sol-divertor plasma simulations by introducing anisotropic ion temperatures and virtual divertor...

33
SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非非非非非非非非非非非非非非非非非非非非非非非非 SOL- 非非非非非非 非非非非非非非非非非非 Satoshi Togo , Tomonori Takizuka a , Makoto Nakamura b , zuo Hoshino b , Kenzo Ibano a , Tee Long Lang, Yuichi Og Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8568, Japan a Graduate school of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan b Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi-aza, O-aza, Rokkasho 039-3212, Japan 第 18 第第第第第第第第第第第第第第第第 2015/03/04-06

Upload: jack-heath

Post on 28-Dec-2015

223 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and

Virtual Divertor Model非等方イオン温度と仮想ダイバータモデルを導入した SOL-ダイバータプラズマシミュレー

ション

Satoshi Togo, Tomonori Takizukaa, Makoto Nakamurab, Kazuo Hoshinob, Kenzo Ibanoa, Tee Long Lang, Yuichi Ogawa

Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8568, JapanaGraduate school of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan

bJapan Atomic Energy Agency, 2-166 Omotedate, Obuchi-aza, O-aza, Rokkasho 039-3212, Japan

第 18回若手科学者によるプラズマ研究会2015/03/04-06

Page 2: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Motivation

The parallel ion viscous flux -ηi,//(∂V/∂s)・ the approximated form of the stress tensor p   (π = 2n(Ti,// - Ti,⊥)/3)・ derived under the assumption that π << nTi.

A. Froese et al., Plasma Fusion Res. 5 (2010) 026.

m//,iei2

ii M

s

V

snTnTnVm

st

nVm

The kinetic simulations showed a remarkable anisotropy in the ion temperature even for the medium collisionality.

The SOL-divertor plasma code packages (SOLPS, SONIC, etc.)・ used to estimate the performance of the divertors of future devices・ some physics models are used in the plasma fluid model (e. g. viscosity)・ physics models are valid in the collisional regime

parallel momentum transport equation (1D)

The boundary condition Mt = 1 has been used in the conventional codes.However, the Bohm condition only imposes the lower limit as Mt ≥ 1.

2

collisional collisionless

Result from PARASOL code

Page 3: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Momentum Eq. & Virtual Divertor ModelIntroduction of the anisotropic ion temperatures, Ti,// and Ti,⊥, to the fluid model・ changes the momentum transport equation into the first-order・ makes the explicit boundary condition at the divertor plate unnecessary

m//,iei2

ii M

s

V

snTnTnVm

st

nVm

me//,i2

ii MnTnTnVm

st

nVm

32 ,i//,ii TTnnT

32 ,i//,i TTn

i//i, nTnT

2ii, nTnT mei2

ii M

snTnTnVm

st

nVm

conventional codes (effective isotropic Ti)

coll//// t

f

v

f

m

eE

s

fv

t

f

Parallel-to-B component of the Boltzmann equation

Instead of the boundary condition Mt = 1, we modeled the effects of the divertor plate and the accompanying sheath by using a virtual divertor (VD) model.

3

P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices.

Flow velocity is not determined by downstream ‘waterfall’ but by upstream condition.

(isotropic Te is assumed)

Page 4: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Plasma Fluid Eqs. & Artificial Sinks in VD

Ss

nV

t

n

me//,i2

ii MnTnTnVm

st

nVm

s

nTV

TTn

m

mTTnQ

s

qcVnTnVm

snTnVm

t

e

e

//,ie

i

e

rlx

//,i,i//,i

eff//,i

//,i2

i//,i2

i 2

3

2

1

2

1

2

1

e

,ie

i

e

rlx

//,i,i,i

eff,i,i,i 2

1

TTn

m

mTTnQ

s

qc

s

VnT

t

nT

s

nTV

TTn

m

mQ

s

qVnT

snT

t

e

e

ei

i

ee

effe

ee

3

2

5

2

3

Eq. of continuity

Eq. of momentum transport

Eq. of parallel (//) ion energy transport

Eq. of perpendicular ( ) ion energy transport⊥

Eq. of electron energy transport

VDVD

n

S

s

VnDm

s

nVmM VD

miVDiVD

m

//,i//,i

2iVD

VD//,i 2

1

2

11nTgnVmQ

VD,i,iVD

,i

nTg

Q

eeVD

VDe 2

31nTgQ

Artificial sinks in the virtual divertor (VD) region

S. Togo et al., J. Nucl. Mater. (2015) in Press.

Periodic boundary condition

4

※according to the image of a waterfall

Page 5: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Plasma Fluid Eqs. & Artificial Sinks in VD

