snapshot: the epithelial-mesenchymal transition · snapshot: the epithelial-mesenchymal transition...

2
162 Cell 145, April 1, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.03.029 See online version for legend and references. SnapShot: The Epithelial-Mesenchymal Transition Jonathan P. Sleeman 3,4 and Jean Paul Thiery 2,3 1 IMCB and Experimental Therapeutics Centre, Biopolis A*STAR, 138673 Singapore; 2 Cancer Science Institute, 117456 Singapore 3 University of Heidelberg, Medical Faculty Mannheim, D-68167 Mannheim, Germany; 4 Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany Laminin 5 TβRI TβRI TβRII Snail1/2 Zeb1/2 Par3 Par6 aPKC BMPs BMPR1 BMPR2 Patched Growth factors IL-6 JAG2 JAM p120-Cat p53 RhoA Cdc42 RhoA RhoA PDGF Cdc42 Cdc42 Glu-tubulin Rac1 Par6 Par3 aPKC Claudin JAM Occludin Claudin Occludin ZO3 ZO1 ZO2 Actin IQGAP E-cadherin Nectin β-cat β-cat β-cat β-cat β-cat β-cat Afadin F-actin Vinculin X α-Actinin Clip170 Dynein/ dynactin complex miR-200 FOXA1/2 BASEMENT MEMBRANE ROCK DDR1 Collective cell migration p190 Rho GAP DAP21P GSK3β RhoA RhoE Myosin light chain HIF 1/2 LoxL2 E2.2 KLF8 FOXQ1 E47 GSC Twist Snail1/2 Snail1/2 Smad2/3 Hedgehog ER PAK1 STAT3 IL-6R PI3K Ras RTK LIV1 AKT MAPK NF-κB NF-κB CSL Gli1 MTA3 Zeb1/2 miR-205 miR-200 miR-205 E-cadherin and other downregulated genes (see box A) Upregulated genes (see box B) E-cadherin Desmosome Cytokeratin Gap junction Plakoglobin Desmoplakin Balanced activities Tight junction EPITHELIAL MESENCHYM Adherens junction Stabilized actin cytoskeleton Apicobasal microtubules p120-Cat p120-Cat Kaiso p120-Cat p120-Cat GSK3β Dishevelled LRP5/6 Frizzled Nectin Afadin RTK DDR1 Collagen 1 MMPs NCAM N-cad PDGFR Transcription Focal adhesion formation Adherens junction disassembly Filopodia Lamellipodia Migration Invasion ECM remodelling Focal adhesion assembly and turnover Examples of up- regulated genes TβRI Vimentin SMA N-cadherin NCAM Fibronectin Laminins miR-661 MMPs Examples of down- regulated genes Tubulin tyrosine ligase Claudins Occludins ZO1/ZO3 Crumbs3 Desmoplakin Connexin43 E-cadherin Nectin-1 VE-cadherin Cytokeratins Collagen I, II Other EMT-associated effects Resistance to senescence Resistance to apoptosis Therapy resistance Stemness Cytoskeleton remodeling Membrane ruffles Loss of desmosomes Microtentacles Dissociation of tight junctions Loss of gap junctions Endocytosis degradation Focal adhesion formation Increased TGF-β signaling E-cadherin degradation Basement membrane degradation EB1 Ninein p190 Rho GAP p190 Rho GAP Smurf1 α-cat Rap1 FAK FAK FAK Fyn Rac1b Hypoxia Rac1 Rac1 Reactive oxygen species Pyk2 ILK AKT DAB2 p130 CAS α-cat A B Other EMT-inducing pathways ILEI Endothelin-A receptor-PI3K TNF-α-NF-κB, Akt Hyaluronic acid COX2-PGE2 AMF PTH(rP)R Bile acids Nicotine UV irradiation SCF Axl-Gas6 Plectin Wnt FAK Hakai RhoA Proteasome CK1 E Par3 Par6 c-src c-src ZO3 ZO1 ZO2 P P P P Ub Ub P P P P P Integrin α6β4 Integrin α6β4 Desmoglein Desmoglein Desmocollin Desmocollin NOTCH NOTCH Smoothened Smoothened TGF-β TGF-β Six1

Upload: others

Post on 22-Aug-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SnapShot: The Epithelial-Mesenchymal Transition · SnapShot: The Epithelial-Mesenchymal Transition Jonathan P. Sleeman3,4 and Jean Paul Thiery1,2 1IMCB and Experimental Therapeutics

162 Cell 145, April 1, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.03.029 See online version for legend and references.

