software libraries and middleware for exascale systems · 2017-07-19 · (hadoop, spark, hbase,...

61
Designing HPC, Big Data and Deep Learning Middleware for Exascale Systems: Challenges and Opportunities Dhabaleswar K. (DK) Panda The Ohio State University E-mail: [email protected] http://www.cse.ohio-state.edu/~panda Talk at US-China Workshop (PEARC ‘17) by

Upload: others

Post on 22-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

Designing HPC, Big Data and Deep Learning Middleware for Exascale Systems: Challenges and Opportunities

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: [email protected]

http://www.cse.ohio-state.edu/~panda

Talk at US-China Workshop (PEARC ‘17)

by

Page 2: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 2Network Based Computing Laboratory

Big Data (Hadoop, Spark,

HBase, Memcached,

etc.)

Deep Learning(Caffe, TensorFlow, BigDL,

etc.)

HPC (MPI, RDMA, Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!

Increasing Need to Run these applications on the Cloud!!

Page 3: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 3Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Physical Compute

Page 4: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 4Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Page 5: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 5Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Page 6: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 6Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Spark Job

Hadoop Job Deep LearningJob

Page 7: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 7Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC)

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce)

– Memcached is also used for Web 2.0

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR-IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 8: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 8Network Based Computing Laboratory

Designing Communication Middleware for Multi-Petaflop and Exaflop Systems: Challenges

Programming ModelsMPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP,

OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies(InfiniBand, 40/100GigE,

Aries, and OmniPath)

Multi/Many-coreArchitectures

Accelerators(NVIDIA and MIC)

MiddlewareCo-Design

Opportunities and

Challenges across Various

Layers

PerformanceScalability

Fault-Resilience

Communication Library or Runtime for Programming ModelsPoint-to-point

CommunicationCollective

CommunicationEnergy-

AwarenessSynchronization

and LocksI/O and

File SystemsFault

Tolerance

Page 9: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 9Network Based Computing Laboratory

Overview of the MVAPICH2 Project• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,795 organizations in 85 countries

– More than 421,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (June ‘17 ranking)• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 15th, 241,108-core (Pleiades) at NASA

• 20th, 462,462-core (Stampede) at TACC

• 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

– Stampede at TACC (12th in Jun’16, 462,462 cores, 5.168 Plops)

Page 10: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 10Network Based Computing Laboratory

0

50000

100000

150000

200000

250000

300000

350000

400000

450000Se

p-04

Feb-

05

Jul-0

5

Dec-

05

May

-06

Oct

-06

Mar

-07

Aug-

07

Jan-

08

Jun-

08

Nov

-08

Apr-

09

Sep-

09

Feb-

10

Jul-1

0

Dec-

10

May

-11

Oct

-11

Mar

-12

Aug-

12

Jan-

13

Jun-

13

Nov

-13

Apr-

14

Sep-

14

Feb-

15

Jul-1

5

Dec-

15

May

-16

Oct

-16

Mar

-17

Num

ber o

f Dow

nloa

ds

Timeline

MV

0.9.

4

MV2

0.9

.0

MV2

0.9

.8

MV2

1.0

MV

1.0

MV2

1.0.

3

MV

1.1

MV2

1.4

MV2

1.5

MV2

1.6

MV2

1.7

MV2

1.8

MV2

1.9 M

V22.

1

MV2

-GDR

2.0

b

MV2

-MIC

2.0

MV2

-Virt

2.1

rc2

MV2

-GDR

2.2

rc1

MV2

-X2.

2M

V22.

3a

MVAPICH2 Release Timeline and Downloads

Page 11: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 11Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface(MPI)

PGAS(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication RuntimeDiverse APIs and Mechanisms

Point-to-point

Primitives

Collectives Algorithms

Energy-Awareness

Remote Memory Access

I/O andFile Systems

FaultTolerance

Virtualization Active Messages

Job StartupIntrospection

& Analysis

Support for Modern Networking Technology(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures(Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL), NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODPSR-IOV

Multi Rail

Transport MechanismsShared

Memory CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

Page 12: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 12Network Based Computing Laboratory

MVAPICH2 Software Family High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration

OEMT Utility to measure the energy consumption of MPI applications

Page 13: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 13Network Based Computing Laboratory

• Scalability for million to billion processors– Support for highly-efficient inter-node and intra-node communication– Scalable Start-up– Dynamic and Adaptive Communication Protocols and Tag Matching– Optimized Collectives using SHArP

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, …)

• Integrated Support for GPGPUs• Optimized MVAPICH2 for KNL/Omni-Path, OpenPower, and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 14: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 14Network Based Computing Laboratory

One-way Latency: MPI over IB with MVAPICH2

00.20.40.60.8

11.21.41.61.8 Small Message Latency

Message Size (bytes)

Late

ncy

(us)