Ss

nV

t

n

me//,i2

ii MnTnTnVm

st

nVm

s

nTV

TTn

m

mTTnQ

s

qcVnTnVm

snTnVm

t

e

e

//,ie

i

e

rlx

//,i,i//,i

eff//,i

//,i2

i//,i2

i 2

3

2

1

2

1

2

1

e

,ie

i

e

rlx

//,i,i,i

eff,i,i,i 2

1

TTn

m

mTTnQ

s

qc

s

VnT

t

nT

s

nTV

TTn

m

mQ

s

qVnT

snT

t

e

e

ei

i

ee

effe

ee

3

2

5

2

3

Eq. of continuity

Eq. of momentum transport

Eq. of parallel (//) ion energy transport

Eq. of perpendicular ( ) ion energy transport⊥

Eq. of electron energy transport

Ion pressure relaxation time trlx = 2.5ti.(E. Zawaideh et al., Phys. Fluids 29 (1986) 463.)

5

Because the parallel internal energy convection is 3 times as large as the parallel internal energy, Ti,//

becomes lower than Ti,⊥.

c = 0.5 is used.

Heat flux limiting factors;ai,// = ai, ⊥= 0.5, ae = 0.2are used.qs

eff = (1/qsSH + 1/asqs

FS)-1

Neutral is not considered at first.

Page 6: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Anisotropy of Ti and the Profiles)

n (1019 /m3)

M

Ti,// (eV)

Ti, ⊥ (eV)

Te (eV)

6

weakly collisional case

collisional case

VD

Anisotropy of Ti vs normalized MFP of i-i collision

Gsep and Psep are changed.

Page 7: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Bohm condition M* = 1)7

Time evolutions of M* for various tVD

M* saturates at ~ 1 independently of the value of tVD.Characteristic time tBohm depends on tVD and 2 orders shorter than the quasi-stationary time ~ 10-3 s.For the simulations of transient phenomena, such as ELMs, tBohm has to be smaller than their characteristic times.

i

//,iaes m

TTc

scVM

T. Takizuka and M. Hosokawa, Contrib. Plasma Phys. 40 (2000) 3-4, 471.

ga = 3 for adiabatic, collisionless sound speed

PARASOL

Page 8: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Sheath heat transmission factors)8

From the sheath theory,3i

e

i

i

ee 12ln5.05.2

T

T

m

m

For Ti = Te,ge ≈ 5 for H+ plasmage ≈ 5.3 for D+ plasma

Relation between sheath heat transmission factors and gs

gi scarcely depends on gs because convective heat flux dominates conductive one.ge can be adjusted to the values based on the sheath theory by VD model.

Boundary conditions for the heat flux at the divertor plate in the conventional codes;

VnTx

TVnTnVmq ii

i//,ii

2ii 2

5

2

1

VnT

x

TVnTq ee

e//,eee 2

5

Page 9: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Dependence of the profiles on tVD)9

Decay length in VD region: Ld ~ VttVD.As long as Ds < Ld < LVD, the profiles in the plasma region do not change.

If Ld > LVD (when tVD = 5×10-5 s in figure), the profiles become invalid.If Ld < Ds, numerical calculation diverges.

The profiles just in front of the divertor plates are affected by the artificial sinks in VD region due to numerical viscosity.This problem will be solved by introducing a high-accuracy difference scheme and an inhomogeneous grid.

Page 10: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Supersonic flow due to cooling)10

C = (RG/Rp)(Tt/TX)1/2, T = Ti,// + Te(,//)

M = V/cs

T. Takizuka et al., J. Nucl. Mater. 290-293 (2001) 753.

(at the plate)

(at the X-point)

i

//,i//)(,es m

TTc

Isothermal sound speed

Cooling term Qe = -nTe/trad is set in the divertor region.RG = Rp = 1

Mt well agrees with the theory.The reason for MX > 1 is under investigation.

