solids andstructures mehanics iv notes

99
EMT 2407 SOLID AND STRUCTURAL ENGINEERING IV COURSE NOTES INNO ODIRA (BSc., MSc., PhD Ongoing) (Mechanical Engineering) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY c 2012

Upload: inno-odira

Post on 07-Jan-2016

141 views

Category:

Documents


12 download

DESCRIPTION

Mechanics of materials

TRANSCRIPT

Page 1: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 1/98

EMT 2407 SOLID AND STRUCTURAL ENGINEERING IV

COURSE NOTES

INNO ODIRA (BSc., MSc., PhD Ongoing)

(Mechanical Engineering)

JOMO KENYATTA UNIVERSITY OFAGRICULTURE AND TECHNOLOGY

c2012

Page 2: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 2/98

2

COURSE OUTLINE

EMT 2407 SOLID AND STRUCTURAL MECHANICS IV

Bending of curved beams with plane loading: Winkler’s analysis. Shear: Shear stress due to

torsion. Shear stress distribution due to torsion of thin-walled non-circular closed cross-section:

single cell and multi-cell cross-section. Shear deflection of beams - the slope and energy methods.

Total deflection of beams. Struts: Euler’s crippling load for struts with different end constraints,

struts with initial curvature, struts with eccentric loading, struts with transverse loading and

empirical strut formulae. Beam columns; Rigorous method and approximate engineering methods,

modified methods of superposition. Bending due to thermal stresses : Thermostats; commercial

practice, design concepts of thermostats, strip deflection constant and strip force constant, concept

of minimum volume thermostats. Rotating discs and cylinders: Stresses and strains, rotation of 

shrink fit assemblies, disc with varying thickness and thermal effects. Plates: Simple concepts of 

the general plate problem, cylindrical and spherical bending. Bending of circular plates - simple

cases. Introduction to stress functions and application to plate bending.

Reference Books

1. P. P. Benham, R. J. Crawford & C. G. Armstrong (1999)   Mechanics of Engineering Mate-

rials , Longman, 2rd Ed.

2. Ferdinand P. Beer & Johnston, R. E. (1985)  Mechanics of Materials , McGraw-Hill, student

Ed.

3. J. M. Gere & S. P. Timoshenko (1999) Mechanics of Materials , Stanley Thornes (Publishers)

Ltd, 4th Ed.

4. Arthur, P. Boresi & Sidebottom O. M. (1985) Advanced Mechanics of Materials , John Wiley

& Sons inc., 4th Ed.

Page 3: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 3/98

TABLE OF CONTENTS 3

TABLE OF CONTENTS

COURSE OUTLINE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

TABLE OF CONTENTS   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Columns and Struts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Euler’s Theory   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Struts with Pinned Ends   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Strut with One Free End   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Strut with one fixed end and the other end pinned . . . . . . . . . . . . . . 8

1.1.4 Both ends fixed   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.5 Effective Length Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Limitation of Euler Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Rankine-Gordon Method   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Struts with Eccentric Loading   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Struts with Initial Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Tutorial 1   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

General Solution of the Torsion Problem   . . . . . . . . . . . . . . . . . . . . 19

2.1 Introduction   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Torsion of Non-circular Solid Members   . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Torsion of Hollow Thin-walled Non-circular Members   . . . . . . . . . . . . . . . . 21

2.4 Calculation of the Angle of Twist   . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Single Cell X-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Multi-cell x-section   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Tutorial 2   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Page 4: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 4/98

TABLE OF CONTENTS 4

Deflection Due to Shear   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Introduction   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Deriving the Shear Formula   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Distribution of Shear Stresses in a Rectangular Beam   . . . . . . . . . . . . 37

3.2.3 Shear Stress Distribution in Beams with Flanges . . . . . . . . . . . . . . . 38

3.3 Shear Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bending of Thin Plates   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Simple Concepts of the General Plate Problem . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Rectangular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Special Cases   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending   . . . . . . . 48

4.3.1 Relationship between Load, Shear Force and Bending Moment   . . . . . . . 50

4.4 Tutorial 3   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bending of Curved Beams with Plane Loading   . . . . . . . . . . . . . . . . . 56

5.1 Introduction   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Stresses and Strains in Curved Beams - Winkler Bach Analysis . . . . . . . . . . . 56

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.2.2 Case 1 - Slender Beam   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Case 2: Deeply Curved Beams  . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Position of the Neutral Axis for a Deeply Curved Beam  . . . . . . . . . . . . . . . 58

5.4 Bending Moment on the Cross-section   . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Terminologies used with Curved Beams . . . . . . . . . . . . . . . . . . . . 60

5.4.2 To determine  R1   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Combined Direct and Bending Stresses   . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Tutorial 4   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Page 5: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 5/98

TABLE OF CONTENTS 1

Bending due to Thermal Stresses   . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Introduction   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Analysis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Stresses in Bimetallic Strips   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Bending Stress   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 Direct Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.3 Combined Stress   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Types of Thermostats Bimetallic Strips   . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 Simply Supported Beam Type   . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.2 Cantilever Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Minimum Volume Concept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 Tutorial 5   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Rotating Discs and Cylinders   . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Introduction   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Circumferential and Radial Strains   . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.1 Solid Disc with Unloaded Boundaries   . . . . . . . . . . . . . . . . . . . . . 84

7.2.2 Maximum Speed for Initial Yielding . . . . . . . . . . . . . . . . . . . . . . 85

7.2.3 Increase in Radius   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.4 Change in Thickness   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Disc with Central Hole and Unloaded Boundaries   . . . . . . . . . . . . . . . . . . 87

7.4 Disc Shrunk onto a Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 Disc with Loaded Outer Boundary   . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 Disc of Uniform Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.7 Tutorial 6   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Page 6: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 6/98

2

Chapter 1

Columns and Struts

A  column   is a long vertical slender bar or structural member subjected to an axial compressive

load and fixed rigidly at both ends. A  strut  refers to a long slender bar or structural member

in any position other than vertical, subjected to a compressive load. The strut may have one or

both ends fixed rigidly or hinged or pin-jointed. Examples of struts are: piston rods, connecting

rods for mechanisms, side-links in forging machines etc.

The primary concern in the analysis and design of struts and columns is the ability of the structure

to support a specified axial compressive load without undergoing unacceptable deformations1

Columns fail by crushing when the yield stress is exceeded while struts fail by buckling before the

the yield stress is reached.2

Buckling may occur due to a number of reasons:

1. the applied load may be higher than the critical load,

2. the strut may not be perfectly straight,

3. the load may not be applied exactly along the strut axis.

1.1 Euler’s Theory

A theory of buckling for slender struts under axial compression was developed by Leonhard Euler.

1.1.1 Struts with Pinned Ends

Consider a strut with pinned ends as shown in Figure  1.1.

Assumptions

i. strut is slender (l >> d)

ii. axial load P is applied through the centroid of the cross-section, aligned with the longitudinal

axis

iii. strut is initially perfectly straight

iv. material is obeys hooks law

v. bending is in a single plane (planar bendig)

1

stability of a structure is the ability of the structure to support a given load without undergoing/ experiencingsudden change in its configuration.

2Buckling is a failure mode characterized by sudden failure of a structural member subjected to high compressivestressed when the stress at the point of failure is less than the yield stress of the material in compression.

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

Page 7: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 7/98

EMT 2407: 1.1 Euler’s Theory   3

Figure 1.1: Strut with pinned ends

Loading conditions

1. A small load P is applied: the strut remains straight and experiences axial stresses only

(stable equilibrium). If a small lateral load is applied, the strut bends slightly but straightens

when the load is removed.

2. P is increased (P=Pcr: The strut may have a bent shape. If a small lateral load is applied,

the bent shape remains when the load is removed. The strut experiences a neutral or staticequilibrium in either straight or bent position.

3. P is increased further (P>Pcr): we have unstable equilibrium and the strut collapses by

bending.

Consider a section of the beam of length  x shown in Figure 1.2.

Figure 1.2: Section of the strut

Page 8: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 8/98

EMT 2407: 1.1 Euler’s Theory   4

The displacement at A is  v  and the bending moment M  = P v. Using the differential equation for

the deflection curve derived for beams,

EI d2v

dx   = −M  = −P v   (1.1)

where,

I second moment of area of the section.

E Young’s Modulus of elasticity

∴d2v

dx   +

  P 

EI v   = 0 (1.2)

letk2 =  P 

EI   (1.3)

equation 1.2 becomes

d2v

dx  + k2v   = 0

which is a homogeneous ode whose solution is:

v =  C 1 sin kx + C 2 cos kx   (1.4)

where C 1 and C 2 are constants which depend on the boundary conditions. Applying the boundary

conditions,

at x = 0, v = 0

at x =  L, v = 0

0 = 0 + C 2 ⇒ C 2 = 0

0 =   C 1 sin kL

⇒ C 1  = 0 or sin kL  = 0

If  C 1 = 0, we get a trivial case of the un-deflected strut which is of no importance in the analysis.

The condition sin kL  = 0 leads to the solution  kL  = 0, π, 2π,...

Taking kL = 0 ⇒ P  = 0 which is of no interest.

Thus  kL  =  nπ, n=1,2,3...

Buckling first occurs for n=1 from which the critical load is given by:

kL  =  π   ⇒   k =

  π

L   (1.5)

∴P crEI 

  = k2 =π

L

2or   P cr  =

 π2EI 

L2  (1.6)

P cr   is the critical load which is also known as  Euler Load  or Euler Crippling Load.

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

Page 9: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 9/98

EMT 2407: 1.1 Euler’s Theory   5

The corresponding buckled mode shape is given by:

v =  C 1 sin kx  =  C 1 sin

 π

L x

Figure 1.3: mode shapes

To maintain same x-sectional area of the beam and achieve high second moment of area, we use,

1. hollow sections

2. I-sections

Figure 1.4: If  I 1 > I 2, use the smaller value,  I 2   in the equation

Optimum Columns/struts

1. Prismatic column/strut - same cross-section throughout

2. X-section is made larger in regions where B.M is maximum (constant strength column/strut)

3. Reinforced prismatic column/strut over part of the length.

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

Page 10: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 10/98

EMT 2407: 1.1 Euler’s Theory   6

Figure 1.5: mode shapes

The value of the compressive stress corresponding to the critical stress is called Critical stress and

is denoted by  σcr.

Setting  I  = Ar2, where A is the cross-sectional area and r is its radius of gyration, we have:

σcr   =  P cr

A  =

 π2EAr2

AL2  =

 π2Er2

L2  (1.7)

σcr   =  π2E 

(L/r)2  (1.8)

The quantity L/r  is called the slenderness ratio of the column.

1.1.2 Strut with One Free End

Figure 1.6: Strut with one free end

Consider a section of the strut, a distance x from the free end. The bending moment is given by:

ΣM x  = 0   ⇒   M  + P (δ − v) = 0∴ M    =   P v − P δ 

Page 11: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 11/98

EMT 2407: 1.1 Euler’s Theory   7

Substituting the expression for M in the differential equation for the deflection curve,

EI d2v

dx2  =   −M  = −P (v − δ )

d2v

dx2 +

  P 

EI v   =

  P 

EI δ    let

  P 

EI   = k2

∴d2v

dx2 + k2v   =   k2δ    (1.9)

The solution to the differential equation 1.9 consists of a complementary function and a particular

integral.

Complementary function:

v1  =  C 1 sin kx + C 2 cos kx   (1.10)

Particular integral:

let v2   =   C 3d2v2dx2

  = 0

substituting in DE

0 + k2C 3   =   k2δ 

⇒ C 3   =   δ 

The solution to the D.E becomes,

v =  v1 + v2  =  C 1 sin kx + C 2 cos kx + δ    (1.11)

Applying boundary conditions,

at x = 0, v = 0

∴ C 2 + δ  = 0   ⇒   C 2 = −δ 

at x = 0,  dv

dx = 0

dv

dx  =   C 1k cos kx + δk sin kx

C k = 0 =   since k = 0 ⇒ C 1 = 0

∴ v   =   −δ cos kx + δ  =  δ (1 − cos kx)

at x =  L, v =  δ 

⇒ cos kL   = 0

kL   =  nπ

2  , n = 1, 2, 3,...