1.111.19

1.011.15

1.04

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch

0

20

40

60

80

100

120TrueScale-QDRConnectX-3-FDRConnectIB-DualFDRConnectX-4-EDROmni-Path

Large Message Latency

Message Size (bytes)

Late

ncy

(us)

Page 15: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 15Network Based Computing Laboratory

TrueScale-QDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-3-FDR - 2.8 GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch

ConnectIB-Dual FDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with IB switchConnectX-4-EDR - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 IB switch

Omni-Path - 3.1 GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch

Bandwidth: MPI over IB with MVAPICH2

0

5000

10000

15000

20000

25000TrueScale-QDRConnectX-3-FDRConnectIB-DualFDRConnectX-4-EDROmni-Path

Bidirectional Bandwidth

Band

wid

th

(MBy

tes/

sec)

Message Size (bytes)

21,22712,161

21,983

6,228

24,136

0

2000

4000

6000

8000

10000

12000

14000 Unidirectional Bandwidth

Band

wid

th

(MBy

tes/

sec)

Message Size (bytes)

12,590

3,373

6,356

12,08312,366

Page 16: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 16Network Based Computing Laboratory

Startup Performance on KNL + Omni-Path

0

5

10

15

20

25

64 128

256

512 1K 2K 4K 8K 16K

32K

64K

Tim

e Ta

ken

(Sec

onds

)

Number of Processes

MPI_Init & Hello World - Oakforest-PACS

Hello World (MVAPICH2-2.3a)

MPI_Init (MVAPICH2-2.3a)

• MPI_Init takes 22 seconds on 229,376 processes on 3,584 KNL nodes (Stampede2 – Full scale)• 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)• At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)• All numbers reported with 64 processes per node

5.8s

21s

22s

New designs available in MVAPICH2-2.3a and as patch for SLURM-15.08.8 and SLURM-16.05.1

Page 17: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 17Network Based Computing Laboratory

Dynamic and Adaptive MPI Point-to-point Communication Protocols

Process on Node 1 Process on Node 2

Eager Threshold for Example Communication Pattern with Different Designs

0 1 2 3

4 5 6 7

Default

16 KB 16 KB 16 KB 16 KB

0 1 2 3

4 5 6 7

Manually Tuned

128 KB 128 KB 128 KB 128 KB

0 1 2 3

4 5 6 7

Dynamic + Adaptive

32 KB 64 KB 128 KB 32 KB

H. Subramoni, S. Chakraborty, D. K. Panda, Designing Dynamic & Adaptive MPI Point-to-Point Communication Protocols for Efficient Overlap of Computation & Communication, ISC'17 - Best Paper

0

200

400

600

128 256 512 1K

Wal

l Clo

ck T

ime

(sec

onds

)

Number of Processes

Execution Time of Amber

Default Threshold=17K Threshold=64KThreshold=128K Dynamic Threshold

0

5

10

128 256 512 1K

Rela

tive

Mem

ory

Cons

umpt

ion

Number of Processes

Relative Memory Consumption of Amber

Default Threshold=17K Threshold=64KThreshold=128K Dynamic Threshold

Default Poor overlap; Low memory requirement Low Performance; High Productivity

Manually Tuned Good overlap; High memory requirement High Performance; Low Productivity

Dynamic + Adaptive Good overlap; Optimal memory requirement High Performance; High Productivity

Process Pair Eager Threshold (KB)

0 – 4 32

1 – 5 64

2 – 6 128

3 – 7 32

Desired Eager Threshold

Page 18: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 18Network Based Computing Laboratory

Dynamic and Adaptive Tag Matching

Normalized Total Tag Matching Time at 512 ProcessesNormalized to Default (Lower is Better)

Normalized Memory Overhead per Process at 512 ProcessesCompared to Default (Lower is Better)

Adaptive and Dynamic Design for MPI Tag Matching; M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda; IEEE Cluster 2016. [Best Paper Nominee]

Chal

leng

e Tag matching is a significant overhead for receiversExisting Solutions are- Static and do not adapt dynamically to communication pattern- Do not consider memory overhead

Solu

tion A new tag matching design

- Dynamically adapt to communication patterns- Use different strategies for different ranks - Decisions are based on the number of request object that must be traversed before hitting on the required one

Resu

lts Better performance than other state-of-the art tag-matching schemesMinimum memory consumption

Will be available in future MVAPICH2 releases

Page 19: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 19Network Based Computing Laboratory

0

0.05

0.1

0.15

0.2

(4,28) (8,28) (16,28)

Late

ncy

(sec

onds

)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP13%

Mesh Refinement Time of MiniAMR

Advanced Allreduce Collective Designs Using SHArP

12%

0

0.1

0.2

0.3

0.4

(4,28) (8,28) (16,28)

Late

ncy

(sec

onds

)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP

Avg DDOT Allreduce time of HPCG

SHArP Support is available in MVAPICH2 2.3a

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design, Supercomputing '17.

