ 5G x2 lanes

• Quad JESD207/ADI RF transceiver interfaces

• NAND/NOR Flash controller, eSDHC, USIM

• I2C, eSPI

• Package – FCPBGA, 23mmx23mm, 0.8mm

Multicore Fabric

32 KB

Shared

M3

Clocks/Reset

2x I2C

SPI

GPIO

DUART

Power™

e500 Core

D-Cache I-Cache 32 KB 32 KB

32-bit

DDR-3

1.3GHz

Shared 512 KB L2 cache

32-bit

DDR-3

1.3GHz

Coherency module

Starcore

SC3850 DSP Core

D-Cache I-Cache 32 KB 32 KB

512KB L2 cache

x2

MAPLE-B2P

Baseband

Accelerators

LTE/UMTS /WiMAX

DMA Security

Engine

v4.4

US

B 2

.0

CP

RI 4

.1

x2

Ethernet

1GE

SGMII

IEEE 1588

4 - lanes SerDes

1GE PCIe

JE

SD

207/A

DI

x4

IFC

USIM

eSDHC

BSC9132 – Picocell/Enterprise-Femto SoC

Page 14: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 13

BSC9131 Reference Design Femto Cell Platform

BSC9131 Form Factor Reference

Design Board

Features:

• Complete communications platform

enabling CDMA2K, LTE, WCDMA/HSPA+

• Dual-band system covering up to 2.7 GHz

• Development and debugging tools

available from Freescale and our partners

Benefits:

• Form factor design helps speed customers

time to market

• Turn-key hardware design

• Seamless RFIC integration solutions

Page 15: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 14

BSC9132 Development System for Pico Cells

BSC9132 Development System

Features:

• Complete communications platform

enabling LTE, WCDMA/HSPA+ and

WiMAX technologies

• Dual-band system covering up to 2.7 GHz

• Integrated Local and RRH (Remote Radio

Head ) RF interfaces

• Development and debugging tools

available from Freescale and our partners

Benefits:

• Faster time-to-market

• Customizable development system for

picocell solutions

• Integrated with RF solution

Page 16: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 15

RF Cards for BSC913x Development Boards

• Conformance tested

• Dual band support in single

card

• Freescale RF PAs and LNAs

• 13 dBm Output power

• Compatible with both

BSC9131RDB and

BSC9132QDS

• Benetel and Maxim RF cards

Page 17: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 16

Freescale SW Solution

• For Pico/Femto devices (BSC9131/2) Freescale provides “turn-key”

Certified solution for the LTE TDD/FDD eNB

− Higher layers (L2/L3) are implemented by third party partners.

− End-to-end in-house L1 stack implementation

− WCDMA and LTE NMM cell search supporting SON standard

• Various customers are in implementation and integration stages

with Freescale’s Small Cell products

Page 18: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 17

# Feature

1 Release 9 TDD Support (= Rel8 + PRS)

2 Max. DL throughput for 20MHz: 80Mbps with Cat-3 UE; 120Mbps with Cat-4 UE

Max. UL throughput for 20MHz: 20Mbps with Cat-3 UE; 20Mbps with Cat-4 UE

3 Multi Bandwidth Support (5, 10, 15 or 20MHz)

4 UL/DL Configuration (0-6) and special sub frame (0-8)

5 Multi Band Support (40, 41)

6 64 (BSC9132) / 32 (BSC9131) Active UE-s and up to 4 UE/TTI support

7 Transmission modes (1-4), inc. Downlink 2x2 MIMO Support

8 Localized and Distributed PDSCH, Localized PUSCH

9 Downlink Control Channel Support (PDCCH, PHICH, PFICH, BCH, SSH)

10 PUCCH Formats 1/1a/1b/2/2a/2b

11 Closed Loop Power Control (PUCCH, PUSCH)

12 FSL TDD API 1.2.3 (FAPI-like) Compliant (Partial and Full Reconfiguration)

13 3GPP 36.141 Conformance

14 Cell Search (TDD-LTE Bands)

15 Handover (Intra-RAT – TDD/TDD) and Measurements

16 Interoperability w/ Test (AeroFlex)/Commercial (Huawei) UE-s

17 RACH formats 0, 1, 4; Ncs configuration with up to 3 (BSC9132) / 1 (BSC9131) root sequences

18 Sounding Channel Support (SRS)

L1 TDD Baseline Features

Page 19: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 18

LTE L1 Software Architecture

Page 20: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 19

Hardware Abstract Layer

Hardware & OS Abstract Layer

Software Components for Small-Cell

SC3850 e500

SDOS

MA

PL

E

-B2P

/F

LT

E L

2-L

1 A

PI

Linux Kernel Space

Standard, FSL API

Linux User Space

Applications L2 L3

Std

Apps

Customer

Apps

QE

LTE SW components

L1 Framework

PDCCH

PRACH

PUSCH PDSCH PUCCH

SRS Meas ANT IF

RT Scheduler

Debug

QDS913x RF

Page 21: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 20

L1 Software Architecture Essentials Reduced Scheduling

Overhead

• Run-to-completion scheduler with deterministic scheduling intervals

• Reduced cost for runtime decisions as worst case sequence is always scheduled

• Simplified multicore aware scheduler engine

Simplified Control Layer

• Removed overhead of multiple control and translation layers

• L2 FAPI messages are directly parsers by each component

• Zero memcopy for L2 ctrl / payload

Seamless MAPLE Access

• Components access MAPLE directly through SDOS

• No additional communication layer

SDOS

PDCCH PUSCH

data PDSCH

PUSCH

CQI

PUSCH

RSP

RACH

PUCCH

1/1a/1b

PUCCH

2/2a/2b

SRS Meas.