P cr   =   k2

EI  =

 n2π2

4L2  EI 

Buckling first occurs at  n = 1

P cr  =  π2

4L2EI    (1.12)

Page 12: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 12/98

EMT 2407: 1.1 Euler’s Theory   8

Figure 1.7: Fixed-pinned ends

1.1.3 Strut with one fixed end and the other end pinned

The bending moment at section x is:

M  = P v − Rx

from which,

d2v

dx2 +

  P 

EI v   =

  R

EI x   (1.13)

let  P 

EI 

  = k2,   the solution to de becomes (1.14)

v   =   C 1 sin kx + C 2 cos kx + R

P  x   (1.15)

The boundary conditions are:   v = 0 at  x  = 0,  v = 0 at  x  =  L  and   dvdx

 = 0, at  x =  L   from which,

C 2 = 0   C 2  = −   R

P k cos kL = −   RL

P  sin kL∴ tan kL   =   kL   (1.16)

The smallest value of  kL  to satisfy equation 1.16 is kL  = 4.4934 (by trial and error) or

P cr  = k2EI    =

4.49342

L2

EI    (1.17)

P cr   =  20.19EI 

L2  (1.18)

1.1.4 Both ends fixed

P cr  = 4π2EI 

L2  (1.19)

1.1.5 Effective Length Concept

This method relates the critical load for struts of varying support conditions to pinned end

columns.

Page 13: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 13/98

EMT 2407: 1.1 Euler’s Theory   9

Figure 1.8: Effective lengths

For Fixed-free ends,  Le = 2L

P cr  = π2EI 

L2e

= π2EI 

4L2  (1.20)

For Fixed-fixed ends, Le =   L2

P cr  = π2EI 

L2e

= 4π2EI 

L2  (1.21)

For Fixed-pinned ends,

P cr  = π2EI 

L2e

=  20.19EI 

L2  =

 2.046π2EI 

L2  (1.22)

L2e   =

  L2

2.046 ⇒ Le ≈ 0.7L   (1.23)

Example 1.1.1.  A straight steel rod 9mm diameter is rigidly built into a foundation, the free end 

protruding 0.5m normal to the foundation. An axial load is applied to the free end of the rod which 

deflects as shown in Figure  1.9 . Determine the following,

i. Euler’s Buckling load 

ii. The deflection at the free end of the rod when the total compressive stress reaches the elastic 

limit.

Assume that E=200GPa and yield stress is 300MPa.

Solution

i.

P cr  = π2EI 

4L2

Page 14: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 14/98

EMT 2407: 1.2 Limitation of Euler Theory   10

Figure 1.9: Fixed-free strut

For a solid bar of diameter D,

I  = πD4

64  =

 π × (9 × 10−3)4

64  = 3.221 × 10−10m4

P cr  = π2 × 200 × 109 × 3.22 × 10−10

4 × 0.52  = 636N

ii.

σc = P cr

A  +

 P vmaxy

I   (1.24)

where:

σc   compressive stress

y   distance from the centroid to the outermost fibres

when the compressive stress reached the elastic limit,  σc =  σy, so that:

300 × 106 =  636

π × (4.5 × 10−4)2 +

 636 × (4.5 × 10−3)vmax3.221 × 10−10

300 × 106 = 9.997 × 106 + 8.885 × 109vmax

vmax   =  300 × 106 − 9.997 × 106

8.885×

109  = 32.6mm

1.2 Limitation of Euler Theory

Recall that

P cr   =  π2EI 

L2  (1.25)

σcr  = P 

A  =

  π2E 

(L/r)2  (1.26)

For long slender beams, (L/r) is large and  σcr

  is small

For short thick beams, (L/r) is small and  σcr  increases as  L/r   reduces.

However, σcr  is normally limited by the materials yield stress such that after yielding, failure will

occur by plasticity. Therefore, Euler,s theory works only with long slender columns.

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.

Page 15: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 15/98

EMT 2407: 1.3 Rankine-Gordon Method   11

Buckling becomes the limiting mode of failure when the critical stress is less than or equal to the

yield strength, i.e.

σy   ≥   π

2

E (Le/r)2

⇒  Le

r  ≥   π

 E 

σy

If a factor of safety,  f   is used,

Le

r

c

=   π

 f E 

σy

The quantityLer

c

is known as the transition ratio.

Figure 1.10: Euler hyperbola

1.3 Rankine-Gordon Method

Is based on experimental results.

For a very short column or strut, collapse will result from direct crushing and the crippling load

is:   P c =  σcA, where

σc   maximum compressive stress

A   is the cross-sectional area

For a long strut, Euler formula applies. The Rankine hypothesis is;

1

P R =

  1

P c +

  1

P cr (1.27)

P R   is the actual crippling load

P cr  is Euler’s crippling load=π2EI L2e

=   π2EA(L/r)2

Page 16: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 16/98

EMT 2407: 1.4 Struts with Eccentric Loading   12

Equation 1.27 can be rewritten as:

1

P R=

  1

σcA +

 (Le/r)2

π2EA  (1.28)

A

P R=

  1

σc+

 (Le/r)2

π2E   (1.29)

P RA

  =  11σc

+   (Le/r)2

π2E 

=  σc

1 +   σc(Le/r)2

π2E 

(1.30)

P    =  σcA

1 +   σcπ2E 

(L/r)2  =

  σcA

1 + aLer

2   (1.31)

Le is used to cater for the different end constraints. For any given material, σc and  a are constants.

Other approximate engineering methods are:

1. Johnson’s Parabolic Formula

2. Straight-Line Formula

1.4 Struts with Eccentric Loading

In practice, struts or columns are rarely loaded exactly along the centroidal axis as the Euler

analysis assumes. Consider an eccentrically loaded strut illustrated in Figure  ??.

Figure 1.11: Eccentrically loaded beam

M  = P v + P e =  P (v + e)

Substituting this in the differential equation,

d2v

dx2  =

 −M 

EI   =

  −P 

EI  (v + e)

d2v

dx2

 +  P 

EI v   =

  −P 

EI  e, Let

  P 

EI   = k2

d2v

dx2 + k2v   =   −k2e

whose solution is   v   =   C 1 sin kx + C 2 cos kx − e

Page 17: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 17/98

EMT 2407: 1.4 Struts with Eccentric Loading   13

Applying boundary conditions,

at x = 0, v = 0   at x =  L, v =  o

0 = C 2 − e   ⇒   C 2  =  eC 1 sin kL + e cos kL − e = 0   ⇒   C 1 sin kL  =  e(1 − cos kL)

but sin kL  = 2 sin kL

2  cos

 kL

2  and 1 − cos kL  = 2 sin2 kL

2

∴ 2 sin kL

2  cos

 kL

2  = 2e sin2 kL

2

C 1   =   e tan kL

2

and v   =   e(tan kL

2  sin kx + cos kx − 1)

The value of the maximum deflection is obtained by setting  x =   L2

vmax   =   e(tan kL

2  sin

 kL

2  + cos

 kL

2  − 1)

sin2   kL2

cos  kL2

+ cos kL

2  =

 sin2   kL2

 + cos2   kL2

cos  kL2

=  1

cos  kL2

= sec kL

2

vmax   =   e(sec kL

2 − 1) = e(sec

 L

2

  P 

EI  − 1)

vmax  becomes infinity when   L2

   pEI 

  =   π2

. This implies that the defection becomes unacceptably

large when this condition is satisfied.

∴ P cr  = π2EI 

L2  (1.32)

The maximum stress occurs in the section of the column/strut where the B.M is maximum i.e.

σmax   =  P 

A +

 M maxc

M max   =   P (vmax + e) = P e(sec kL

2  − 1 + 1) = P e sec

 kL

2

σmax   =  P 

A + P e sec

 kL

2  ·   c

Ar2

σmax   =   P A

1 +  ec

r2 sec kL

2

=  P 

A

1 +

 ec

r2 sec

 L

2

  P 

EI 

=  P 

A

1 +

 ec

r2 sec

Le

2r

   P 

EA

Where,   ec

r2= eccentricity ratio and   Le

r = slenderness ratio

Le  is used to make the formula applicable to various end conditions.

Example 1.4.1.   A tubular strut is 60mm external diameter and 48mm internal diameter. It is 2.2m long and has hinged ends. The load is parallel to the axis of the axis of the strut but 

eccentric. Find the maximum compressive stress for a crippling load of 0.75 of the Euler value 

and an eccentricity of 4.5mm. Take E=207GPa.

Page 18: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 18/98

EMT 2407: 1.5 Struts with Initial Curvature   14

Solution

I    =   π(D4 − d4)64

  = 3.756 × 10−7 m4

P cr   = 0.75π2EI 

L2  = 0.75

π2 × 109 × 3.756 × 10−7

2.22  = 118.91 kN

k   =

  P 

EI   = 0.75

π2

L2  =

 0.75 × π2

2.22  = 1.237

M max   =   P e sec kL

2  = 118.91 × 103 × 0.0045 × sec

 1.276 × 2.2

2  = 2565.74 Nm

σc   =  P 

A +

 M maxc

I   , A =

 π(0.062 − 0.0482

4  = 1.0179 × 10−3 m2

=  118.91 × 103

1.0179−3  +

 2565.74 × 0.03

3.756 × 10−7

= 116.82 × 106 + 204.93 × 106 = 321.75 MPa

1.5 Struts with Initial Curvature

In some cases, the strut may not be perfectly straight before loading. This will influence the

stability of the strut. The initial shape of the beam may be assumed circular, parabolic of 

sinusoidal but the most convenient form is the sinusoidal of the form:

vo  =  V   sin πx

L  (1.33)

where,

vo  deflection at distance x from one end.

V    the amplitude of the deflection or the initial maximum deflection.

Consider the strut with initial curvature as shown in Figure 1.12. On application of load P, the

deflection is increased by  v  and the B.M. at a section  xx is:

M  = P (v + vo) (1.34)

Substituting  M  in the differential equation of the deflection curve,

EI d2v

dx2  =   −M  = −P (v + V   sin

 πx

L  (1.35)

d2v

dx2 +

  P 

EI v = −  P 

EI V  sin

 πx

L  (1.36)

Let   P EI 

  = k2 whichleadsto  : (1.37)

d2v

dx2 + k2v = −k2V  sin

 πx

L  (1.38)

Page 19: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 19/98

EMT 2407: 1.5 Struts with Initial Curvature   15

Figure 1.12: Strut with initial curvature

whose general solution is given by:

v = C 1 sin kx + C 2 cos kx −   k2V 

k2

−  π2

L2

sin πx

L  (1.39)

Applying the Boundary conditions,

at   x = 0, v = 0

⇒ 0 = 0 + C 2 + 0   ∴ C 2  = 0

v   =   C 1 sin kx −   k2V 

k2 −   π2

L2

sin πx

L

at   x =  L, v = 0

⇒ 0 =   C 1 sin kL + 0B   = 0

∴ v   =   −   k2V 

k2 −   π2

L2

sin πx

L  =

  k2V π2

L2 − k2

sin πx

L

substituting back   P EI 

  = k2

v   =P EI 

π2

L2 −   P 

EI 

V  sin πx

L  (1.40)

=  P 

π2

EI L2   − P 

V  sin πx

L  (1.41)

If we denote   π2EI L2

  = P cr, then

v =  P 

P cr − P  V   sin

 πx

L  (1.42)

Page 20: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 20/98

EMT 2407: 1.6 Tutorial 1   16

Thus the effect of the load is to increase the initial deflection by a factor   P P cr−P 

.

As P  → P cr, the deflection tends to infinity.

We can obtain an expression of  v  in terms of the direct compressive stress.

Let  σ   =   P A ⇒  P   =  σA  and  P cr   =   σcr

A  ⇒  P   =  σcrA. Substituting these expressions in equation

1.42,

v =  σ

σcr − σV   sin

 πx

L  (1.43)

The total deflection at  x is given by:

v =  v  + vo   =  σ

σcr − σV  sin

 πx

L  + V   sin

 πx

L

=   σ

σcr − σ + 1V   sin

 πx

L=

  σ + σcr − σ

σcr − σ  V  sin

 πx

L

v   =  σcrσcr − σ

V  sin πx

L

The maximum deflection occurs at  x  =   L2

vmax =  σcrσcr − σ

V    (1.44)

and the maximum bending moment is:

M max = P 

  σcrσcr − σ

The maximum compressive stress is:

σc   =P V    σcr

σcr−σy

I   +

 P 

A  (1.45)

=P V    σcr

σcr−σy

Ar2  + σ   (1.46)

=   σV    σcr

σcr − σ

 y

r2 + σ   (1.47)

1.6 Tutorial 1

1. A straight slender column of height 2.77 m is fixed at the lower end and is entirely free at

the upper end. The design criterion is to limit the compressive strain prior to buckling to

0.0008. Determine the required least radius of gyration. [Ans: 50 mm]

2. A column is made of two rolled steel joists of I-section and two thick plates as shown in Fig.

1.13. Determine by Rankine’s Formula, the safe load the column of 4m length, with both

ends fixed, can carry with a factor of safety of 3.