Page 20: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 20Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for KNL/Omni-Path, OpenPower, and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 21: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 21Network Based Computing Laboratory

MVAPICH2-X for Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI– Possible deadlock if both runtimes are not progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF– Available with since 2012 (starting with MVAPICH2-X 1.9) – http://mvapich.cse.ohio-state.edu

Page 22: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 22Network Based Computing Laboratory

Application Level Performance with Graph500 and SortGraph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012

05

101520253035

4K 8K 16K

Tim

e (s

)

No. of Processes

MPI-SimpleMPI-CSCMPI-CSRHybrid (MPI+OpenSHMEM)

13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design• 8,192 processes

- 2.4X improvement over MPI-CSR- 7.6X improvement over MPI-Simple

• 16,384 processes- 1.5X improvement over MPI-CSR- 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0500

10001500200025003000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Tim

e (s

econ

ds)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort Application

• 4,096 processes, 4 TB Input Size- MPI – 2408 sec; 0.16 TB/min- Hybrid – 1172 sec; 0.36 TB/min- 51% improvement over MPI-design

Page 23: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 23Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs

– CUDA-aware MPI– GPUDirect RDMA (GDR) Support– Control Flow Decoupling through GPUDirect Async

• Optimized MVAPICH2 for KNL/Omni-Path, OpenPower, and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 24: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 24Network Based Computing Laboratory

At Sender:

At Receiver:MPI_Recv(r_devbuf, size, …);

insideMVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

Page 25: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 25Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.2 Releases• Support for MPI communication from NVIDIA GPU device memory• High performance RDMA-based inter-node point-to-point communication

(GPU-GPU, GPU-Host and Host-GPU)• High performance intra-node point-to-point communication for multi-GPU

adapters/node (GPU-GPU, GPU-Host and Host-GPU)• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node

communication for multiple GPU adapters/node• Optimized and tuned collectives for GPU device buffers• MPI datatype support for point-to-point and collective communication from

GPU device buffers• Unified memory

Page 26: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 26Network Based Computing Laboratory

01000200030004000

1 4 16 64 256 1K 4K

MV2-GDR2.2MV2-GDR2.0bMV2 w/o GDR

GPU-GPU Internode Bi-Bandwidth

Message Size (bytes)

Bi-B

andw

idth

(MB/

s)

05

1015202530

0 2 8 32 128 512 2K

MV2-GDR2.2 MV2-GDR2.0bMV2 w/o GDR

GPU-GPU internode latency

Message Size (bytes)

Late

ncy

(us)

MVAPICH2-GDR-2.2Intel Ivy Bridge (E5-2680 v2) node - 20 cores

NVIDIA Tesla K40c GPUMellanox Connect-X4 EDR HCA

CUDA 8.0Mellanox OFED 3.0 with GPU-Direct-RDMA

10x2X

11x

Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR)

2.18us0

50010001500200025003000

1 4 16 64 256 1K 4K

MV2-GDR2.2MV2-GDR2.0bMV2 w/o GDR

GPU-GPU Internode Bandwidth

Message Size (bytes)

Band

wid

th

(MB/

s) 11X

2X

3X

Page 27: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 27Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)• HoomdBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

Aver

age

Tim

e St

eps p

er

seco

nd (T

PS)

Number of Processes

MV2 MV2+GDR

0500

100015002000250030003500

4 8 16 32Aver

age

Tim

e St

eps p

er

seco

nd (T

PS)

Number of Processes

64K Particles 256K Particles

2X2X

Page 28: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 28Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96Nor

mal

ized

Exec

utio

n Ti

me

Number of GPUs

CSCS GPU cluster

Default Callback-based Event-based

00.20.40.60.8

11.2

4 8 16 32

Nor

mal

ized

Exec

utio

n Ti

me

Number of GPUs

Wilkes GPU Cluster

Default Callback-based Event-based

• 2X improvement on 32 GPUs nodes• 30% improvement on 96 GPU nodes (8 GPUs/node)

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content/tasks/operational/meteoSwiss/

Page 29: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 29Network Based Computing Laboratory

Latency oriented: Send+kernel and Recv+kernel

MVAPICH2-GDS: Preliminary Results

05

1015202530

8 32 128 512

DefaultEnhanced-GDS

Message Size (bytes)

Late

ncy

(us)

05

101520253035

16 64 256 1024

DefaultEnhanced-GDS

Message Size (bytes)

Late

ncy

(us)

Throughput Oriented: back-to-back

• Latency Oriented: Able to hide the kernel launch overhead– 25% improvement at 256 Bytes compared to default behavior

• Throughput Oriented: Asynchronously to offload queue the Communication and computation tasks– 14% improvement at 1KB message size