Snap

Shot:

The E

pit

helia

l-M

ese

nch

ymal

Tra

nsi

tion

Jona

than

P. S

leem

an3,

4 an

d J

ean

Pau

l Thi

ery2,

3

1 IM

CB

and

Exp

erim

enta

l The

rap

eutic

s C

entr

e, B

iop

olis

A*S

TAR

, 138

673

Sin

gap

ore

; 2 Can

cer

Sci

ence

Inst

itute

, 117

456

Sin

gap

ore

3 U

nive

rsity

of

Hei

del

ber

g, M

edic

al F

acul

ty M

annh

eim

, D-6

8167

Man

nhei

m, G

erm

any;

4 Kar

lsru

he In

stitu

te o

f Te

chno

log

y, P

ost

fach

364

0, 7

6021

Kar

lsru

he, G

erm

any

Lam

inin

5

TβR

ITβ

RI

TβR

II

Sna

il1/2

Zeb

1/2

Par3Par6

aPK

C

BM

Ps

BM

PR

1B

MP

R2

Pat

ched

Gro

wth

fact

ors

IL-6

JAG

2

JAM

p120-Cat

p53

Rho

A

Cd

c42

Rho

A

Rho

A

PD

GF

Cd

c42

Cd

c42

Glu

-tub

ulin

Rac

1

Par

6P

ar3

aPK

C

Cla

udin

JAM

Occ

lud

in

Cla

udin

Occ

lud

inZ

O3

ZO

1Z

O2

Act

in

IQG

AP

E-c

adhe

rin

Nec

tin

β-ca

t

β-ca

t β-ca

t

β-ca

t

β-ca

t

β-ca

t

Afa

din

F-ac

tin

Vin

culin

-Act

inin

Clip

170 Dyn

ein/

dyn

actin

com

ple

x

miR

-200

FOX

A1/

2

BA

SE

ME

NT

ME

MB

RA

NE

RO

CK

DD

R1

Co

llect

ive

cell

mig

ratio

np

190

Rho

GA

PD

AP

21P

GS

K3β

Rho

A

Rho

E

Myo

sin

light

chai

n

HIF

1/2

LoxL

2E

2.2

KLF

8

FOX

Q1

E47

GS

C

Twis

tS

nail1

/2

Sna

il1/2

Sm

ad2/

3

Hed

geho

g

ER

PAK

1

STA

T3

IL-6

R

PI3

KR

as

RTK

LIV

1A

KT

MA

PK

NF-

κB

NF-

κB

CS

L

Gli1

MTA

3

Zeb

1/2

miR

-205

miR

-200

miR

-205

E-c

adhe

rin

and

oth

erd

ow

nreg

ulat

ed g

enes

(see

box

A)

Up

reg

ulat

ed g

enes

(see

box

B)