Take:   a =  1

7500,   and  σc  = 320 MN/m2

[Ans: 931.56 kN]

Page 21: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 21/98

EMT 2407: 1.6 Tutorial 1   17

Figure 1.13:

3. Show that, for and eccentrically loaded strut, the maximum resultant compressive stress is

given by:

σc = P 

A

1 +

 ec

r2 sec kL

where  P   is the applied load,  A = cross-sectional area of the strut,  e = eccentricity,  k  =   P 

A,

E  = Young’s modulus of elasticity, c  = distance from neutral axis to outermost fibres under

compression. Before application of the load, the strut has the configuration shown in Fig.

1.14

Figure 1.14:

4. A slender strut is built in at one end and an eccentric load is applied at the free end. Working

from first principles, find the expression for the maximum length of column such that the

deflection at the free end does not exceed the eccentricity of loading. The deflected strut is

shown in Fig.   1.15

Ans:

L =

 π

3 EI 

Page 22: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 22/98

EMT 2407: 1.6 Tutorial 1   18

Figure 1.15:

5. A slender column of straight circular section of length   L   has pinned ends. It carries an

axial load  P  and also a horizontal lateral load  W  applied at the mid-length. Show that themaximum deflection and maximum bending moment are given by:

vmax   =  W 

2kP   tan

 kL

2  − W L

4P 

M max   =  W 

2k tan

 kL

2  ,   where  k =

  P 

EI 

(a) In the case of a strut in question 5, the magnitude of  P   =   P cr4

  where  P cr   is Euler load

for the strut. Determine the ratio of the maximum deflection produced by P and the

lateral load acting together, to that produced by W acting alone. [Ans: 1.33]

(b) If the strut is made of steel 25mm diameter and 1.25 m long with an axial load of 16

kN applied, determine the value of W which would cause collapse if the yield stress is

280 MN/m2 and E= 206 GN/m2.

[Ans: W= 559.4 N]

6. A circular hollow steel column has a length of 2.44m, an external diameter of 101mm and

an internal diameter of 89mm with its ends pinned. Assuming the centreline is sinusoidal in

shape, with a maximum displacement at the mid-length of 4.5mm, determine the maximum

stress due to an axial compressive load of 10kN. Take E=205 GN/m2. [Ans:   σc =6.72MN/m2]

Page 23: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 23/98

19

Chapter 2

General Solution of the Torsion Problem

2.1 Introduction

Torsion is a common engineering mode of deformation in which a solid or tubular member is

subjected to torque about its longitudinal axis resulting in twisting deformation.

Recall: Torsion equation for circular sections:

J   =

 τ 

r  =

 Gθ

L  (2.1)

where:

τ    = shear stress at radius r

T    = applied torque

J    = polar second moment of area

G   = shear modulus of elasticity

θ   = angle of twist

L   = length of member

Some of the assumptions used in deriving the torsion formula are:

1. Cross-sections which are plane remain plane after twisting (undistorted).

2. Radial lines remain radial during twisting

3. Deformation is by rotation of one cross-section plane relative to the next and planes remain

normal to the axis of the shaft.

2.2 Torsion of Non-circular Solid Members

There are some applications in machinery for non-circular cross-section members and shafts wherea regular polygonal cross-section is useful in transmitting torque to a gear or pulley that can have

an axial change in position. Because no key or keyway is needed, the possibility of a lost key is

avoided.

The assumption that plane sections remain plane For non-circular bars e.g square bars, due to

lack of axisymmetry1, lines drawn in the cross-section will deform when the bar is twisted and the

x-section will be warped out of its original shape. Thus the torsion equation cannot be used for

non-circular members.

1the appearance of the x-section remains the same when viewed from a fixed position and rotated about its axisthrough an arbitrary angle.

Page 24: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 24/98

EMT 2407: 2.2 Torsion of Non-circular Solid Members   20

Figure 2.1: Rectangular bar in torsion

Saint Venant (1855) showed that the maximum shear stress in a rectangular   b × c   section bar

occurs in the middle of the longest side  b  and is of magnitude

τ max   =  T 

αbc2  (2.2)

=  T 

bc2

3 +

 1.8b/c

  (2.3)

where b is the longer side, and  α  is a factor that is a function of the ratio  b/c  as shown in Table

2.1.

The angle of twist is given by:

angle of twist  θ   =  T L

βbc3G  (2.4)

where  β  is a function of the ratio  b/c as shown in

Equations 6.2 and 6.3 are only valid within the elastic limit.

Figure 2.2: Rectangular bar in torsion

Table 2.1: Coefficients for rectangular bar in torsionbc

  1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10.0   ∞α   0.208 0.219 0.231 0.246 0.258 0.267 0.282 0.291 0.312 0.333β    0.1406 1661 0.1958 0.02290 0.2490 0.2630 0.2810 0.2910 0.3120 0.3330

Example 2.2.1.  A rectangular brass bar of uniform cross-section is subjected to a torque   T   as 

shown in Figure   2.4. If the allowable shear stress is   τ max   = 40 MN/m 2, determine the largest 

torque which may be applied. Determine the angle of twist at this torque. Take  G  = 40 GN/m 2

Page 25: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 25/98

EMT 2407: 2.3 Torsion of Hollow Thin-walled Non-circular Members   21

Figure 2.3: Equivalent dimensions for other sections

Figure 2.4: Rectangular bar in torsion

Solution

Determine ratio   ab

:a

b  =

 64

25 = 2.56

Interpolating:

α   = 0.218 + (0.267 − 0.258)(3.0 − 2.5)

  (2.56 − 2.5) = 0.259

β    = 0.229 + (0.249 − 0.229)

(3.0 − 2.5)  (2.56 − 2.5) = 0.2314

τ max   =  T 

αbc2 ⇒ T  = τ maxβbc2

T    = 0.259 × 40 × 106 × 0.064 × 0.0252 = 414.4 Nm

θ   =  T L

c2bc3G =

  414.4×0.2314 × 0.064 × 0.0253 × 40 × 109

  = 0.0895 rad

2.3 Torsion of Hollow Thin-walled Non-circular Members

In some applications such as aeroplane structural members, the shear stress distribution due to

torsion of non-circular cross-sections is an important design factor.

Page 26: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 26/98

EMT 2407: 2.3 Torsion of Hollow Thin-walled Non-circular Members   22

The method used to find the shear stresses and angle of twist is simplified by assuming uniform

shear stress distribution across the wall of the section.

Consider a tube of non-circular cross-section with varying thickness shown in Figure  2(a). Let thecross-section be constant throughout the length of the tube/shaft.

Assume that the applied torque T acts about the longitudinal axis XX and it induces shearing

stresses over the end of the tube. These stresses have a direction parallel to that of a tangent to

the centerline of the wall of the tube.

A shearing stress of magnitude  τ  acting at any point in the circumference has a complementary

shear stress of the same magnitude acting in a longitudinal direction.

(a) Non-circular tube (b) Element of the tube

Figure 2.5:

Consider a small element ABCDEFGH of the tube and assume that the shear stress  τ   is constant

throughout the wall thickness  t. The shearing force along the thin edge AB is  τ t  per unit length

of the tube. For longitudinal equilibrium of the element, this force must be equal to that on the

thin edge CD. It follows that  τ t is constant for all parts of the tube. The quantity  τ t =  q  is called

the shear flow and is the internal shearing force per unit length of the circumference of the section

of the thin tube.

The force on face ADEH (along the tangential direction) is given by:

dF   = τtds   (2.5)

The moment of force about the X-X axis of the tube is given by:

dT    =   τtds · r   (2.6)

T    =

   τtrds   (2.7)

Page 27: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 27/98

EMT 2407: 2.3 Torsion of Hollow Thin-walled Non-circular Members   23

The 

 means that the integral extends over the whole circumference.

T    =   q    rds

=   q · 2

   dA =  q  · 2A

Figure 2.6:

From Figure 2.6,

rds  = 2dA ⇒ 

  rds  = 2

   dA = 2A

where A is the total plane area enclosed by the centreline of the wall of the tube.

∴ T    =   q (2A)⇒

q  =  T 

2A

shear stress τ    =  q 

t  =

  T 

2At

Thin Rectangular x-section

(a) X-section (b) Shear stressdistribution

Figure 2.7:

A =  a1a2   q  =  T 

2A =

  T 

2a1a2

τ 1 =  q 

t1τ 2  =

  q 

t2τ 3 =

  q 

t3τ 4  =

  q 

t4

Page 28: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 28/98

EMT 2407: 2.4 Calculation of the Angle of Twist   24

Circular hollow section

Compute the shear stress for a thin-walled circular hollow shaft shown in Figure 2.8  and compare

the results with those obtained from the torsion equation.

Figure 2.8: Circular hollow section

A =  πR2 q  =  T 

2A =

  T 

2πR2

τ  = q 

t  =

  T 

2πR2t

From the torsion equation,

T J    =   τ r   =  GθL

⇒ τ    =  T r

J J    = 2πR3t   for a thin section

∴ τ    =  T R

2πR3t =

  T 

2πR2t

Therefore the formulae for the torsion of non-circular tubes is fairly accurate.

2.4 Calculation of the Angle of Twist

The angle of twist can be determined from the strain energy stored in the tube. Consider a strip

of length  L, thickness  t  and width  ds  as shown in Figure 2.9

Strain energy per unit volume is given by:

U s =  τ 2

2G

Page 29: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 29/98

EMT 2407: 2.4 Calculation of the Angle of Twist   25

Figure 2.9: Elemental strip

general case

Figure 2.10: Elemental cube

If the bottom face is fixed and a force P is applied as shown, the elemental cube will shear.

P  = shear force = τdxdz 

tan γ  =   δdy

  γ    For small angles

shear strain energy =

  1

2 P δ 

=  1

2τdxdzγdy =

 1

2τγdV 

but   G =  τ 

γ   ∴   U s =

 1

2

τ 2

G × Volume

strain energy per unit volume =  τ 2

2G

strain energy stored in the element is given by:

dU s  =   τ 2

2GLtds

Page 30: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 30/98

EMT 2407: 2.5 Single Cell X-sections   26

Total strain energy stored in the tube is given by:

U s   =    τ 2

2GLtds

but   τ  =  T 

2At  ∴

τ 2

2G =

  T 2

2G · 22 · A2 · t2  =

  T 2

8A2t2G

∴ U s   =

   T 2

8A2t2GLtds =

  T 2L

8A2G

   ds

t

But the stored energy is equal to the work done in twisting the tube,

U s  = 1

2T θ

∴1

2T θ   =

  T 2L

8A2G   ds

t   (2.8)

θ   =  T L

4A2G

   ds

t  but   T   = 2Aq    (2.9)

θ   =  2AL

4A2G

   q 

tds =

  L

2AG

   qds

t  (2.10)

If the thickness t is constant around the circumference, then

θ   =  T L

4A2Gt

   ds,   but

   ds =  S 

=

  T LS 

4A2Gt

2.5 Single Cell X-sections

Figure 2.11: single celled x-sections

For a single cell x-section (c),

q    =  T 

2A=   τ 1t1 = τ 2t2

θ   =   L2AG

   qds

t

=  L

2AG

qπR

t1+

 qπR

t2

Page 31: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 31/98

EMT 2407: 2.6 Multi-cell x-section   27

2.6 Multi-cell x-section

Figure 2.12: multi-celled x-sections

q 1  =  T 12A1

, q 2  =  T 22A2

, q 3 = q 1 − q 2

Applied torque, T    =   T 1 + T 2

For compatibility, θ1  =  θ2   =   θ

θ1   =  L

2A1G

q 1a1

t1+

 q 1a5

t5+

 (q 1 − q 2)a3

t3

θ2   =

  L

2A2G

q 2a2

t2

+ q 2a4

t4 −

 (q 1 − q 2)a3

t3

Example 2.6.1.   An aluminium-alloy structural member for a light aircraft has a cross-section 

shown in Figure  2.13.  If the shear stress is not to exceed 30MN/m 2 and the applied torque is 134

Nm, determine:

(i) the required thickness t of the metal 

(ii) the angle of twist.