Intel Sandy Bridge, NVIDIA K20 and Mellanox FDR HCAWill be available in a public release soon

Page 30: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 30Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI +

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for KNL/Omni-Path, OpenPower, and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 31: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 31Network Based Computing Laboratory

Enhanced Collectives to Exploit MCDRAM

• New designs to exploit high concurrency and MCDRAM of KNL

• Significant improvements for large message sizes

• Benefits seen in varying message size as well as varying MPI processes

Very Large Message Bi-directional Bandwidth16-process Intra-node All-to-AllIntra-node Broadcast with 64MB Message

0

2000

4000

6000

8000

10000

2M 4M 8M 16M 32M 64M

Band

wid

th (M

B/s)

Message size

MVAPICH2 MVAPICH2-Optimized

0

10000

20000

30000

40000

50000

60000

4 8 16

Late

ncy

(us)

No. of processes

MVAPICH2 MVAPICH2-Optimized

27%

0

50000

100000

150000

200000

250000

300000

1M 2M 4M 8M 16M 32M

Late

ncy

(us)

Message size

MVAPICH2 MVAPICH2-Optimized17.2%

52%

Page 32: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 32Network Based Computing Laboratory

Performance Benefits of Enhanced Designs

0

10000

20000

30000

40000

50000

60000

1M 2M 4M 8M 16M 32M 64M

Band

wid

th (M

B/s)

Message Size (bytes)

MV2_Opt_DRAM MV2_Opt_MCDRAMMV2_Def_DRAM MV2_Def_MCDRAM 30%

0

50

100

150

200

250

300

4:268 4:204 4:64

Tim

e (s

)

MPI Processes : OMP Threads

MV2_Def_DRAM MV2_Opt_DRAM

15%

Multi-Bandwidth using 32 MPI processesCNTK: MLP Training Time using MNIST (BS:64)

• Benefits observed on training time of Multi-level Perceptron (MLP) model on MNIST dataset using CNTK Deep Learning Framework

Enhanced Designs will be available in upcoming MVAPICH2 releases

Page 33: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 33Network Based Computing Laboratory

• Kernel-Assisted transfers (CMA, LiMIC, KNEM) offers single-copy transfers for large messages

• Scatter/Gather/Bcast etc. can be optimized with direct Kernel-Assisted transfers

• Applicable to Broadwell and OpenPOWER architectures as well

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M 2M 4M 8M

1 Node, 64 Processes

MV2-2.3a IMPI-2017

OMPI-2.1 Native CMA

Optimized Kernel-Assisted Collectives for Multi-/Many-Core

TACC Stampede2: 68 core Intel Knights Landing (KNL) 7250 @ 1.4 GHz, Intel Omni-Path HCA (100GBps), 16GB MCDRAM (Cache Mode)

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M 4M

2 Nodes, 128 Processes

MV2-2.3a IMPI-2017

OMPI-2.1 Native CMA

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M

4 Nodes, 256 Processes

MV2-2.3a IMPI-2017

OMPI-2.1 Native CMA

1

10

100

1000

10000

100000

1000000

1K 4K 16K 64K 256K 1M

8 Nodes, 512 Processes

MV2-2.3a IMPI-2017

OMPI-2.1 Native CMA

Performance of MPI_Gather

Message Size (Bytes)

Late

ncy

(us)

Late

ncy

(us)

S. Chakraborty, H. Subramoni, and D. K. Panda, IEEE Cluster ’17 (Accepted to be presented)

Enhanced Designs will be available in upcoming MVAPICH2 releases

Page 34: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 34Network Based Computing Laboratory

0

0.2

0.4

0.6

0.8

1

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Late

ncy

(us)

MVAPICH2

Intra-node Point-to-Point Performance on OpenPower

0

10000

20000

30000

40000

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K 16K

32K

64K

128K

512K 1M

Band

wid

th (M

B/s) MVAPICH2

0

20000

40000

60000

80000

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Bidi

rect

iona

l Ban

dwid

th MVAPICH2

Platform: OpenPOWER (Power8-ppc64le) processor with 160 cores dual-socket CPU. Each socket contains 80 cores.

0

20

40

60

80

8K 16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2

Small Message Latency Large Message Latency

Bi-directional BandwidthBandwidth

Page 35: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 35Network Based Computing Laboratory

0

1

2

3

4

0 1 2 4 8 16 32 64 256 512 1K 2K 4K

Late

ncy

(us)

MVAPICH2

Inter-node Point-to-Point Performance on OpenPower

0

5000

10000

15000

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Band

wid

th (M

B/s) MVAPICH2

0

10000

20000

30000

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Bidi

rect

iona

l Ban

dwid

th MVAPICH2

Platform: Two nodes of OpenPOWER (Power8-ppc64le) CPU using Mellanox EDR (MT4115) HCA.