E-c

adhe

rin

Des

mo

som

eC

yto

kera

tin

Gap

jun

ctio

n

Pla

kog

lob

inD

esm

op

laki

n

Bal

ance

dac

tivi

ties

Tig

ht

jun

ctio

n

EP

ITH

EL

IAL

ME

SE

NC

HY

MA

LM

ES

EN

CH

YM

AL

Ad

her

ens

jun

ctio

n

Sta

bili

zed

act

incy

tosk

elet

on A

pic

ob

asal

mic

rotu

bul

es

p120-Cat

p12

0-C

atK

aiso

p12

0-C

at

p12

0-C

at

GS

K3β

Dis

heve

lled

LRP

5/6

Friz

zled

Nec

tinA

fad

in

RTK

DD

R1

Col

lage

n 1

MM

Ps

NC

AM

N-c

ad PD

GFR

Tran

scrip

tion

Foca

lad

hesi

onfo

rmat

ion

Ad

here

nsju

nctio

nd

isas

sem

bly

Filo

pod

iaLa

mel

lipod

iaM

igra

tion

Inva

sion

EC

M r

emod

ellin

g

Foca

l ad

hesi

onas

sem

bly

and

tur

nove

r

Exa

mp

les

of

up

-re

gu

late

d g

en

es

TβR

IV

imen

tin

SM

AN

-cad

heri

nN

CA

MF

ibro

nect

inLa

min

ins

miR

-661

MM

Ps

Exa

mp

les

of

do

wn

-re

gu

late

d g

en

es

Tub

ulin

tyr

osi

ne li

gas

eC

laud

ins

Occ

lud

ins

ZO

1/Z

O3

Cru

mb

s3D

esm

op

laki

nC

onn

exin

43E

-cad

heri

nN

ecti

n-1

VE

-cad

heri

nC

yto

kera

tins

Co

llag

en I

, II

Oth

er

EM

T-a

sso

cia

ted

eff

ec

ts

Res

ista

nce

to s

enes

cenc

eR

esis

tanc

e to

ap

op

tosi

sT

hera

py

resi

stan

ceS

tem

ness

Cyt

oske

leto

nre

mod

elin

g

Mem

bra

neru

f�es

Loss

of

des

mos

omes

Mic

rote

ntac

les

Dis

soci

atio

n of

tight

junc

tions

Loss

of g

apju

nctio

ns

End

ocyt

osis

deg

rad

atio

n

Foca

l ad

hesi

onfo

rmat

ion In

crea

sed

TGF-β

sign

alin

g E-c

adhe

rind

egra

dat

ion

Bas

emen

t m

emb

rane

deg

rad

atio

n

EB

1

Nin

ein

p19

0R

hoG

AP

p19

0R

hoG

AP

Sm

urf1 α

-cat

Rap

1

FAK

FAK

FAK

Fyn

Rac

1b

Hyp

oxi

a

Rac

1

Rac

1

Rea

ctiv

eox

ygen

spec

ies

Pyk

2

ILK

AK

T

DA

B2

p13

0C

AS

α-c

at

A

B

Oth

er

EM

T-in

du

cin

g p

ath

wa

ys

ILE

IE

ndo

thel

in-A

rec

epto

r-P

I3K

TN

F-α

-NF

-κB

, A

ktH

yalu

roni

c ac

idC

OX

2-P

GE

2A

MF

PT

H(r

P)R

Bile

aci

ds

Nic

oti

neU

V ir

rad

iati

on

SC

FA

xl-G

as6

Ple

ctin

Wnt

FAK

Hak

ai

Rho

AP

rote

asom

e

CK

1 E

Par

3P

ar6

c-sr

c

c-sr

c

ZO

3Z

O1

ZO

2

Myo

sin

light

chai

n

Des

mo

som

e

P

Sm

ad2/

3 P

Sna

il1/2

P Pro

teas

ome

Pro

teas

ome

Pro

teas

ome

Pro

teas

ome

Pro

teas

ome

Pro

teas

ome

Pro

teas

ome

P-c

at

CK

1

β-ca

tP

Ub

Rho

A

Sna

il1/2

Rho

AP

rote

asom

eP

rote

asom

eP

rote

asom

e

Ub

FAK

ILK

P

P

Fyn

Fyn

P

TβββR

ITβ

RII

aPK

CPar

3P

ar6

P

β-ca

tc-

src

P

Inte

gri

6β4

Inte

gri

6β4

Des

mo

gle

inD

esm

og

lein

Des

mo

colli

nD

esm

oco

llin

NO

TCH

NO

TCH

Sm

ooth

ened

Sm

ooth

ened

TGF-β

TGF-β

Six

1

Page 2: SnapShot: The Epithelial-Mesenchymal Transition · SnapShot: The Epithelial-Mesenchymal Transition Jonathan P. Sleeman3,4 and Jean Paul Thiery1,2 1IMCB and Experimental Therapeutics

SnapShot: The Epithelial-Mesenchymal TransitionJonathan P. Sleeman3,4 and Jean Paul Thiery1,2

1IMCB and Experimental Therapeutics Centre, Biopolis A*STAR, 138673 Singapore2Cancer Science Institute, 117456 Singapore 3University of Heidelberg, Medical Faculty Mannheim, D-68167 Mannheim, Germany4Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany

162.e1 Cell 145, April 1, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.03.029

This SnapShot portrays important regulatory pathways and major cellular events that are activated during the transition from an epithelial to a mesenchymal morphology during development and disease. The cell on the left represents the epithelial state, whereas the central cell depicts transcriptional regulatory networks that orchestrate the process of epithelial-to-mesenchymal transition (EMT). The cell on the right illustrates some of the consequences of the activity of these networks that endow formerly epithelial cells with mesenchymal characteristics. Note that this overview does not take into account cell-type-specific regulation of EMT, and that not all illustrated mechanisms are obligate for EMT to occur. The temporal regulation of the EMT process is also not considered in this SnapShot.