Take G=28 GN/m 2.

m3

Figure 2.13: Non-circular tube

Page 32: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 32/98

EMT 2407: 2.6 Multi-cell x-section   28

Figure 2.14: Non-circular tube

Solution

A   = 0.02 × 0.08 +  π × 0.022

2   = 2.2283 × 10−3m2

S 1   =   π × 0.02 = 0.6283m

S 2 = S 3   =√ 

0.022 + 0.082 = 0.0825m

q    =  T 

2A =

  134

2 × 2.2283 × 10−3 = 30067.76N/m

τ 1 =  q 

2t  ⇒   t =

  30067.76

30 × 106 × 2 = 0.5 × 10−3m

τ 2 = q 

t  ⇒   t =

 30067.76

30 × 106  = 1.0 × 10−3m

Angle of twist is given by:

θ   =  L

2AG

   qds

t

=  Lq 

2AG

S 12t

  + S 2

t  +

 S 3t

=

  3 × 30067.76

2 × 2.2283 × 10−3 × 28 × 109

  0.0628

2 × 10−3 + 2

  0.0825

1 × 10−3

 = 0.142rad

Example 2.6.2.  Figure  2.15  shows a two-celled tube with a cross-section as indicated.   t1 = 4mm,

t2  = 5.5mm and   t3  = 2.3mm. If a torque of magnitude 12KNm is applied and given G=80GPa,determine:

i. the shear flow distribution,

ii. the shear stress in all the walls 

iii. the overall angle of twist per unit length.

Page 33: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 33/98

EMT 2407: 2.6 Multi-cell x-section   29

Figure 2.15: Example

Solution

Let  q 1,  q 2  and  q 3  be the shear flow in the walls 1,2 and 3 respectively and  S 1 − S 6  be the lengths

of the various walls. The total torque is given by:

Figure 2.16: Example

T    =   T 1 + T 2

where   T 1   = 2q 1A1   torque in cell 1T 2   = 2q 2A2   Torque in cell 2

∴ T    = 2q 1A1 + 2q 2A2

S 1 = S 5  =  S 6   =  80

sin60 = 92.376mm

S 2  =  S 4   =

 (

92.376

2  − 30)2 + 802 = 81.621mm

S 3   =   πR  =  π × 30 = 94.248mm

A1   =   12 × 80 × 92.376 = 3695.04mm2

A2   =  80

2 (92.376 + 60) +

 π × 302

2  = 7508.76mm2

Page 34: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 34/98

EMT 2407: 2.6 Multi-cell x-section   30

Substituting the values of  A1  and  A2  in the torque equation gives,

12000 = 2(3695.04)q 1 + 2(7508.76)q 2

12000 × 106 = 7390.08q 1 + 15017.513q 2   (2.11)

From compatibility relation, we have

θ1  =  θ2 = θ  =  L

2AiG

   q ids

ti

For cell 1,

θ1   =  L

2A1G 

  q 1ds

t1+

   q 3ds

t3 =   L

2A1G

(S 1 + S 5)q 1

t1+ (q 1 − q 2)S 6

t3

=

  L

2A1G

46.188q 1 + 40.163q 1 − 40.163q 2

θ1   =

  L

2A1G(86.351q 1 − 40.163q 2) (2.12)

For cell 2,

θ2   =  L

2A2G(S 2 + S 3 + S 4)q 2

t2− (q 1 − q 2)

S 6t3

=  L

2A2G

2 × 81.621 + 94.248

5.5  q 2 +

 92.376

2.3  q 2 − 92.376

2.3  q 1

θ2   =

  L

2A2G(86.98q 2 − 40.163q 1) (2.13)

Equating 2.12 and 2.13 gives,

L

2A1G(86.351q 1 − 40.163q 2) =

  L

2A2G(86.98q 2 − 40.163q 1)

86.351q 1−

40.163q 2   =  A1

A2

(86.98q 2−

40.163q 1)

=  3695.04

7508.76(86.98q 2 − 40.163q 1)

= 42.793q 2 − 19.7644q 1

⇒ 82.956q 2   = 106.115q 1

or   q 2   = 1.279q 1   (2.14)

Substituting the value of  q 2  in the torque equation gives,

12000

×106 = 7390.08q 1 + 15017.573(1.279q 1) = 26597.556q 1

∴ q 1   = 451169.275 N/m

q 2  = 1.279q 2   = 577045.503 N/m

q 3  =  q 1 − q 2   =   −125876.228 N/m

Page 35: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 35/98

EMT 2407: 2.7 Tutorial 2   31

Figure 2.17: Shear flow distribution

the -ve sign means that the direction of shear flow in wall 3 is opposite that assumed in the

diagram.

Shear stresses:

τ 1 = q 1t1

=  451169.275

4 × 10−3  = 112.79 MPa

τ 2 = q 2t2

=  577045.503

5.5 × 10−3 = 104.9 MPa

τ 3 = q 3t3

=  125873.228

2.3 × 10−3  = 54.727 MPa

The angle of twist can be given by either equation  2.12 or 2.13:

θ =  θ1   =  L

2A1G(86.351q 1 − 40.163q 2)

=  L

2 × (3695.04 × 10−6) × 80 × 109[86.351(451169.275) − 40.163(577045.503)]

⇒   θ

L  = 0.0267 rad/m

2.7 Tutorial 2

1. Fig.   2.18 shows a two-celled tube constructed from a steel plate of uniform thickness  t  with

the cross-section dimensions shown. The overall length of the tube is  L  and it is subjected

to a twisting moment  T .

(a) Derive the expression for the shear stresses in all the walls.

(b) If  a  =96mm, t=6mm and the maximum shear stress is limited to 166MN/m2, calculate

the acceptable value of  T 

[Ans:   τ 1 =   0.142T 

a2

t

  ,  τ 2 =   0.099T 

a2

t

  , τ 3  =   0.0433T 

a2

t

  ; T   =64.64kNm]

Page 36: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 36/98

EMT 2407: 2.7 Tutorial 2   32

Figure 2.18:

2. Fig.   2.19 shows a structural member for a marine vessel.  t1 = 4.5mm, t2  = 6mm, t3 = 3mm,

and the dimensions of the cross-section are as shown. The member is subjected to a torque

of 15kNm. If G=80GPa, determine:

(a) the shear flow distribution,

(b) the shear stress in all the walls

(c) the overall angle of twist per unit length.

Figure 2.19:

[Ans:   q 1=341536N/m,   q 2=394132N/m,   q 3=52597N/m;   τ 1   = 75.9MPa,   τ 2   = 65.69MPa,

τ 3  = 17.53MPa;   θL

 = 0.01257rad/m]

3. Fig.   20(a) shows the cross-section of a structural member for a light aircraft. The member

is made of aluminium alloy with the properties shown in Fig.   20(b). If the member is

subjected to a torque of 200Nm, and a factor of safety of 2.0 is to be used, determine the

allowable thickness t of the material. If the length of the member is  L =4m, determine the

angle of twist.

[Ans:   t = 1mm;  θ=0.0898 rad]

Page 37: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 37/98

EMT 2407: 2.7 Tutorial 2   33

(a) Cross-section

6106.5   ×

4102  −

×

(b) Aluminiumproperties

Figure 2.20:

4. Fig.   2.21 shows the cross-section of a closed non-circular tube. The tube is 2.5m long and

is subjected to a torque of 155kNm. If G=28GPa, determine:

(a) the shear stress in all the walls,

(b) the overall angle of twist.

Figure 2.21:

[Ans:   τ 1 = 34.8MPa, τ 2 = 38.2MPa, τ 3 = 28.1MPa; θ = 0.0192rad ]

Page 38: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 38/98

34

Chapter 3

Deflection Due to Shear

3.1 Introduction

Most beams are subjected to loads that produce both bending moments and shear forces (non-

uniform loading). In these cases, both bending (normal) stresses and shear stresses are developed

in the beam.

However in most cases, the deflection of a beam is calculated by taking into account the bending

moment only. Most structural members are normally subjected to non-uniform bending where

the bending moment varies introducing shear forces given by:

V   = dM 

dxAs a result of these shear forces, transverse sections will slip with respect to the adjacent sections

resulting to a deflection due to shear. The deflection due to shear can be calculated by use of 

strain energy method. The strain energy due to shear is given by:

U s =  τ 2

2G × V ol

3.2 Deriving the Shear Formula

The shear formula in a beam relates the shear force (V) and the shear stress (τ ).

3.2.1 Assumptions

1. The shear stresses acting on a cross-section are parallel to the shear force i.e. parallel to the

vertical sides of the cross-section as shown in figure 3.1(a).

2. The shear stresses are uniformly distributed across the cross-section of the beam, although

they may vary over the height as shown in figure 3.1(a).

The shear stresses acting on one side of an element are accompanied by shear stresses of equal

magnitude acting on perpendicular faces of the element as shown in figure  3.1(b).

At any point in the beam, these complementary shear stresses are equal in magnitude.

Consider an element of the beam of length  dx subjected to non-uniform bending. Because of the

bending moments and shear forces, the element is subjected to normal and shear stresses on both

cross-sectional faces. Only the normal stresses are needed in the derivation of the shear stresses

by considering horizontal equilibrium.

Page 39: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 39/98

EMT 2407: 3.2 Deriving the Shear Formula   35

Figure 3.1:

Figure 3.2:

The normal bending stresses from the flexural formula are:

section mn :   σ1   =  My

I   (3.1)

section m1n1 :   σ1   =  (M  + dM )y

I   (3.2)

We now isolate a subelement  mm1 pp1, a distance  y1  from the neutral surface as shown in figure

3.2(b).

The top surface is free from shear stresses. Its bottom surface, a distance  y1   from the neutral

surface is acted upon by a shear stress  τ .

Consider the cross-section of the beam at  m1  and take an elemental area,  dA, a distance  y   from

the neutral axis. The force acting on the element  dA is given by

F   = σdA   (3.3)

The forces acting on the section of the beam are as shown in figure  3.3(b). From equation 3.3,

F 1   = 

  σ1dA   (3.4)

F 2   =

   σ2dA   (3.5)

Page 40: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 40/98

EMT 2407: 3.2 Deriving the Shear Formula   36

Figure 3.3:

Considering equilibrium of forces in the horizontal direction,

F 3   =   F 2 − F 1   (3.6)

=

   M  + dM 

I   ydA −

   M 

I   ydA   (3.7)

=

   M 

I   ydA +

   dM 

I   ydA −

   M 

I   dA   (3.8)

=

   dM 

I   ydA   (3.9)

At any given cross-section,  dM   and  I  are constants therefore,

F 3  =

 dM 

I  

  ydA   (3.10)

Force F 3, is also given by:

F 3 = τbdx   (3.11)

where  bdx = area of bottom face of element.

⇒   τbdx   =  dM 

dx

   ydA

τ    =  dM 

dx

 1

Ib

   ydA   (3.12)

From the relationship between B.M. and S.F., the term

  dM 

dx   = V   (shear force).Equation 3.12 becomes:

τ  =  V 

Ib

   ydA   (3.13) 

 ydA   is the first moment of area above the level at which the shear stress  τ   is being evaluated

and is denoted by  Q. Therefore the shear stress becomes:

τ  = V Q

Ib  (3.14)

Equation 3.14 is known as the shear formula. For a particular cross-section, the shear force,  V ,

moment of inertia  I   and width  b  are constant. However, the first moment of area  Q   is not andhence the shear stress  τ  varies with the distance  y1   form the neutral axis.

The sign convention for  V   and  Q  are ignored and the terms in the shear formula are treated as

positive quantities. We determine the direction of shear stress by inspection.