0

50

100

150

200

8K 16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2

Small Message Latency Large Message Latency

Bi-directional BandwidthBandwidth

Page 36: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 36Network Based Computing Laboratory

05

101520

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Late

ncy

(us)

Message Size (Bytes)

INTRA-NODE LATENCY (SMALL)

INTRA-SOCKET(NVLINK) INTER-SOCKET

MVAPICH2-GDR: Performance on OpenPOWER (NVLink + Pascal)

010203040

1 4 16 64 256 1K 4K 16K

64K

256K 1M 4M

Band

wid

th (G

B/se

c)

Message Size (Bytes)

INTRA-NODE BANDWIDTH

INTRA-SOCKET(NVLINK) INTER-SOCKET

0

2

4

6

8

1 4 16 64 256 1K 4K 16K

64K

256K 1M 4M

Band

wid

th (G

B/se

c)

Message Size (Bytes)

INTER-NODE BANDWIDTH

Platform: OpenPOWER (ppc64le) nodes equipped with a dual-socket CPU, 4 Pascal P100-SXM GPUs, and 4X-FDR InfiniBand Inter-connect

0

200

400

16K 32K 64K 128K256K512K 1M 2M 4M

Late

ncy

(us)

Message Size (Bytes)

INTRA-NODE LATENCY (LARGE)

INTRA-SOCKET(NVLINK) INTER-SOCKET

0

10

20

30

40

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Late

ncy

(us)

Message Size (Bytes)

INTER-NODE LATENCY (SMALL)

0200400600800

1000

Late

ncy

(us)

Message Size (Bytes)

INTER-NODE LATENCY (LARGE)

Intra-node Bandwidth: 32 GB/sec (NVLINK)Intra-node Latency: 16.8 us (without GPUDirectRDMA)

Inter-node Latency: 22 us (without GPUDirectRDMA) Inter-node Bandwidth: 6 GB/sec (FDR)Will be available in upcoming MVAPICH2-GDR

Page 37: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 37Network Based Computing Laboratory

0

1

2

3

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Late

ncy

(us)

MVAPICH2

Intra-node Point-to-point Performance on ARMv8

0

1000

2000

3000

4000

5000

Band

wid

th (M

B/s) MVAPICH2

0

2000

4000

6000

8000

10000

Bidi

rect

iona

l Ban

dwid

th MVAPICH2

Platform: ARMv8 (aarch64) MIPS processor with 96 cores dual-socket CPU. Each socket contains 48 cores.

0

200

400

600

8K 16K 32K 64K 128K 256K 512K 1M 2M

Late

ncy

(us)

MVAPICH2

Small Message Latency Large Message Latency

Bi-directional BandwidthBandwidth

Will be available in

upcoming MVAPICH2

0.74 microsec (4 bytes)

Page 38: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 38Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC)

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce)

– Memcached is also used for Web 2.0

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR-IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 39: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 39Network Based Computing Laboratory

How Can HPC Clusters with High-Performance Interconnect and Storage Architectures Benefit Big Data Applications?

Bring HPC and Big Data processing into a “convergent trajectory”!

What are the major bottlenecks in current Big

Data processing middleware (e.g. Hadoop, Spark, and Memcached)?

Can the bottlenecks be alleviated with new

designs by taking advantage of HPC

technologies?

Can RDMA-enabledhigh-performance

interconnectsbenefit Big Data

processing?

Can HPC Clusters with high-performance

storage systems (e.g. SSD, parallel file

systems) benefit Big Data applications?

How much performance benefits

can be achieved through enhanced

designs?

How to design benchmarks for evaluating the

performance of Big Data middleware on

HPC clusters?

Page 40: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 40Network Based Computing Laboratory

Designing Communication and I/O Libraries for Big Data Systems: Challenges

Big Data Middleware(HDFS, MapReduce, HBase, Spark and Memcached)

Networking Technologies(InfiniBand, 1/10/40/100 GigE

and Intelligent NICs)

Storage Technologies(HDD, SSD, NVM, and NVMe-

SSD)

Programming Models(Sockets)

Applications

Commodity Computing System Architectures

(Multi- and Many-core architectures and accelerators)

RDMA?

Communication and I/O LibraryPoint-to-Point

Communication

QoS & Fault Tolerance

Threaded Modelsand Synchronization

Performance TuningI/O and File Systems

Virtualization (SR-IOV)

Benchmarks

Upper level Changes?