The Epithelial PhenotypePolarized epithelial cells are typified by tight junctions, adherens junctions, desmosomes, and gap junctions. Junctional complexes not only act as mediators of polarized cell-cell contacts but also serve as anchor points for the actin cytoskeleton. Adherens junctions can additionally anchor apicobasal microtubule arrays, and through E-cadherin-DDR1 interactions are also involved in collective cell migration. Organization of the actin cytoskeleton, microtubule arrays, and cell-cell junctions is tightly coordinated in a mechanism that probably involves IQGAP, but the details remain to be investigated. Balanced regulation of the activities of RhoA (stress fibers), Cdc42 (filopodia), and Rac1 (lamellipodia) stabilizes the actin cytoskeleton and maintains the epithelial phenotype. Epithelial cells are tethered to the underlying basement membrane, for example through integrins. The repression of EMT-inducing transcriptional regulators (for example, through microRNAs), as well the activity of positively acting factors such as FOXA1/2, ensures that expression of key junctional proteins such as E-cadherin is maintained. Suppression of GSK3β also helps to maintain the epithelial phenotype.

Transcriptional Activation of EMTA variety of extracellular stimuli have the potential to induce EMT. A complex network of positively and negatively acting signal transduction mechanisms converge on the nucleus to downregulate genes required for the epithelial phenotype and to upregulate genes that specify mesenchymal characteristics. GSK3β and NF-κB play central roles in coordinating these pathways. Members of the Snail family of transcriptional regulators, namely Snail1 and Snail2, have emerged as a key regulatory node. The zinc finger transcription factors Zeb1 and Zeb2 also make a pivotal contribution to this regulation. EMT-inducing signals promote their expression, regulate their stability, and/or alter their subcellular location.

Loss of Epithelial and Acquisition of Mesenchymal CharacteristicsKey targets of the pathways that induce EMT include the adherens junction components E-cadherin and β-catenin. In addition to being transcriptionally downregulated and epigenetically switched off, E-cadherin can be proteolytically cleaved and targeted to endosomes for degradation. Proteosomal degradation of β-catenin destabilizes adherens junctions, whereas loss of E-cadherin can increase the free pool of β-catenin that can then enter the nucleus and modulate transcription. An important consequence of EMT-inducing transcriptional modulation as well as other pro-EMT processes is the loss of the junctional complexes that typify polarized epithelial cells. Enhanced activation of the GTPases Cdc42 and Rac1 and suppression of RhoA favor the formation of lamellipodia and filopodia, migration, and invasion. A variety of mechanisms promote the assembly and turnover of focal adhesions. Extensive cytoskeleton remodeling occurs, including switching from a predominantly cytokeratin to a vimentin-rich intermediate filament net-work. Detyrosination of tubulin promotes microtentacle formation. Proteolytic enzymes are produced that together with increased expression of extracellular matrix components serve to remodel the microenvironment surrounding the cells. Other properties endowed on cells undergoing EMT include resistance to apoptosis, senescence, and therapeutics and the acquisition of stemness characteristics.

Acknowledgments

This work was supported by a grant to J.P.S. from the European Union under the auspices of the FP7 collaborative project TuMIC, contract no. HEALTH-F2-2008-201662.

RefeRences

Casas, E., Kim, J., Bendesky, A., Ohno-Machado, L., Wolfe, C.J., and Yang, J. (2011). Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and me-tastasis. Cancer Res. 71, 245–254.

Chang, C.J., Chao, C.H., Xia, W., Yang, J.Y., Xiong, Y., Li, C.W., Yu, W.H., Rehman, S.K., Hsu, J.L., Lee, H.H., et al. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13, 317–323.

Hanahan, D., and Weinberg, R.A. (2011). Hallmark of cancers: the next generation. Cell 144, 646–674.

Hidalgo-Carcedo, C., Hooper, S., Chaudhry, S.I., Williamson, P., Harrington, K., Leitinger, B., and Sahai, E. (2011). Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat. Cell Biol. 13, 49–58.

Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428.

Schmalhofer, O., Brabletz, S., and Brabletz, T. (2009). E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28, 151–166.

Thiery, J.P., and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142.

Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890.

Whipple, R.A., Matrone, M.A., Cho, E.H., Balzer, E.M., Vitolo, M.I., Yoon, J.R., Ioffe, O.B., Tuttle, K.C., Yang, J., and Martin, S.S. (2010). Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 70, 8127–8137.

Yilmaz, M., and Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28, 15-33.