Page 41: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 41/98

EMT 2407: 3.2 Deriving the Shear Formula   37

3.2.2 Distribution of Shear Stresses in a Rectangular Beam

Consider the cross-section of a rectangular beam as shown in figure 6.10

Figure 3.4:

The first moment of area of the shaded area, Q  is given by:

Q =  Ay   =

h2 − y1

b h2 − y12   + y1

  (3.15)

=  b

2

h

2 − y1

h

2 − y1 + 2y1

  (3.16)

=  b

2

h

2 − y1

h

2 + y1

  (3.17)

=  b

2

h2

4 − h

2y1 +

 h

2y1 − y21

  (3.18)

=  b

2

h2

4 − y2

1

  (3.19)

Substituting the expression for  Q  into the shear formula;

τ  =  V 

2I 

h2

4 − y2

1

  (3.20)

Shear stresses in a rectangular beam vary quadratically with distance  y1   from the N.A.

at  y1  = ±h2

,  τ  = 0

τ max  occurs at  y1  = 0 (neutral axis)

I    =  bh3

12  (3.21)

τ max   =  V h2

8I    = V h2

8   ·  12

bh3   =  3V 

2bh   (3.22)

=  3V 

2A  (3.23)

The distribution of the shear stress along the height is shown in figure  6.10(b).

Page 42: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 42/98

EMT 2407: 3.2 Deriving the Shear Formula   38

3.2.3 Shear Stress Distribution in Beams with Flanges

Figure 3.5:

Consider the area between  e − f  and the bottom edge of the cross-section shown in figure 3.5.   It

consists of two rectangle:

1st rectangle - flange

Af  = bh

2 − h1

2

  (3.24)2nd rectangle - part of the web

Aw  = th1

2 − y1

  (3.25)

Web: 1st moment of area  Q  of this area is given by:

Q =  bh

2 − h1

2

h1

2  +

h2 −   h1

2

2

+ th1

2 − y1

y1 +

h12 − y1

2

  (3.26)

Simplifying:

Q =  b

8h2

−h21+

  t

8h2

1

−4y1   (3.27)

Substituting Q in the shear formula,

τ    =  V 

8It

b(h2 − h2

1) + t(h21 − 4y21)

  (3.28)

at y1 = 0, τ max   =  V 

8It

b(h2 − h2

1) + th21

  (3.29)

at y1 = ±h1

2 , τ min   =

  V b

8It

h2 − h2

1

  (3.30)

Flange:

Q   =   bh

2 − y1

y1 +

h2

 −y1

2

  (3.31)

=  b

8

h2 − 4y2

1

  (3.32)

τ    =  V 

8I 

h2 − 4y2

1

  (3.33)

Page 43: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 43/98

EMT 2407: 3.2 Deriving the Shear Formula   39

At the junction where the flange meets the web,

at y1  = ±h1

2  , τ    =

  V 

8I h2 − h2

1  (3.34)

or τ    =   tb

τ min   (3.35)

Example 3.2.1.  An I section beam shown in figure  3.6  carries a shear force of  100KN . Sketch 

the shear stress distribution across the section.

Figure 3.6:

Solution

I    =  bh3

12 − (b − t)h3

1

12  (3.36)

=  200 × 3403

12  − (200 − 10)3003

12  (3.37)

= 2.276 × 10−4 (3.38)

Flange:

τ    =  V 

8I 

h2 − 4y21

  (3.39)

at   surface y1  = h

2   τ    = 0 (3.40)

at   y1 = 0.3   τ    =  100 × 103

8 × 2.276 × 10−4

0.342 − 0.32

  (3.41)

= 1.406M P a   (3.42)

Web:

At the junction with the flange, the shear stress suddenly increases from 1.406M P a to 20010

 1.406 =

28.12MP a

τ    =  V 

8It

b(h2

− h21) + t(h

21 − 4y

21)

  (3.43)

τ max   =  100 × 103

8 × 2.276 × 10−4 × 0.01

0.2(0.342 − 0.32) + 0.01 × 0.32

  (3.44)

= 33.062MP a   (3.45)

Page 44: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 44/98

EMT 2407: 3.3 Shear Deflection   40

3.3 Shear Deflection

Consider a section of a beam of length dx and a rectangular elemental strip of height  dy, a distance

y   from the neutral axis shown in Figure 3.7.

Figure 3.7: Portion of a beam subjected to non-uniform bending

The shear stress at a distance  y   from the neutral axis is given by:

τ  = V Q

Ib  (3.46)

where:

V shear force

Q First moment of area of the plane area above the point where τ  is being evaluatedI Second moment of area of the cross-section

b Thickness of the section

For a rectangular section,

Q   =  b

2

h2

4 − y2

I    =

  bh3

12∴ τ    =

  6V 

bh3

h2

4 − y2

The strain energy in the strip of height  dy  is given by:

strain energy =  τ 2

2Gb · dx · dy

Substituting the expression for  τ ,

strain energy =  1

2Gdx

36V 

b2h6h4

16 −h2y2 + y4bdy

Page 45: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 45/98

EMT 2407: 3.3 Shear Deflection   41

The total strain energy for a portion of the beam of length  dx is given by:

dU s   =  18V 2dx

bh6G    h2

−h

2

h4

16 − h2y2 + y4

dy

=  18V 2dx

bh6G

h4

16y − h2y3

3  +

 y5

5

h2

−h2

=  18V 2dx

bh6G

h5

32 − h5

48 +

  h5

160

− h5

32 +

 h5

48 −   h5

160

=

  18V 2dx

bh6G  ·  h5

30 =

 3

5

V 2dx

bhG  (3.47)

The strain energy stored in the whole beam can be obtained by integrating equation  3.47 with

respect to x.

Example

Consider a cantilever beam with point load at the free end shown in Figure  8(a).

(a) Cantilever beam (b) section of the beam, a distance x fromfree end

Figure 3.8: Cantilever with point load at free end

From the free body diagram of a section of the beam, Figure  8(b),

F v  = 0   ⇒   P  − V   = 0

∴ P    =   V M x  = 0   ⇒   M  + P x = 0

∴ M    =   −P x

The strain energy for the whole beam of length  L  is:

U s =  3P 2

5bhG

   L0

dx = 3P 2L

5bhG  (3.48)

Equating the strain energy to the work done by P in deflecting the beam,1

2P vs   =

  3P 2L

5bhG  (3.49)

⇒ vs   =  6P L

5bhG  (3.50)

Page 46: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 46/98

EMT 2407: 3.3 Shear Deflection   42

where  vs   is the deflection due to shear.

The deflection due to bending can be obtained from the differential equation of the deflection

curve,

EI d2vbdx2

  =   −M  = P x

EI dvbdx

  =  P x2

2  + C 1

EI vb   =  P x3

6  + C 1x + C 2

Applying the boundary conditions,

at  x =  L,  dvb

dx

  = 0

  ⇒  C 1 =

P L2

2at  x =  L, vb = 0   ⇒   C 2 =

 P L3

3

∴ vb   =  P x3

6EI  −  P L2

2EI x +

 P L3

3EI 

At the free end, x = 0 and the deflection due to bending is:

vb = P L3

3EI   (3.51)

The total deflection due to bending and shear is:

v   =   vb + vs   (3.52)

=  P L3

3EI   +

  6P L

5bhG  but   I  =

 bh3

12  (3.53)

∴ v   =  4P L3

Eh3b

1 +

  3E 

10G

h

L

2  (3.54)

or  v   =   P L   4

Eh3bL2 +

  6

5bhG

  (3.55)

The moduli of elasticity in tension and shear (E  and  G) of a material are related by:

G =  E 

2(1 + ν )  (3.56)

where  ν  is Poisson’s ratio. For steel,  ν  ≈ 0.3 ⇒ G =   E 2.6

  and   3E 10G

 ≈ 0.78

For most materials, 0.5  <   3E 10G

  <  1 and the contribution of shear to the total deflection depends

onhL

2i.e. deflection is only important for deep beams.

Assignment 1

(a) A cantilever beam of length  L  carries a uniformly distributed load of intensity  q  as shown in

Figure 3.9. The beam has a rectangular cross-section with b and h as the breadth and depth

respectively. Show that the deflection at the free end due to shear is given by:

vs =  3qL2

5Gbh

where  G is the shear modulus of elasticity.

Page 47: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 47/98

EMT 2407: 3.3 Shear Deflection   43

Figure 3.9: Cantilever with uniformly distributed load

(b) If  q  = 20kN/m,  L  = 4m,  b = 150mm, and  h = 200mm, determine the total deflection at the

free end. Take  G = 80GPa and  E =200GPa

Page 48: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 48/98

44

Chapter 4

Bending of Thin Plates

4.1 Simple Concepts of the General Plate Problem

A plate is a three-dimensional structural element, with one of the dimensions (the plate thickness

h or  Lz) being small compared to the in-plane dimensions  Lx   and  Ly. The load on the plate is

applied perpendicular to the center plane of the plate (supports lateral loads).

Figure 4.1: Plate

The purpose of plates in engineering is to cover rectangular or circular area and to support

concentrated or distributed loading normal to the plane of the plate.Examples of application of plates:

•   manhole covers

•  sewage hole covers

•  Pressure diaphragm1 e.g in safety or control devices

The analysis of plates involves the determination of shear forces, bending moments, stresses anddeflections.

4.1.1 Assumptions

The following assumptions are made in the derivation of the governing equations:

•  The unloaded plate is thin, flat with uniform thickness  h

•  The material of the plate is homogenous, isotropic and linearly elastic.

•  The middle plane of the plate is stress free, i.e. the middle plane is the neutral surface.

1a diaphragm is a sheet of a flexible material anchored at its periphery and most often round in shape. It serveseither as a barrier between two chambers, moving slightly up into one chamber or down into the other dependingon differences in pressure.

Page 49: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 49/98

EMT 2407: 4.2 Rectangular Plate   45

•  The normal stresses in the direction transverse to the plate can be neglected i.e.   σz  = 0

•  Points that lie on a line perpendicular to the center plane of the plate remain on a straight

line perpendicular to the center plane after deformation.

•  The deflection w  of the plate is small compared to the plate thickness. The curvature of the

plate after deformation can then be approximated by the second derivative of the deflection

w.

•  Loads are applied in a direction perpendicular to the center plane of the plate.

4.2 Rectangular Plate

Consider an element of the material shown in Figure  4.2,

(a) Plate (b) Element of the plate

Figure 4.2: Plate under pure bending

M y   and  M x  are the bending moments per unit length and are assumed to be positive as drawn

and act about the middle of the plate.

Above the neutral surface, the material is in a state of biaxial compression and below it in biaxial

tension. The curvature of the mid-plane are denoted by:1

Rx→   (x-z plane)

1

Ry

→   (y-z plane)

At a depth  z  below the neutral surface (N.S), the strains in the x and y directions of a lamina

such as  abcd  are:

εx  =  z 

Rx

and εy  =  z 

Ry

(4.1)

The general stress-strain relationships for plane stress state are:

εx   =  σx

E  − ν 

σyE 

  =  z 

Rx

εy   =  σy

E  − ν 

σxE 

  =  z 

Ry(4.2)

Page 50: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 50/98

EMT 2407: 4.2 Rectangular Plate   46

Multiplying equation 4.1 by ν , and adding to equation 4.2 gives,

σyE 

 (1 − ν 2) =   z   1

Ry+

  ν 

Rx∴ σy   =

  Ez 

1 − ν 2

  1

Ry+

  ν 

Rx

  (4.3)

and  σx   =  Ez 

1 − ν 2

  1

Rx+

  ν 

Ry

  (4.4)

Equations 4.3 and 4.4 show that the bending stresses are a function of the plate curvatures and

are proportional to the distance from the neutral surface.