Page 41: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 41Network Based Computing Laboratory

• RDMA for Apache Spark

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 240 organizations from 30 countries

• More than 22,400 downloads from the project site

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCEAlso run on Ethernet

Page 42: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 42Network Based Computing Laboratory

050

100150200250300350400

80 120 160

Exec

utio

n Ti

me

(s)

Data Size (GB)

IPoIB (EDR)OSU-IB (EDR)

0100200300400500600700800

80 160 240

Exec

utio

n Ti

me

(s)

Data Size (GB)

IPoIB (EDR)OSU-IB (EDR)

Performance Numbers of RDMA for Apache Hadoop 2.x –RandomWriter & TeraGen in OSU-RI2 (EDR)

Cluster with 8 Nodes with a total of 64 maps

• RandomWriter– 3x improvement over IPoIB

for 80-160 GB file size

• TeraGen– 4x improvement over IPoIB for

80-240 GB file size

RandomWriter TeraGen

Reduced by 3x Reduced by 4x

Page 43: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 43Network Based Computing Laboratory

• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. – 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps)

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps)

Performance Evaluation of RDMA-Spark on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time

050

100150200250300350400450

Huge BigData Gigantic

Tim

e (s

ec)

Data Size (GB)

IPoIB

RDMA

0

100

200

300

400

500

600

700

800

Huge BigData Gigantic

Tim

e (s

ec)

Data Size (GB)

IPoIB

RDMA

43%37%

Page 44: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 44Network Based Computing Laboratory

Performance Evaluation on SDSC Comet: Astronomy Application

• Kira Toolkit1: Distributed astronomy image processing toolkit implemented using Apache Spark.

• Source extractor application, using a 65GB dataset from the SDSS DR2 survey that comprises 11,150 image files.

• Compare RDMA Spark performance with the standard apache implementation using IPoIB.

1. Z. Zhang, K. Barbary, F. A. Nothaft, E.R. Sparks, M.J. Franklin, D.A. Patterson, S. Perlmutter. Scientific Computing meets Big Data Technology: An Astronomy Use Case. CoRR, vol: abs/1507.03325, Aug 2015.

020406080

100120

RDMA Spark Apache Spark(IPoIB)

21 %

Execution times (sec) for Kira SE benchmark using 65 GB dataset, 48 cores.

M. Tatineni, X. Lu, D. J. Choi, A. Majumdar, and D. K. Panda, Experiences and Benefits of Running RDMA Hadoop and Spark on SDSC Comet, XSEDE’16, July 2016

Page 45: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 45Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC)

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce)

– Memcached is also used for Web 2.0

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR-IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 46: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 46Network Based Computing Laboratory

• Deep Learning frameworks are a different game altogether

– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• How to address these newer requirements?– GPU-specific Communication Libraries (NCCL)

• NVidia's NCCL library provides inter-GPU communication

– CUDA-Aware MPI (MVAPICH2-GDR)• Provides support for GPU-based communication

• Can we exploit CUDA-Aware MPI and NCCL to support Deep Learning applications?

Deep Learning: New Challenges for MPI Runtimes

Hierarchical Communication (Knomial + NCCL ring)

Page 47: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 47Network Based Computing Laboratory

• NCCL has some limitations– Only works for a single node, thus, no scale-out on

multiple nodes

– Degradation across IOH (socket) for scale-up (within a node)

• We propose optimized MPI_Bcast– Communication of very large GPU buffers (order of

megabytes)

– Scale-out on large number of dense multi-GPU nodes

• Hierarchical Communication that efficiently exploits:– CUDA-Aware MPI_Bcast in MV2-GDR

– NCCL Broadcast primitive

Efficient Broadcast: MVAPICH2-GDR and NCCL

110

1001000

10000100000

1 8 64 512 4K 32K

256K 2M 16M

128M

Late

ncy

(us)

Log

Scal

e

Message Size

MV2-GDR MV2-GDR-Opt

100x

0

10

20

30

2 4 8 16 32 64Tim

e (s

econ

ds)

Number of GPUs

MV2-GDR MV2-GDR-Opt

Performance Benefits: Microsoft CNTK DL framework (25% avg. improvement )

Performance Benefits: OSU Micro-benchmarks

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, A. Awan , K. Hamidouche , A. Venkatesh , and D. K. Panda, The 23rd European MPI Users' Group Meeting (EuroMPI 16), Sep 2016 [Best Paper Runner-Up]

Page 48: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 48Network Based Computing Laboratory

0100200300

2 4 8 16 32 64 128

Late

ncy

(ms)

Message Size (MB)

Reduce – 192 GPUsLarge Message Optimized Collectives for Deep Learning

0

100

200

128 160 192

Late

ncy

(ms)

No. of GPUs

Reduce – 64 MB

0100200300

16 32 64

Late

ncy

(ms)

No. of GPUs

Allreduce - 128 MB

0

50

100

2 4 8 16 32 64 128

Late

ncy

(ms)

Message Size (MB)

Bcast – 64 GPUs

0

50

100

16 32 64

Late

ncy

(ms)

No. of GPUs

Bcast 128 MB

• MV2-GDR provides optimized collectives for large message sizes

• Optimized Reduce, Allreduce, and Bcast

• Good scaling with large number of GPUs

• Available in MVAPICH2-GDR 2.2GA

0100200300

2 4 8 16 32 64 128La

tenc

y (m

s)Message Size (MB)

