smartt, s. j. (2009). progenitors of core-collapse supernovae....

17
09). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-as

Upload: julia-burns

Post on 19-Jan-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

Page 2: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

• Supernovae are primarily classified by the appearance of their optical spectra, usually around the time of peak brightness

Page 3: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

Supernova surveys and explosion rates

• The SNe for which one can directly attempt to identify progenitor stars must be fairly nearby (?30 Mpc)

Page 4: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

A decade of intensive searching fro progenitors

• The superbly maintained and publicly accessible archive of HST precipitated the search for the progenitors of CCSNe discovered in nearby galaxies. The

• Although progenitors were not discovered, the large numbers of events and the restrictive luminosity limits were to play an important role in investigating progenitor populations (see Sections 4 and 5).

Page 5: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

overview

• The lower mass limit for core-collapse

• 8+-1 Msun

• 7.5–9.25 M?

• (9–9.25 M?) ECSNe

• Above 9.25 normal Fe core collapse occurs

Page 6: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

The red supergiant problem

• After just the first few years of intensive systematic searching for progenitors, the lack of easy detection of moderately massive and very massive stars became an interesting issue (Smartt et al. 2003)

• The galaxy-integrated IMF of massive stars could be significantly steeper than α =−2.

• All massive stars above 17M? could produce IL-L, IIn, and IbcSNe.T

• All massive stars above 17M? could produce IL-L, IIn, and IbcSNe.T

Page 7: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737

The progenitors of type II-P supernovae

Page 8: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 9: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 10: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 11: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 12: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 13: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 14: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 15: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 16: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737
Page 17: Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi:10.1146/annurev-astro-082708-101737