Equating the internal resisting moments to the applied moments,

M xdy   =   h

2

−h2

σxdydz · z 

M ydx   =

   h2

−h2

σydxdz · z 

Substitute  σy  and  σx  from equations 4.3 and 4.4 and integrate,

M x   =  E 

1 − ν 2

  1

Rx+

  ν 

Ry

   h2

−h2

z 2dz  =  Eh3

12(1 − ν 2)

  1

Rx+

  ν 

Ry

 =  D

  1

Rx+

  ν 

Ry

  (4.5)

M y   =   E 1 − ν 2

  1Ry

+   ν Rx

   h2

−h2

z 2dz  =   Eh3

12(1 − ν 2)

  1Ry

+   ν Rx

 =  D

  1Ry

+   ν Rx

  (4.6)

where  D   =  Eh3

12(1 − ν 2) is known as plate constant or flexural rigidity

From equations 4.3, 4.4, 4.5 and 4.6,

σx   =  Ez 

1 − ν 2

  1

Ry

+  ν 

Rx

 =

 M xD

  Ez 

1 − ν 2

=   M x

Ez 

1 − ν 2 · 12(1

−ν 2)

Eh3   = 12

M xz 

h3

(σx)max   =  12M x

h2

h3  =

 6M xh2

similarly,  σy   =  12M yz 

12

Relating the plate theory to beam theory,

d2w

dx2  =   − M 

EI   = − 1

R  for beam

d2w

dx2   =   −  1

Rx for plate

d2w

dy2  =   −   1

Ryfor plate

Page 51: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 51/98

EMT 2407: 4.2 Rectangular Plate   47

where  w  is the deflection in the  z  direction. The relationship between the applied moments and

curvatures are:

M x   =   −Dd2w

dx2   + ν d2w

dy2

M y   =   −Dd2w

dy2  + ν 

d2w

dx2

in matrix form

  M xM y

  =   −D

  1   ν ν    1

  d2wdx2d2wdy2

  (4.7)

To determine the expressions for the deflections, we pre-multiply both sides of equation  4.7  by

− 1D

  1   ν ν    1

−1

and obtain:

  d2wdx2d2wdy2

 =

  −1

(1 − ν 2)D

  1   −ν −ν    1

  M xM y

  (4.8)

4.2.1 Special Cases

1. For a square plate with  M x   =   M y,   d2wdx2

  =   d2wdy2

  and a state of spherical bending is said to

occur.

2. Total Bending moment  M   is applied to opposite ends of a rectangular plate of width  b  as

shown in Figure 4.3,

Figure 4.3: Bending in a single plane

M x = M 

b  M y  = 0

Equation 4.8 reduces to:

d2

wdx2

  =   −1(1 − ν 2)D

M x = −12(1 − ν 2

)Eh3(1 − ν 2)

 · M b

  = −M EI 

−1

Rx=

  −M 

EI   ⇒  M 

E   =

  I 

Rx

Page 52: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 52/98

EMT 2407: 4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending   48

Therefore the plate reduces to the beam theory. The other curvature is:

d2w

dy2  =

  −1

(1−

ν 2)D(−νM x) =

 νM 

EI   (due to poisson’s effect)

1

Ry=

  νM 

EI 

3. Cylindrical Bending:

If the plate is constrained so that displacement varies in only one direction, a state of 

cylindrical bending is said to occur.

Figure 4.4: Cylindrical Bending

Assuming that w varies with x only so that  d2w

dy2  = 0, the moment-curvature relation becomes:

M x   =   −Dd2w

∂x2  =

  −Eh3

12(1 − ν 2)

−1

Rx

M y   =   −νDd2w

∂y2  = νM x

M x = M 

b  ⇒   M  = M xb

∴ M    =

  Eh3b

12(1 − ν 2)Rx =

  EI 

(1 − ν 2)Rx

Beam stiffness =   EI 

Plate stiffness =  EI 

1 − ν 2

4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending

When loading on the surface of a circular plate is symmetrical about a perpendicular central axis,

the deflection surface is also symmetrical about that axis.

The curvature in the diametral plane  r − z   is:

1

Rr

= −d2w

dr2

Page 53: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 53/98

EMT 2407: 4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending   49

Figure 4.5: Circular Plate

For small values of  w, the slope at any point is:

φ = −dw

dr  ⇒   dφ

dr  = −d2w

dr2

1

Rr

=   −d2w

dr2  =

 dφ

dr

sin φ =  r

Rh

for small angles, sin φ =  φ

∴ φ  =  r

Rh⇒   1

Rh

= φ

r  = −1

r

dw

dr

Consider an element of the plate subjected to bending moments along the edges:

Figure 4.6: Circular Plate

•   M r   - Bending moment per unit length of arc

•   M h  - Bending moment per unit length of radius

This element can be analyzed in the same manner as for rectangular plate:

M r   =  Eh3

12(1 − ν 2)

  1

Rr

+  ν 

Rh

 = −D

d2w

dr2  +

 ν 

r

dw

dr

M r   =  Eh3

12(1 − ν 2)

  1

Rh

+  ν 

Rr

 = −D

1

r

dw

dr  + ν 

d2w

dr2

Page 54: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 54/98

EMT 2407: 4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending   50

The relationship between the bending stresses and bending moments are:

σr   =  Ez 

1

−ν 2

  1

Rr+

  ν 

Rh =  Ez 

1

−ν 2

 ·  12(1 − ν 2)M rEh2

  = 12M rz 

h3

σh   =   Ez 1 − ν 2

  1Rh

+   ν Rr

 =  12M hz 

h3

The maximum stress occurs at  z  = ±h2

(σr)max   =  12M r ·   h

2

h2  =

 6M rh2

(σh)max   =  6M h

h2

4.3.1 Relationship between Load, Shear Force and Bending Moment

Consider an element of a plate under the action of a uniformly distributed load  P  per unit area

and resulting shear forces  Q  per unit length as shown in Figure  4.7. Due to symmetry, there are

no shear forces on the radial sides of the element.

Figure 4.7: Element of a plate

For vertical equilibrium,

Qrdθ + P rdrdθ −

Q + dQ

dr dr

(r + dr)dθ   = 0

Qrdτθ + P rdθ − Qrdθ − dQ

dr dr2dθ − Qdrdθ − dQ

dr rdrdθ   = 0

Simplifying and ignoring higher powers of small quantities, we obtain:

Prdr − Qdr − rdQ

dr dr   = 0

or  dQ

dr  +

 Q

r  =   P    (4.9)

For moment equilibrium,M o = 0 ⇒

M r +

 dM rdr

  dr

(r + dr)dθ − M rrdθ − 2M hdr sin dθ

2  + Qrdθdr   = 0

M rrdθ + rdM r

dr  drdθ + M rdrdθ +

 dM rdr

  dr2dθ − M rrdθ − M hdrdθ + Qrdrdθ   = 0

Page 55: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 55/98

EMT 2407: 4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending   51

Simplifying and ignoring higher powers of small quantities, we obtain:

rdM r

dr  + M r − M h + Qr   = 0 (4.10)

but  M h = D

φr

 + ν dφdr

  and M r

dφdr

 − ν φr

dM r

dr  =   D

d2φ

dr2  + ν 

r dφdr

 − φ

r2

=   D

d2φ

dr2  +

 ν 

r

dr − ν 

 φ

r2

Substituting for M r, M h  and   dM r

dr  in equation 4.10, we obtain:

d2φ

dr2  +

 dφ

dr − φ

r  =

 −Q

D  (4.11)

Equation relates the slope at any radius to the shear force per unit length.

Recall  1

Rr=   −d2w

dr2  =

 dφ

dr

⇒  d2φ

dr2  =   −d3w

dr3

and   φ   =   −dw

dr ⇒  φ

r  = −1

r

dw

dr

Substituting these equations in equation 4.11,

− d3w

dr3 − d2w

dr2  +

 1

r

dw

dr  =   −Q

D

or  d3w

dr3  +

 d2w

dr2 − 1

r

dw

dr  =

  Q

D  (4.12)

Equation 4.12 expresses the variation of the deflection  w  with the radius  r.

Equation 4.11 can be written in a more convenient form as:

d

dr1

r

d

dr (rφ)

  =

  d2φ

dr2   +

 dφ

dr − φ

r   = −Q

D   (4.13)

similarly  d

dr

1

r

d

dr

r

dw

dr

  =

  Q

D  (4.14)

From equation 4.9,  the shear force  Q   is a function of the applied load  P . Multiplying equation

4.9 by rdr  gives:

rdQ + Qdr   =   Prdr

or  d(Qr) =   Prdr

Integrating,  Q   =   1r

   Prdr

∴ Q   =  1

r

   Prdr

Page 56: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 56/98

EMT 2407: 4.3 Circular Plate Under Symmetrical Bending (Axisymmetrical Bending   52

I Plate subjected to uniform pressure P  per unit area

Total force acting at radius  r  = P  · πr2

Shear force per unit length of arc,

Q = π2r2P 

2πr  =

 P r

2

∴d

dr

1

r

d

dr

r

dw

dr

P r

2DIntegrating with respect to r,

1

r

d

dr

r

dw

dr

  =

  P r2

4D  + C 1

d

drrdw

dr   =  P r3

4D  + C 1r

rdw

dr  =

  P r4

16D

C 1r2

2  + C 2

dw

dr  =

  P r3

16D

C 1r

2  +

 C 2r

w   =  P r4

64D +

 C 1r2

4  + C 2 ln r + C 3

The constants C 1,  C 2  and  C 3  can be evaluated from the boundary conditions.

Plate with Fixed Edges

Bondary conditions are:

i. at  r =  R, w = 0

ii. at  r = 0,   dwdr

  = 0

iii. at  r =  R,   dwdr

  = 0

From ii,   dwdr

 → ∞, since this is not practical, we set  C 2 = 0.

dw

dr  =

  P r3

16D +

 C 1r

2

0 = P R3

16D  + C 1R

2   ⇒   C 1  = −P R2

8D

w   =  P r4

64D −  P R2

32Dr2 + C 3

0 = P R4

64D −  P R4

32D + C 3   ⇒   C 3  =

 P R4

64D

w   =  P r4

64D −  P R2

32Dr2 +

 P R4

64D

=  P 

64D[r4 − 2R2r2 + R4] =

  P 

64D[r2 − R2]2

The stresses are given by:

σr  = 12M r

h3  , M r  = −D

d2w

dr2  +

 ν 

r

dw

dr

σr  =

 12M hh3

  , M h  = −D1

r

dw

dr  + ν 

d2w

dr2

Page 57: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 57/98

EMT 2407: 4.4 Tutorial 3   53

w   =  P 

64D[r4 − 2R2r2 + R4] =

  P 

64D[r2 − R2]2

dwdr

  =   P 64D

[4r3 − 4R2r]

d2w

dr2  =

  P 

64D[12r2 − 4R2]

M r   =   −Dd2w

dr2  +

 ν 

r

dw

dr

 =

  P 

16

R2(1 + ν ) − r2(3 + ν )

similarly,  M h   =

  P 

16

R2(1 + ν ) − r2(1 + 3ν )

at  r = 0,

M r  = M h   =

  P R2

16   (1 + ν )

σr  = σh   =  3

8

P R2

h2  (1 + ν )

at  r =  R,

M r   =  −P R2

8

M h   =  −νP R2

8

σr   =  −

3

4

P R2

h2

σh   =   −3

4ν 

P R2

h2

4.4 Tutorial 3

1. Write down the expressions for the deflection and bending moments at the center of a circular

plate of radius  R  loaded and supported as shown in Fig.   4.8.   q  = force per unit area. Take

ν  = 0.3

Figure 4.8: Question 1

[Ans:

w   =   qR4

64DM r  = M h   = 0.08125qR2

]

Page 58: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 58/98

EMT 2407: 4.4 Tutorial 3   54

2. A cast iron disk valve is a flat plate 300mm in diameter and is simply supported. The plate

is subjected to uniform pressure supplied by a head of 60m of water. Find the thickness of 

the disk if the allowable stress is 14MN/m2. Determine the maximum deflection of the plate

at this pressure. For cast iron, E =100GN/m2, ν  = 0.2

[Ans:   h=33.7mm, wmax = 0.061m]

3. A circular steel plate whose diameter is 2.54m and whose thickness is 12.7mm, is fixed at

its edges and is subjected to a uniformly distributed pressure P. The tensile yield stress of 

the steel is 207MN/m2. Determine the maximum pressure that produces initial yielding.

Determine the maximum deflection at this pressure. Take  E  =200GPa, ν  = 0.29.

[P max  = 16.78kPa, wmax = 75mm]

4. A circular opening in the flat end of a nuclear reactor pressure vessel is 254mm in diameter.A circular steel plate 2.54mm thick with a tensile yield stress of 241MN/m2 is used as a

cover for the opening. When the cover is inserted in the opening, its edges are clamped

securely. Determine the maximum internal pressure to which the vessel may be subjected

if a factor of safety of 3 for the cover is to be used. Assume that the maximum pressure in

the vessel is limited by the strength of the cover. Determine the maximum deflection of the

plate at this pressure. Take  E  =200GPa,  ν  = 0.29.