PARASOL

Page 11: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Ion Viscous Flux vs Stress Tensor)

Two kinds of ion viscous flux,

are compared to the stress tensor, pdef = 2n(Ti,//-Ti,⊥)/3, in the particle-source-less-region (s = 20.005 m) and particle-source-region (s = 17.005 m).

pBR becomes 2~3 orders larger than pdef as lmfp/L becomes large.

x

V

//,iBR

ii//,i 96.0 nT

1

iBR

lim 11

nT

b = 0.7 :viscosity limiting factor

11

In the particle-source-region, the correlation between plim and pdef becomes worse especially in the collisional region.

In the particle-source-less region, plim with b = 0.7 comparably agrees with pdef. However, b depends on the anisotropy of ion pressure which might change with the neutral effects.Therefore, it is necessary to distinguish between Ti,// and Ti,⊥.

Page 12: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Self-Consistent Neutral Model (in VD)

VD

diffn,

diffn,2VD0

inrecyn,

inrecyn,

inrecyn,

nn

x

Vn

t

n

Diffusion neutral VDdiffn,

diffn,diff,nn

diffn,

n

x

nD

xt

n

Recycling neutral (inner plate)

VD

diffn,

diffn,2VD0

outrecyn,

outrecyn,

outrecyn,

nn

x

Vn

t

n

Recycling neutral (outer plate)

periodic boundary condition

12

conventional present

boundary condition

VDVD

n

S Ss

nV

t

n

(Eq. of continuity for plasma)

tn,diffVD : input

The coordinate x: poloidal direction x = (Bp/B)s.

Recycling neutral

Diffusion neutral

Page 13: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Self-Consistent Neutral Model (in Plasma)

inrecycx,

inrecyiz,

recyn,

inrecyn,

inrecy,n

inrecyn,

inrecyn, SS

n

x

Vn

t

n

Diffusion neutral

recycx,rcdiffiz,diffn,

diffn,diff,nn

diffn, SSSn

x

nD

xt

n

Recycling neutral (inner plate)

The coordinate x: poloidal direction x = (Bp/B)s.

outrecycx,

outrecyiz,

recyn,

outrecyn,

outrecyn,

outrecyn,

outrecyn, SS

n

x

Vn

t

n

Recycling neutral (outer plate)

13

2FCinrecyn,

outrecyn, VVV

where VFC = (2εFC/mi)1/2 with Franck-Condon energy εFC = 3.5 eV.

diffn,izcxi

in

m

TD

T. Takizuka et al., 12th BPSI Meeting, Kasuga, Fukuoka 2014 (2015).

d

miFCL

recyn,recyn,

1

d

mT iiL

diffn,diffn,

1

aL : input

Page 14: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Atomic Processes

inrecycx,

inrecyiz,

recyn,

inrecyn,

inrecy,n

inrecyn,

inrecyn, SS

n

x

Vn

t

n

Diffusion neutral

recycx,rcdiffiz,diffn,

diffn,diff,nn

diffn, SSSn

x

nD

xt

n

Recycling neutral (inner plate)

outrecycx,

outrecyiz,

recyn,

outrecyn,

outrecyn,

outrecyn,

outrecyn, SS

n

x

Vn

t

n

Recycling neutral (outer plate)

rcizcore SSSS

rccxiin

recycx,out

recycx,in

recyiz,out

recyiz,FCim sin2 SSVmSSSSVmM

rccx//i,2

irecycx,recyiz,2

FCicx,2iz,2icore//i,//, 2262 SSTVmSSVmSSTQQi

rccxi,diffcx,diffiz,irecycx,recyiz,2

FCicorei,i, 3 SSTSSTSSVmQQ

rceizizcoreee 23 STSQQ

14

(εiz = 30 eV)

Source terms for plasma:

(θ = Bp/B)

(Ti = (Ti,// + 2Ti,⊥)/3)

Page 15: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Result (Low recycling condition)15

Ti,//

Te

Ti,⊥

nn,recy

nn,diff

aL = 1

Recycling rate ~ 0.17

Ti,///Ti, ⊥~ 0.6

Recycling neutral dominant

X-point Near the plate

Page 16: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Result (High recycling condition)16

X-point

Ti,⊥

Te

Ti,//

nn,recy

nn,diff

Near the plate

aL = 0.1

Recycling rate ~ 0.92

Ti,///Ti, ⊥~ 1

Diffusion neutral dominant

Page 17: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Conclusions

1D SOL-divertor plasma model with anisotropic ion temperatures has been developed. In order to express the effects of the divertor plate and the accompanying sheath, we use a virtual divertor (VD) model which sets artificial sinks for particle, momentum and energy in the additional region beyond the divertor plate. In addition, VD makes the periodic boundary condition available and reduces the numerical difficulty.