Allreduce – 64 GPUs

Page 49: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 49Network Based Computing Laboratory

• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses– Multi-GPU Training within a single node

– Performance degradation for GPUs across different sockets

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training – Enable Scale-up (within a node) and Scale-out (across

multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe: Scalable Deep Learning

0

50

100

150

200

250

8 16 32 64 128

Trai

ning

Tim

e (s

econ

ds)

No. of GPUs

GoogLeNet (ImageNet) on 128 GPUs

Caffe OSU-Caffe (1024) OSU-Caffe (2048)

Invalid use caseOSU-Caffe publicly available from

http://hidl.cse.ohio-state.edu/

Page 50: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 50Network Based Computing Laboratory

X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, HotI 2017.

High-Performance Deep Learning over Big Data (DLoBD) Stacks• Benefits of Deep Learning over Big Data (DLoBD)

Easily integrate deep learning components into Big Data processing workflow

Easily access the stored data in Big Data systems No need to set up new dedicated deep learning clusters;

Reuse existing big data analytics clusters • Challenges

Can RDMA-based designs in DLoBD stacks improve performance, scalability, and resource utilization on high-performance interconnects, GPUs, and multi-core CPUs?

What are the performance characteristics of representative DLoBD stacks on RDMA networks?

• Characterization on DLoBD Stacks CaffeOnSpark, TensorFlowOnSpark, and BigDL IPoIB vs. RDMA; In-band communication vs. Out-of-band

communication; CPU vs. GPU; etc. Performance, accuracy, scalability, and resource utilization RDMA-based DLoBD stacks (e.g., BigDL over RDMA-Spark)

can achieve 2.6x speedup compared to the IPoIB based scheme, while maintain similar accuracy

0

20

40

60

10

1010

2010

3010

4010

5010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Acc

urac

y (%

)

Epoc

hs T

ime

(sec

s)

Epoch Number

IPoIB-TimeRDMA-TimeIPoIB-AccuracyRDMA-Accuracy

2.6X

Page 51: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 51Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC)

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce)

– Memcached is also used for Web 2.0

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR-IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 52: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 52Network Based Computing Laboratory

• Virtualization has many benefits– Fault-tolerance– Job migration– Compaction

• Have not been very popular in HPC due to overhead associated with Virtualization

• New SR-IOV (Single Root – IO Virtualization) support available with Mellanox InfiniBand adapters changes the field

• Enhanced MVAPICH2 support for SR-IOV• MVAPICH2-Virt 2.2 supports:

– OpenStack, Docker, and singularity

Can HPC and Virtualization be Combined?

J. Zhang, X. Lu, J. Jose, R. Shi and D. K. Panda, Can Inter-VM Shmem Benefit MPI Applications on SR-IOV based Virtualized InfiniBand Clusters? EuroPar'14J. Zhang, X. Lu, J. Jose, M. Li, R. Shi and D.K. Panda, High Performance MPI Libray over SR-IOV enabled InfiniBand Clusters, HiPC’14 J. Zhang, X .Lu, M. Arnold and D. K. Panda, MVAPICH2 Over OpenStack with SR-IOV: an Efficient Approach to build HPC Clouds, CCGrid’15

Page 53: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 53Network Based Computing Laboratory

0

50

100

150

200

250

300

350

400

milc leslie3d pop2 GAPgeofem zeusmp2 lu

Exec

utio

n Ti

me

(s)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native

1%9.5%

0

1000

2000

3000

4000

5000

6000

22,20 24,10 24,16 24,20 26,10 26,16

Exec

utio

n Ti

me

(ms)

Problem Size (Scale, Edgefactor)

MV2-SR-IOV-Def

MV2-SR-IOV-Opt

MV2-Native2%

• 32 VMs, 6 Core/VM

• Compared to Native, 2-5% overhead for Graph500 with 128 Procs

• Compared to Native, 1-9.5% overhead for SPEC MPI2007 with 128 Procs

Application-Level Performance on Chameleon

SPEC MPI2007Graph500

5%

Page 54: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 54Network Based Computing Laboratory

0

10

20

30

40

50

60

70

80

90

100

MG.D FT.D EP.D LU.D CG.D

Exec

utio

n Ti

me

(s)

Container-Def

Container-Opt

Native

• 64 Containers across 16 nodes, pining 4 Cores per Container

• Compared to Container-Def, up to 11% and 73% of execution time reduction for NAS and Graph 500

• Compared to Native, less than 9 % and 5% overhead for NAS and Graph 500

Application-Level Performance on Docker with MVAPICH2

Graph 500NAS

11%

0

50

100

150

200

250

300

1Cont*16P 2Conts*8P 4Conts*4P

BFS

Exec

utio

n Ti

me

(ms)