L1 / L2 Interface (FAPI)

RT Scheduler

Framework

Antenna

IF config PUFFT

Page 22: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 22

L1 Scheduling

• L1 scheduling follows run-to-

completion model.

• The component definition and

scheduling is driven by memory

footprint optimization.

• The scheduling scheme is tailored

for the worst case load.

• Each component is statically

tiggered based on the symbol

intervals

• The FAPI control information will

determine which components are

actually executed in each

subframe

• RACH processing is spread out

over the subframe with filtering

operations every symbol.

Sym Id Tasks

0 FAPI_Parser (N), PUCCH_Copy (N-1), EQU(N-1)

1 RACH_TDP(N), PUSCH_EDF(N-1),

PUCCH_F1(N-1), PUCCH_F2(N-1)

2 RACH_TDP(N)

3 RACH_TDP(N)

4 RACH_TDP(N), RSP(N)

5 EQU(N), SRS_AP(N-1)

6 2xRACH_TDP(N)

7 RACH_TDP(N), PUCCH_Copy(N), EQU(N)

8 RACH_TDP(N), PDSCH(N+1), PDCCH(N+1)

9 SRS_UM(N-1)

10 2xRACH_TDP(N)

11 RACH_TDP(N), RSP(N)

12 RACH_TDP(N), RACH_FDP(N), EQU(N),

RACH_DPP(N)

13 FAPI_Indications(N)

Page 23: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 23

Self Organizing Network (SON)

• Designed to make the planning, configuration, management and

optimization of mobile radio access networks simpler and faster

• Newly added base stations should be self-configured in line with a

"plug-and-play" paradigm

• Freescale supports L1 sniffing (NMM) for both LTE FDD and LTE

TDD

Page 24: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 24

FAPI Interfaces

• FAPI defines 4 relevant interfaces for the LTE L1:

− P4 for all network listening operations (radio sniffing)

− P5 for L1 mode control (start, stop etc)

− P7 for the main data path

− P8 for diagnostics

Page 25: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 25

Femto Forum API

• FAPI defines 4 PHY states:

− IDLE: PHY is ready to be configured for a

certain deployment

− CONFIGURED: PHY is configured and ready

for reconfiguration or for subframe operation

− RUNNING: PHY is in running state. Every

TTI, the PHY receives UL and DL subframe

requests that configure all operations within

this coming TTI.

− NMM: Network listening mode. The PHY is

ready to listen to other radio signals for

measurements.

• The FAPI spec supports the implementation of a

stateless PHY where all user information is

stored on the L2

Page 26: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 26

FAPI Message Support

• The L1/L2 interface follows the FAPI standard

• Some minor changes were added for performance optimization (padding, payload pointers)

• Additional vendor specific fields are used for advanced measurements and additional control options

• The FAPI messages are mapped on a set of interprocessor communication channels (IPC) that handle all communication between the cores

Page 27: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 27

TDD configuration

• UL/DL configuration 1, SSF 7 tested in Integration.

• UL/DL configuration 3, SSF 8 tested for 36.141 conformance (DL

ETM models)

• UL/DL

configuration:

• SSF

configuration:

Page 28: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 28

L1 Diagnostic / Tracing

• L1/L2 Wireshark Trace

− All FAPI events are sent to a host and can be analyzed using the

Wireshark tool

− Same information is logged in DDR memory for post mortem debug

• Offline analysis of DDR trace

− Logs of all real time events

− Uses CodeWarrior tools to read from memory

− Primarily used in lab environment

• Debug Print Agent: Runtime trace on debug host

− Extracts and displays the trace information on the host while target is

running in real time.

• WSDT

Page 29: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 29

Demo Information

Page 30: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 30

BSC9132 LTE Demo Setup

UE eNB

Ethernet

CW PC CodeWarrior for L1

BSP Linux PC Load code, setup RF

Core Network

LTE EPC Core network simulator

Band 40

RF card

BSC9132

HW

Acceleration

SC3850

LTE

L1

e500v2

LTE

L2/L3

LTE UE Laptop with

commercial

net stick

Page 31: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 31

BSC9131 LTE Demo Setup

UE eNB

Ethernet

CW PC CodeWarrior for L1

BSP Linux PC Load code, setup RF

Core Network

LTE EPC Core network simulator

Band 40

RF card

BSC9131

HW

Acceleration

SC3850

LTE

L1

e500v2

LTE

L2/L3

LTE UE Laptop with

commercial

net stick

Page 32: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 32

Summary

Page 33: Small Cell LTE-TDD Implementation Over QorIQ Qonverge

TM

External Use 33

Summary

• The BSC913x provides an architecture for a scalable and efficient

implementation of the eNode-B functionality on a single chip

• Along with the SoC, Freescale offers a commercial LTE L1

software that is designed to make best use of the available

hardware functionality

• The L1 functionality can be treated as a black box controlled

through an API that follows the Femto API recommendations

• Freescale has integrated the L1 with L2/L3 stacks from 3rd party

partners and RF card vendors to enable end-to-end system testing