For simplicity, the symmetric inner/outer SOL-divertor plasmas with the homogeneous magnetic fields are assumed. In order to simulate more general asymmetric plasmas with the inhomogeneous magnetic fields, the effects of the plasma current and the mirror force have to be considered. In addition, it is necessary to introduce a high-accuracy difference scheme and an inhomogeneous grid in order to avoid the numerical errors at the divertor plate. These are our future works.

17

Page 18: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

DmVD & gi,// in VD region

20

2

VD

20VD

m

4exp

L

sLcD D

e//i,2

0

2c//i,//,i

4exp g

L

sgg

DmVD and gi,// in VD region have Gaussian shapes.

The length of V-connection-region L0 = 1.6 m.

Page 19: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Results (Bohm condition)7

T. Takizuka and M. Hosokawa, Contrib. Plasma Phys. 40 (2000) 3-4, 471.

Mach profiles for various Ds

i

//,ia//,es m

TTc

ga = 3 for adiabatic, collisionless sound speed

M* ≈ 1 with no cooling effects.

VDPlasma

The effect of artificial sinks in VD region numerically diffuses in the plasma region.

Page 20: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Appendix ~ Collisionless Adiabatic Flow ~20

1D equations in the collisionless limit;

0nVds

d

0e//,i2

i nTnTnVmds

d

ds

dnTVVnTnVm

ds

d e//,i

3i 2

3

2

1

ds

dT

m

n

ds

dn

m

TTV e

ii

e//,i2 33

Refer to Sec 10.8 of Stangeby’s text

Page 21: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

The effect of gs on gt (heat transmission factor)

The boundary condition for the heat flux at the divertor plate in the usual codes;

VnTx

TVnTnVmq ii

i//,ii

2ii 2

5

2

1

VnT

x

TVnTq ee

e//,eee 2

5

The heat transmission factors, gi and ge, are input parameters.The VD model, however, does not use this boundary condition but the periodic boundary condition with the cooling index g s ( s i//, i , e). Therefore ∈ ⊥ gi and ge are back calculated using these relations.

The conduction heat fluxes are limited by the free-streaming heat fluxes with limiting coefficients as as qs

eff = (1/qsSH + 1/asqs

FS)-1.

x

Tq

SHSH

i

//,i//i,

FS//,i m

TnTq

i

//,ii,

FS,i m

TnTq

e

ee

FSe m

TnTq

Thus the effective conduction heat fluxes are smaller than the free-streaming heat fluxes times limiting coefficients asqs

FS so that gt has the maximum.

eqaniani

ani

ani,i

ani

ani//,i

ani

anieq

ani

ani2

i 23

3

2

31

2

31

42

69

2

3

2 fff

f

fc

f

fc

Mf

ff

f

fM

eqaniani

eqani

e

iee 23

2

2

5

fff

ff

m

m

M

,i

//,iani T

Tf

i

eeq T

Tf

Page 22: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Calculation condition

Calculation condition

H plasma and ni = ne = n

Symmetric inner/outer SOL

Length of the plasma L 44 m

SOL width d 2 cm

Separatrix area 40 m2

Particle flux from core Γsep 1~5×1022 /s

Heat flux from the core Psep 1~4 MW

Cooling index for i,// 1

Cooling index for i,⊥ 1.2

Cooling index for e 2.5

tVD 5×10-6 s

Heat flux limiter for ion 0.5

Heat flux limiter for electron 0.2

Page 23: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

M. Wischmeier et al., J. Nucl. Mater. 390-391, 250 (2009).

Comparison of results (EXP vs SIM)

Edge transport code packages, such as SOLPS and SONIC, are widely used to predict performance of the scrape-off layer (SOL) and divertor of ITER and DEMO. Simulation results, however, have not satisfactorily agreed with experimental ones.

