software-defined white-space cognitive systems: implementation of the spectrum sensing unit

11

Click here to load reader

Upload: csp-scarl

Post on 09-Jun-2015

1.277 views

Category:

Technology


2 download

DESCRIPTION

S. Benco, F. Crespi, A. Ghittino, A. Perotti, "Software-defined white-space cognitive systems: implementation of the spectrum sensing unit", Proceedings of the 2nd International Workshop of COST Action IC0902 October 5–7 2011, Castelldefels and Barcelona, Spain

TRANSCRIPT

Page 1: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems:

Implementation of the spectrum sensing unit

Castelldefels, October 6th 2011

Sergio Benco, Floriana Crespi, Andrea Ghittino, Alberto Perotti

Integrated Networks Laboratory (INLAB), CSP s.c.a r.l. - ICT innovation,TURIN (ITALY)

Page 2: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 2

Outline

TV White-Spaces Spectrum Sensing

IEEE 802.22 Spectrum Sensing model

DVB-T CP autocorrelation Spectrum Sensing

Threshold calculation

Performance

Conclusions and future work

Page 3: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 3

Spectrum sensing for TV White-Spaces

TV White-Spaces represent the area (space domain) and the portion of the spectrum (VHF and UHF bands) where the broadcast signal strength falls below the sensitivity level of Primary User (PU) receivers

Regulatory bodies are currently discussing about Secondary User (SU) spectrum sensing requirements in order to avoid interference to DVB-T receivers

Interference issues can be faced through:

SU geo-location and PU database queries Cognitive Pilot Channel (CPC) SU autonomous sensing (cooperative or not)

Page 4: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 4

IEEE 802.22 Spectrum Sensing model

PU (TX)

SU

SUKeep-out region (R

km)

Range at wich the Desired/Undesired (D/U) ratio falls below 23 dB

SU spectrum sensing requirements: ● PU Rx characteristics: F/B = 14 dB; D/U = 23 dB● At PU Rx: P

RSU ≤ P

RPU – D/U

dB + F/B

dB

● At PU Rx: PR

SU ≤ -101 dBm At SU Rx: Sens. ≤ -115 dBm

PU (RX)

PU protection contour (Dkm

)

Sensitivity range of the PU Rx ITU-R: P

RPU = -92dBm @ 132km

ERP TX = +90dBm, height: 500m, 615MHz)

A SU must detect a PU Tx at a range of: Rkm

+ Dkm

Page 5: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 5

DVB-T spectrum sensing: CP autocorrelation

N0CP

N0d

N1CP N1

d

Ns

DVB-T sensing module parameters

Modes 8k (6817 subcarriers)2k (1705 subcarriers)

CP lengths 1/4, 1/8, 1/16, 1/32

Channel bandwidth 8 MHz

Sampling rate 12.5 MS/s (12.5 MHz)

R xx(i) = ∑k=0

K−1

∑n=i+kN s

i+kN s+N cp−1

x (n) x (n+N d)CP correlator:SeeReferences (1)(2)

T CP=max

i∣Rxx(i)∣

Avgi∈J

∣Rxx(i)∣⩾<

γ

CP correlator test:

Ns Symbol samplesNCP CP samplesNd Data samplesK Number of symbols

Page 6: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 6

DVB-T spectrum sensing: applied threshold

γ = γ ⋅ Avgi∈J

∣R xx(i)∣ ⇒ PFA⩽ 0.1

T CP=max

i∣Rxx(i)∣

Avgi∈J

∣Rxx (i)∣= θ

∣Rxx∣⩾<

γ

J=N ∖QN={n∈ℕ : 0 ⩽ n < N s}

Q={q∈ℕ : θ−NCP ⩽ q < θ+N CP}

False Alarm Probability (P

FA )

obtained through Monte-Carlo simulations over 1000 trials

The threshold is adaptive w.r.t. the actual average correlation level plus a fixed margin that depends on P

FA

Page 7: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 7

DVB-T spectrum sensing over K symbols

Symbol synchronization permits to obtain a coherent combining and average over K subsequent DVB-T symbols thus achieving a processing gain of about 5 dB for each 10 dB increase in K

1 symbolSNR = -15dB

AWGN channel

10 symbolsSNR = -15dB

AWGN channel

100 symbolsSNR = -15dB

AWGN channel

Page 8: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 8

DVB-T OFDM sensing: performance

The detection time Tdet of this real-time module is calculated at the target sensing performance (PFA=0.1, PD=0.9) for a given SNR:

SNR (PD=0.9) = -17 dBSymbols = 100Tdet = 112.00 ms + Tproc

SNR (PD=0.9) = -12 dBSymbols = 10Tdet = 11.20 ms + Tproc

Tch move time = 2000 ms

Tsensing = Tch move time – 2Tdet

Page 9: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 9

Conclusions and future work

● The DVB-T spectrum sensing based on CP autocorrelation offers a good trade-off between complexity and effectiveness

● The first attempts to exploit TV white space have raised the problem of high sensitivity requirements for the SU spectrum sensing unit

● We have developed a real-time module for OFDM spectrum sensing that approaches the requirements for the IEEE 802.22 WRAN spectrum sensing unit

● Future work will provide a SU network able to continuously monitor the TV White-Spaces through a CP-based spectrum sensing module using the GNURadio/USRP2 platform

Page 10: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 10

References

(1) D. Danev, E. Axell, and E. G. Larsson, “Spectrum Sensing Methods for Detection of DVB-T Signals in AWGN and Fading Channels”, In Proc. IEEE PIMRC, pp. 2721-2726, Dec. 2010

(2) V. Gaddam, M. Ghosh, “Robust Sensing of DVB-T Signals”, New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on , vol., no., pp.1-8, 6-9 April 2010

(3) S. Shellhammer, V. Tawil, G. Chouinard, M. Muterspaugh, M. Ghosh, “Spectrum sensing simulation model”, IEEE 802.22-06/0028r10, Sept. 2006

(4) C.R. Stevenson, C. Cordeiro, E. Sofer, G. Chouinard, “Functional Requirements for the 802.22 WRAN Standard”, IEEE 802.22-05/0007r46, September 2005

Page 11: Software-defined white-space cognitive systems: implementation of the spectrum sensing unit

Software-defined white-space cognitive systems 11

Contacts

Sergio Benco

Consulting Engineer, Integrated Networks Laboratory (INLAB)R&D dept.

mail: [email protected] cell: +39 329 0118356tel. +39 011-4815164

CSP innovation in ICT

Registered and Central Offices Environment Park - Laboratori A1via Livorno 60 - 10144 Torino

Operational OfficesVilla Gualino - Viale Settimio Severo 6310133 Torino

Tel +39 011 4815111Fax +39 011 4815001E-mail: [email protected]

www.csp.it