[Hint: Yielding first occurs at the fixed edge.   P max = 42.84kPa, wmax = 0.584mm]

5. A mild steel plate (E =200GPa,   ν =0.29,   σy=315MN/m2) has a thickness   h   =10mm and

covers a circular opening having a diameter of 200mm. The plate is fixed at the edges and

is subjected to a uniform pressure  P .

(a) Determine the magnitude of the yield pressure P y  and the deflection wmax  at the center

of the plate when this pressure is applied. [P y  =4.2MPa,  wmax=0.361mm]

(b) Determine the working pressure based on a factor of safety of  f  = 2.0. [P w=2.1]

6. A circular plate radius  R  and thickness  h, having its edge clamped all round is loaded at

the centre by a concentrated load P. Find equations for

(a) the deflection

(b) radial stress

(c) circumferential stress.

[ans:

w   =  P 

16πD

2r2 ln

  r

R + R2 − r2

σr   =  3P z 

πh

(1 + ν ) ln R

r − 1

σr   =  3P z 

πh

(1 + ν ) ln

 R

r − ν 

]

Page 59: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 59/98

EMT 2407: 4.4 Tutorial 3   55

7. A pressure control system includes a thin steel disk which is to close an electrical circuit by

deflecting 1mm at the centre when the pressure attains a value of 3 MPa. Calculate the

required disk thickness if it has a radius of 0.03 m and is built-in at the edge.   ν  = 0.3  E  =

200 GPa

[h =1.275mm]

8. A circular plate is simply supported round the outer boundary r =  a. If the plate carries a

point load  P  at the centre, derive the deflected shape of the plate and expressions for the

radial and circumferential bending moments.

Ans:

w   =  P 

16πD2r2 ln

 r

a +

 3 + ν 

1 + ν (a2

−r2)

M r   =  P 

4π(1 + ν ) ln

 a

r

M h   =  P 

(1 + ν ) ln

 a

r + 1 − ν 

Page 60: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 60/98

56

Chapter 5

Bending of Curved Beams with Plane Loading

5.1 Introduction

In theory of bending, the bending equation,

I   =

 E 

R  =

 σ

y

was derived by assuming the beam to be initially straight (besides other fundamental assumptions).

However machine members and structures subjected to bending are not always straight as in the

case of crane hooks, chain links, bridge members, building trusses eg in warehouses.

The problem of curved beams can be classified into two:

1. Initially curved beams where the depth of the cross-section is small in relation to the initial

radius of curvature of the beam (Rd

  > 10). Such beams are called slender beams.

2. Beams where the depth of the cross-section is significantly large in relation to the initial

radius of curvature of the beam (Rd

  < 10) - Deeply curved beams.

5.2 Stresses and Strains in Curved Beams - Winkler Bach Analysis

Consider a section of a curved beam OAB as shown in Figure  5.1.

(a) Curved beam before bending (b) Curved beam after bending

Figure 5.1: Nomenclature of a curved beam.

Page 61: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 61/98

EMT 2407: 5.2 Stresses and Strains in Curved Beams - Winkler Bach Analysis   57

5.2.1 Assumptions

i. Plane sections remain plane during bending.

ii. Material obeys Hooke’s law (elastic limit is not exceeded)

iii. Radial strain is negligible ⇒ y =  y

iv. The fibres are free to expand or contract without any constraining effect from the adjacent

fibre.

For a fibre AB on the neutral axis,

AB = A

B

, R1θ =  R2φ⇒   φ =

 R1

R2θ   (5.1)

Strain on fibre C’D’, a distance y from the neutral axis is given by:

εC D   =  C D − CD

CD  =

 (R2 + y)φ − (R1 + y)θ

(R1 + y)θ

=  R2φ + yφ − R1θ − yθ

(R1 + y)θ

but   R1θ =  R2φ

∴   εC D   =  y(φ − θ)

(R1 + y)θ  (5.2)

Substituting the expression for  φ, equation 5.1 in equation 5.2, we obtain:

εC D  =yR1

R2

θ − θ

(R1 + y)θ  =

 y(R1 − R2)

R2(R1 + y)  (5.3)

5.2.2 Case 1 - Slender Beam

y<<R1 ⇒  y can be neglected in relation to R1, i.e., R1 + y ≈  R1. The strain is then given by:

εC D  = y(R1 − R2)

R2R1= y

  1

R2−   1

R1

  (5.4)

From equation 5.4, we can deduce that:

1. The strain is directly proportional to the distance y from the neutral axis.

2. The stress and strain distribution is linear.

3. The neutral axis and the centroidal axis coincide.1

1Transverse forces across the section, in absence of direct forces = 0  ∴

  σdA  = 0 or

  y  1

R2

−   1

R1

EdA  = 0 ⇒

E   1

R2

−   1

R1

  ydA  = 0 ⇒  

 ydA  = 0

Page 62: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 62/98

EMT 2407: 5.3 Position of the Neutral Axis for a Deeply Curved Beam   58

From Hooke’s Law,  σ = Eε

∴ σ  = Ey

  1

R2−   1

R1⇒  σ

y  = E 

  1

R2−   1

R1and from the simple theory of bending,

I   =

 σ

y  =

 E 

R

We can use a modified bending theory to determine the stress distribution, i.e:

I   =

 σ

y  = E 

  1

R2−   1

R1

  (5.5)

If the beam was initially straight,   R1 → ∞   and equation   5.5   reduces to the simple theory of 

bending.

5.2.3 Case 2: Deeply Curved Beams

In this case, the distance y is not negligible when compared to  R1.

The strain distribution is no longer directly proportional to y i.e, the stress and strain distribution

are non-linear.

The neutral axis no longer passes through the centroid.

(a) slender (linear) (b) deeply curved (non-linear-hyperbolic)

Figure 5.2: Strain distribution for curved beams.

5.3 Position of the Neutral Axis for a Deeply Curved Beam

For equilibrium of transverse forces in absence of any applied direct load, the net force = 0.

   σdA   = 0

but   σ   =   Eε  = Ey(R1 − R2)

R2(R1 + y)  (Hooke’s law) (5.6)

   σdA   =

  E (R1 − R2)

R2

   y

R1 + ydA = 0

Page 63: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 63/98

EMT 2407: 5.4 Bending Moment on the Cross-section   59

Since E=0 and   R1−R2

R2

= 0 only when  R2 = R1, i.e, no bending,

⇒    y

R1 + y

dA = 0 (5.7)

Which implies that the neutral axis does not coincide with the centroidal axis.

5.4 Bending Moment on the Cross-section

Consider the cross-section shown in Figure 5.3

Figure 5.3: Beam section

The bending moment on the cross-section is given by:

M    =

   σdA · y =

 E (R1 − R2)

R2

   y2

R1 + ydA 

  y2

R1 + ydA   =

   y(y + R1 − R1)

R1 + y  dA =

   y[(R1 + y) − R1]

R1 + y  dA

=

   ydA − R1

   y

R1 + ydA   (5.8)

From equation 5.7, 

  yR1+ydA = 0,

∴ M  = E (R1 − R2)

R2

   ydA   (5.9)

From Figure 5.4, y =  yc + e, where  e   is the eccentricity, therefore,   ydA   =

   ycdA +

   edA, but

   ycdA = 0

∴    ydA   =   Ae

M    =  E (R1 − R2)

R2· Ae

rearranging,  M 

Ae  =

  E (R1 − R2)

R2(5.10)

Page 64: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 64/98

EMT 2407: 5.4 Bending Moment on the Cross-section   60

Figure 5.4: Section of a curved beam

From equation 5.6,

E (R1 − R2

R2=

  σ

y(R1 + y)

∴ σ   =  My

Ae(R1 + y)  (5.11)

which is the general bending equation for a deeply curved beam.

5.4.1 Terminologies used with Curved Beams

y is measured from the neutral axis and is considered positive when measured away from the

centre of curvature.

M is considered positive when it tends to decrease R (increase curvature).

From equation 5.11,

σi = −Mh1

Aea ;   σo  =

 M h2

Aec  (5.12)

which implies that:

•  The stress is always greater at the inside radius.

•  The neutral axis moves towards the centre of curvature.2

5.4.2 To determine  R1

Rectangular section

We need to determine   R1, since   Rc   can be easily determined. Recall that for no applied load,

   yR1+y

dA = 0. Consider an element, a distance  r  from the center of curvature:

y = r − R1   ⇒   R1 + y  =  r dy  =  drdA =  bdy   =   bdr

  y2

R1+ydA  =  Ae, for Ae to be positive, it implies that e should be positive, i.e measured from the N.A away

from the centre of curvature.

Page 65: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 65/98

EMT 2407: 5.4 Bending Moment on the Cross-section   61

Figure 5.5: Rectangular section   y

R1 + ydA   =

   r − R1

r  dA =

   dA −

   R1

r  dA = 0 (5.13)

=   A − R1

   dA

r  = 0 (5.14)

⇒ A   =   R1

   dA

r  (5.15)

∴ R1   =  A

   dAr

(5.16)

For a rectangular beam,3 dA =  bdr, and  A =  bd

   dA

r  =   b

   ca

dr

r  = b ln

 c

a

⇒ R1   =  bh

b ln   ca

=  h

ln   ca

e   =   Rc − R1

I-section

The section can be treated as a composite section consisting of three rectangles.

For the top flange,    dA1

r  =

   a+h1a

b1dr

r  = b1 ln

 a + h1

a

For the web,    dA2

r  =

   a+h1+h2a+h1

b2dr

r  = b2 ln

 a + h1 + h2

a + h1

For the bottom flange,    dA3

r  =

   ca+h1+h2

b3dr

r  = b3 ln

  c

a + h1 + h2

3To design a curved beam such that maximum stress=minimum stress,   Mh2Aec

  =  Mh1Aea

 ⇒   h1h2

=   ac

  and  R1 =   2aca+c

Page 66: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 66/98

EMT 2407: 5.4 Bending Moment on the Cross-section   62

Figure 5.6: I - section

For the whole section,   dA

r  = b1 ln

 a + h1

a  + b2 ln

 a + h1 + h2

a + h1+ b3 ln

  c

a + h1 + h2

and,

R1  =   b1h1 + b2h2 + b3h3

b1 ln  a+h1a

  + b2 ln  a+h1+h2a+h1

+ b3 ln   ca+h1+h2

e =  Rc − R1

Example 5.4.1.  A curved rectangular bar has a mean radius of curvature   Rc   = 100mm and a 

cross-section of width b = 50mm and depth h = 25mm as shown in Figure  5.7 . Determine the 

largest tensile and compressive stresses given that the bending moment in the bar is M = 500Nm 

Figure 5.7: Example

Page 67: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 67/98

EMT 2407: 5.4 Bending Moment on the Cross-section   63

Solution

a   =   Rc − h2

 = 100 − 12.5 = 87.5mm

c   =   Rc + h

2 = 100 + 12.5 = 112.5mm

R1   =  h

ln   ca

=  25

ln  112.587.5

= 99.477mm

e   =   Rc − R1  = 100 − 99.477 = 0.523mm

Using the bending equation for curved beams,

σ =

  My

Ae(R1 + y)

Maximum tensile stress 

σmax   =  Mh2

Ae(R1 + h2)

h2  =  c − R1 = 112.5 − 99.477 = 13.023   A =  bh  = 25 × 50 = 1250 × 10−6m2

σmax   =  500 × 13.023 × 10−3

1250 × 10−6 × 0.523 × 10−3 × (99.477 + 13.023) × 10−3

= 88.54 Mpa

Maximum compressive stress;

σmax   =  −Mh1

Ae(R1 − h1)

h1   =   R1 − a = 99.477 − 87.5 = 11.977

σmax   =  −500 × 11.977 × 10−3

1250 × 10−6 × 0.523 × 10−3 × (99.477 − 11.977) × 10−3

=   −104.688 Mpa

Example 5.4.2.  Compare the percentage error 4 computed in calculating the maximum tensile and 

compressive stresses if the initial curvature of the beam was neglected.

solution

For a straight beam,

σmax,min   =   ±M h2

I   = ±Mh

2  ·   12

bh3  =

 6M 

bh2

=   ±   6 × 500

50 × 10−3 × (25 × 10−3)2  = ±96   MP a

%   error, σt   =  96

−88.54

88.54   × 100 = 8.4%

%   error, σc   =  104.688 − 96

104.688  × 100 = 8.3%

4Normally in design, % error between predicted value and measured value should not exceed 5%

Page 68: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 68/98

EMT 2407: 5.5 Combined Direct and Bending Stresses   64

5.5 Combined Direct and Bending Stresses

Most structural members are usually subjected to combined bending and direct stresses5.   In such

cases, the total stress is computed by using the principle of superposition. For a curved beam,

σ =  M y

Ae(R1 + y) ± P 

A, M xx = P  × R

Figure 5.8: Example of a curved beam subjected to combined loading

Example 5.5.1.  A punch press is loaded as shown in Figure  5.9 .