Scale, Edgefactor (20,16)

Container-Def

Container-Opt

Native

73%

Page 55: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 55Network Based Computing Laboratory

0

500

1000

1500

2000

2500

3000

22,16 22,20 24,16 24,20 26,16 26,20

BFS

Exec

utio

n Ti

me

(ms)

Problem Size (Scale, Edgefactor)

Graph500

Singularity

Native

0

50

100

150

200

250

300

CG EP FT IS LU MG

Exec

utio

n Ti

me

(s)

NPB Class D

Singularity

Native

• 512 Processes across 32 nodes

• Less than 7% and 6% overhead for NPB and Graph500, respectively

Application-Level Performance on Singularity with MVAPICH2

7%

6%

Page 56: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 56Network Based Computing Laboratory

RDMA-Hadoop with Virtualization

– 14% and 24% improvement with Default Mode for CloudBurst and Self-Join

– 30% and 55% improvement with Distributed Mode for CloudBurst and Self-Join

0

20

40

60

80

100

Default Mode Distributed Mode

EXEC

UTI

ON

TIM

ECloudBurst

RDMA-Hadoop RDMA-Hadoop-Virt

050

100150200250300350400

Default Mode Distributed Mode

EXEC

UTI

ON

TIM

E

Self-Join

RDMA-Hadoop RDMA-Hadoop-Virt

30% reduction

55% reduction

S. Gugnani, X. Lu, D. K. Panda. Designing Virtualization-aware and Automatic Topology Detection Schemes for Accelerating Hadoop on SR-IOV-enabled Clouds. CloudCom, 2016.

Page 57: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 57Network Based Computing Laboratory

• Next generation HPC systems need to be designed with a holistic view of Big Data, Deep Learning and Cloud

• Presented some of the approaches and results along these directions

• Enable Big Data, Deep Learning and Cloud community to take advantage of modern HPC technologies

• Many other open issues need to be solved

• Next generation HPC professionals need to be trained along these directions

• Looking forward to collaboration with supercomputing centers in US and China

Concluding Remarks

Page 58: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 58Network Based Computing Laboratory

Funding AcknowledgmentsFunding Support by

Equipment Support by

Page 59: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 59Network Based Computing Laboratory

Personnel AcknowledgmentsCurrent Students

– A. Awan (Ph.D.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

Past Students – A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist– K. Hamidouche

– S. Sur

Past Post-Docs– D. Banerjee

– X. Besseron

– H.-W. Jin

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– S. Guganani (Ph.D.)

– J. Hashmi (Ph.D.)

– N. Islam (Ph.D.)

– M. Li (Ph.D.)

– J. Lin

– M. Luo

– E. Mancini

Current Research Scientists– X. Lu

– H. Subramoni

Past Programmers– D. Bureddy

– J. Perkins

Current Research Specialist– J. Smith

– M. Arnold

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– S. Marcarelli

– J. Vienne

– H. Wang

Current Post-doc– A. Ruhela

Page 60: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 60Network Based Computing Laboratory

Upcoming 5th Annual MVAPICH User Group (MUG) Meeting• August 14-16, 2017; Columbus, Ohio, USA• Speakers (Confirmed so far):

– Keynote: Dan Stanzione (TACC)

– Keynote: Ron Brightwell (Sandia National Lab)

– Gene Cooperman (North Eastern University)

– Hyun-Wook Jin (Konkuk University, South Korea)

– Allen Malony (University of Oregon)

– Adam Moody (Lawrence Livermore National Laboratory)

– Hoon Ryu (Korea Institute of Science and Technology Information - KISTI, South Korea)

– Karl Schulz (Intel)

– Gilad Shainer (Mellanox)

– Pavel Shamis (ARM)

– Filippo Spiga (University of Cambridge, UK)

– Sayantan Sur (Intel)

– Mahidhar Tatineni (San Diego Supercomputing Center)

– Craig Tierney (NVIDIA)

– Abhinav Vishnu (Pacific Northwest National Laboratory)

– Hao Wang (Virginia Tech)

– Carsten Weinhold (TU Dresden, Germany)

• Tutorials:– Intel

– Mellanox

– NVIDIA

– ARM

• More details at: http://mug.mvapich.cse.ohio-state.edu

Page 61: Software Libraries and Middleware for Exascale Systems · 2017-07-19 · (Hadoop, Spark, HBase, Memcached, etc.) Deep Learning (Caffe, TensorFlow, BigDL, etc.) HPC (MPI, RDMA, Lustre,

PEARC ‘17 61Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratoryhttp://nowlab.cse.ohio-state.edu/

[email protected]

The High-Performance MPI/PGAS Projecthttp://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Projecthttp://hidl.cse.ohio-state.edu/

The High-Performance Big Data Projecthttp://hibd.cse.ohio-state.edu/