Discrepancy

Page 24: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Why does Ti,// become lower than Ti,⊥?

i//,i//,i 3

1

2

3QQVnT

dx

d

i,i,i

3

2QQ

dx

VdnT

Reduced eq. of parallel (//) ion energy transport

Reduced eq. of perpendicular ( ) ion energy transport⊥nV

xQT

9

2 i//,i

nV

xQT

3

2 i,i

Integration over x from the stagnation to x yields,

3

1~

,i

//,i

T

T

By considering the kinetic energy term and force term, Ti,///Ti. ⊥~ 0.2.

x

nTV

TTn

m

mTTnQ

x

qcVnTnVm

xnTnVm

t

e

e

//,ie

i

e

rlx

//,i,i//,i

eff//,i

//,i2

i//,i2

i 2

3

2

1

2

1

2

1

Eq. of parallel (//) ion energy transport

Page 25: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Qualitative derivation of the viscous flux

Simplified system equations

0nVds

d

0ii nTnVmds

d

rlx

//,i3

i

33

VnTnVmds

d

rlx

,i 2

3

VnTds

d

(A)

(B)

(C)

(E)

From (C) – (D)

rlx

3i 2

9

2

72

VnTnVm

ds

di

rlx

i3

i 2

92

VnTnVmds

d

(D)

(E)’

Assumption of p << nTi

0ii nTnVmds

d(B)’

By (A) and (B)’, LHS of (E)’ becomes

ds

dVnTVnTnVm

ds

dii

3i 22

Then

ds

dV

ds

dVnT //,irlxi9

4

Page 26: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Necessity of artificial viscosity term

dx

Vd V

nTVdx

d 22

conservation of ion particles conservation of parallel plasma momentum

dx

dcV

c

dx

dVcV ss

s

2222

When V is positive, RHS becomes positive. If V becomes supersonic, dV/dx becomes positive and V cannot connects.

x

V

x

nVmM i

VDVD

VD

artificial viscosity term

Page 27: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Discretization

Sxx

Vxt

general conservation equation

full implicit upwind central

discretization scheme

staggered mesh (uniform dx)

Page 28: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Calculation method

matrix equation

5

4

3

2

1

5

4

3

2

1

555

444

333

222

121

00

00

00

00

00

s

s

s

s

s

aaa

aaa

aaa

aaa

aaa

pwe

epw

epw

epw

wep

(ex. N = 5) Matrix G becomes cyclic tridiagonal due to the periodic boundary condition. This matrix can be decomposed by defining two vectors u and v so that where A is tridiagonal.

sx G

uvAG

5

1

0

0

0

w

w

a

a

u

1

0

0

0

1

v

555

444

333

222

211

000

00

00

00

000

epw

epw

epw

epw

ewp

aaa

aaa

aaa

aaa

aaa

A

Page 29: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Calculation method

Sherman-Morrison formula

111111 1 AAAAA vuvuuv

yzv

zvsx

11 IG

where and . y and z can be solved by using tridiagonal matrix algorithm (TDMA).

sy A uz A

calculation flow

Ion // energy Elec. energy Momentum Particle

No

Yes

The number of equations can be changed easily.

Ion ⊥ energy

Page 30: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Continuity of Mach number

S

dx

nVd 022

i nTnVmdx

d

conservation of ion particles conservation of parallel plasma momentum

dx

dT

T

MMncSM

dx

dMMnc s

s 2

111

222

Due to the continuity of Mach number, RHS has to be zero at the sonic transition point (M = 1).

RHS > 0 RHS 0≦Sonic transition has to occur at the X-point when T = const.

O. Marchuk and M. Z. Tokar, J. Comput. Phys. 227, 1597 (2007).

Page 31: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Result (particle flux & Mach vs nsep)

Γt ∝ nsep

→ accords with conventional simulations

Supersonic flow (Mt > 1)→ observed when nsep is low

Subsonic flow (Mt < 1)→ observed when nsep is high→ numerical problem?

Larger nsep (like detached plasmas) is future work.

Page 32: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Result (Mach number near the plate)

Plasma VD

M > 1 is satisfied in the near-plate VD region.Smaller Δs results in a better result. → Numerical problem?

Δs = 2cm

Δs = 5cm

Near the plate

Page 33: SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導 入した SOL-

Result (Mt vs nsep)

The recycling neutrals are not ionized or do not experience the charge exchange near the plate (red line).