(i) Determine the location of 

(a) the centroidal axis 

(b) the neutral axis 

(ii) Determine the limiting value of P if the resultant stress at point A and B are 44N/mm 2 and 

-31N/mm 2 respectively.

Solution

Table 5.1:Part Ai   xi   Aixi

1 300 × 70 = 21000 35 7350002 380 × 200 = 76000 70+190=260 19.76×106

3 340 × 100 = −34000 70+170=240 -8.16×106  63000 12.355×106

x̄ =

Aixi

Ai

= 12.355 × 106

63000  = 195.79mm

5

Bending moment may be induced in a number of ways:•   due to externally applied moment

•   due to longitudinal eccentric loading

•  due to the member buckling

Page 69: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 69/98

EMT 2407: 5.5 Combined Direct and Bending Stresses   65

(a) Press (b) section AB

Figure 5.9: Punch press

The distance from the centre of curvature to the centroidal axis is given by:

Rc = a + x̄ = 195.79 + 300 = 495.79mm

The distance from the centre of curvature to the neutral axis is given by:

R =  A

   dArDivide the section into three rectangular areas.

Figure 5.10:

   dA

r  1   =

   370300

300dr

r  =

300ln r

370300

 = 62.916

   dA

r

  2   =    750

370

200dr

r

  = 200ln r750

370 = 141.314 

  dA

r  3   =   −

   710370

100dr

r  = −100ln r

370300

 = −62.916   dA

r  = 62.916 + 141.314 − 65.176 = 139.054

Page 70: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 70/98

EMT 2407: 5.6 Tutorial 4   66

R =  A

   dAr

=  63000

139.054 = 453.061mm

e   =   Rc − R = 495.061 − 453.061 = 42.729mm

h1   =   R − a = 453.061 − 300 = 153.061mm

h2   =   c − R = 750 − 453.061 = 296.939mm

The bending moment is given by

M  = P (800 + Rc) = −P (800 + 495.79) = −1295.79P N mm

and is taken to be -ve since it tends to reduce curvature.

The total direct stress at any point is determined by superposition of the direct stress and bending

stress using the equation:

σmax,min = P 

A ±   My

Ae(R + y)

At point A,

σmax   =  P 

A +

 Mh1

Aea

44 =  P 

63000 +  1295.79

×153.061P 

63000 × 42.729 × 300 = 2.615 × 10−

4P 

⇒   P    = 168.28kN 

At point B,

σmin   =  P 

A − Mh2

Aec

44 =  P 

63000 −   1295.79 × 153.061P 

63000 × 42.729 × 750 = −1.747 × 10−4P 

⇒  P    = 177.44kN 

The limiting value of P is 168.28kN.

5.6 Tutorial 4

1. Figure 5.11 shows a bracket in the form of a curved beam having a T cross-section. Determine

the magnitude of the maximum tensile stress and maximum compressive stress along section

AB if the bracket is subjected to a load of 150kN. All dimensions are in mm.

[Ans:   σA  = 98.75 MPa (tensile), σB  = 102.29MPa (compressive)]

Page 71: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 71/98

EMT 2407: 5.6 Tutorial 4   67

Figure 5.11: Curved beam

2. A steel bar of diameter d=38 mm is bent into a curve of mean radius, R c=31.7mm. If thebar is subjected to a bending moment of 4.6Nm tending to increase curvature acts on the

bar, find the intensities of maximum tensile and compressive stresses.

Take R1  =   12

Rc +

 R2c −

d2

2[Ans: 0.56MN/m2 (tensile), 1.6MN/m2 (compressive)]

3. Figure 5.12 shows a C-frame subjected to a load P. If the maximum stresses in compression

and tension are 63MPa and 120MPa respectively, determine the limiting value of P. All

dimensions are in mm.

Figure 5.12: Curved beam

[Ans: P = 121 N]

Page 72: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 72/98

EMT 2407: 5.6 Tutorial 4   68

4. Figure   5.13   shows a crane hook lifting a load of P = 150 kN. Determine the maximum

compressive and tensile stress in the critical section AB on the hook.

Figure 5.13: Crane hook

[Ans:   σA= 42.5 MPa (compressive),  σB=82.39MPa]

5. If the maximum stress both in tension and compression is not to exceed 120 MPa, determine

the maximum load that the hook can carry.

[Ans: 218kN]

Page 73: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 73/98

69

Chapter 6

Bending due to Thermal Stresses

6.1 Introduction

When beams are subjected to temperature gradient, they experience thermal strain as shown in

Figure 6.1.

Figure 6.1: Metal strip subjected to a temperature rise

δ T   = α(T )L ⇒ ε =  δ T 

L  = αT    (6.1)

where  alpha   = coefficient of thermal expansion. Different materials have different coefficient of 

expansion.

Figure 6.2: Un-bonded strips with  α1  > α2

By fusing two strips of different materials together, a bimetallic strip is formed which bends undertemperature change due to the different expansion rates of the metals. The bimetallic strip is

used as a sensor in thermostats.

A thermostat is a device for regulating the temperature of a system so that the systems temper-

ature is maintained near a desired set point.

Table 6.1: Examples of  αMaterial   α/oC

Aluminium 2.4×10−

5

Iron (steel) 1.2×10−5

Copper 1.7×10−5

Brass 1.9×10−5

Page 74: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 74/98

EMT 2407: 6.2 Analysis   70

Figure 6.3: bonded strips with  α1 > α2

Common sensors used in thermostats:

•   Bimetallic strip

•  Electronic thermistors (change in resistance with temp change)

•  Electrical thermocouples.

Applications of thermostats:

•  Clothing iron thermostat

•  Toaster oven

•   Air-conditioning unit

•  Wall heater thermostat

•  circuit breakers

•  Cloth drier

6.2 Analysis

Consider a bimetallic strip of length  L, with  α1  > α2  shown in Figure 6.4.

Figure 6.4: Bimetallic strip

When the strip is heated through a  T o C, it will bend since  α1  > α2  and both strips will deform

together introducing compressive stress in strip 1 and tensile stress in strip 2.

Page 75: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 75/98

EMT 2407: 6.2 Analysis   71

Figure 6.5: Bimetallic strip

Metal 2 will exert a compressive force on 1 reducing its free expansion of  α1LT  and metal 1 will

exert tensile a force on metal 2 and further increasing its free expansion of  α2LT 

For longitudinal equilibrium,

P 1 − P 2  = 0 ⇒ P 1 = P 2  =  P    (6.2)

Since  R1 >> h, R1 = R2  =  R.

From theory of bending,M 

  = E 

R ⇒M  =

 EI 

R

  (6.3)

At any section, P 1  and  P 2  constitute a couple  M  = P h

But,

M    =   M 1 + M 2   (6.4)

=  E 1I 1

R  +

 E 2I 2R

  (6.5)

∴ P h   =  E 1I 1 + E 2I 2

R  =

 bh3

12 (E 1 + E 2) (6.6)

P    =   bh2

12R(E 1 + E 2) (6.7)

Direct strain due to bending on the outer fibres of strip 1 is:

ε1 =  h

2R  ∵

I   =

 σ

y  =

 E 

R  (6.8)

or  σ

E   = ε  =

  y

R =

 h

2  ∵ y  =

  h

2R  at outer fibres (6.9)

Direct strain due to bending on the outer fibres of strip 2 is:

ε2  = −h2R

  (6.10)

The force  P 1   =  P   introduces a compressive strain in strip 1 while  P 2   =  P   introduces a tensile

strain in strip 2.

Page 76: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 76/98

EMT 2407: 6.2 Analysis   72

The resultant strain due to the direct strain and thermal strain is equal to the bending strain.

Resultant strain in strip 1  ε1   =   α1T  −   P 

bhE 1(6.11)

Resultant strain in strip 2  ε1   =   α2T  +  P 

bhE 1(6.12)

Subtracting equation 6.12 from 6.11,

ε1 − ε2   =   h

2R − −h

2R

 =

α1T  −   P 

bhE 1

α2T  +  P 

bhE 2

  (6.13)

h

R  = (α1 − α2)T  −   P 

bh

 1

E 1+

  1

E 2

  (6.14)

h

R

  = (α1

−α2)T 

 −  P 

bhE 1 + E 2

E 1E 2   (6.15)

substituting the value of P from equation 6.7 in equation 6.15, we get:

h

R  = (α1 − α2)T  −   bh2

12R(E 1 + E 2) ·   1

bh

E 1 + E 2E 1E 2

  (6.16)

= (α1 − α2)T  −   h

12R

E 21  + 2E 1E 2 + E 22E 1E 2

(6.17)

h

R

1 +

 E 21 + 2E 1E 2 + E 22E 1E 2

  = (α1 − α2)T    (6.18)

h

R12E 1E 2 + E 21 + 2E 1E 2 + E 22

E 1E 2

  = (α1 − α2)T    (6.19)

or  h

R  =

  12E 1E 2E 1 + E 2 + 14E 1E 2

(α1 − α2)T    (6.20)

For most thermostats, E 1 = E 2  =  E  and  h  =   d2

 where d is the total depth of the bimetallic strip.

1

R  =

  12E 2

16E 2(α1 − α2)T 

h  =

  3

4h(α1 − α2)T    (6.21)

or  1

R  =

  3

2d(α1 − α2)T    (6.22)

Page 77: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 77/98

EMT 2407: 6.3 Stresses in Bimetallic Strips   73

6.3 Stresses in Bimetallic Strips

6.3.1 Bending Stress

The bending moment in each strip is given by:

M 1  =  M 2  =  M    =  EI 

R  = EI  ·   3

2d(α1 − α2)T    (6.23)

whereI    =  b

12

d

2

3=

 bd3

96  (6.24)

Maximum bending stress occurs at  y =   d4

,

σmax   =  M d

4

I   = EI 

·

  3

2d(α1

−α2)T 

 ·

 d

4 ·

 1

I   (6.25)

=   ±3

8E (α1 − α2)T    (6.26)

Figure 6.6: Bending stress Distribution

6.3.2 Direct Stress

From equation 6.7,

P    =  bh2

12R(E 1 + E 2) =

  bd2E 

24R  (6.27)

=  bd2E 

24   ·  3

2d(α1 − α2)T   = Ebd

16   (α1 − α2)T    (6.28)

σd   =   ∓P 

A = ∓Ebd

16  (α1 − α2)T  ·   1

bd2

= ∓1

8E (α1 − α2)T    (6.29)

6.3.3 Combined Stress

The total normal stress is obtained by superposition of the direct and bending stresses.

At the upper surface,

σT    =   38

E (α1 − α2)T  −  18

E (α1 − α2)T    (6.30)

=  E 

4 (α1 − α2)T    (6.31)

Page 78: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 78/98

EMT 2407: 6.4 Types of Thermostats Bimetallic Strips   74

At the interphase,

σT    =   ±3

8E (α1 − α2)T  ±  1

8E (α1 − α2)T    (6.32)

=   ±E 2

 (α1 − α2)T    (6.33)

At the lower surface,

σT    =   −3

8E (α1 − α2)T  +

 1

8E (α1 − α2)T    (6.34)

=   −E 

4 (α1 − α2)T    (6.35)

Figure 6.7: Normal stress Distribution

6.4 Types of Thermostats Bimetallic Strips

6.4.1 Simply Supported Beam Type

Figure 6.8: Simply supported strip

Page 79: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 79/98

EMT 2407: 6.4 Types of Thermostats Bimetallic Strips   75

From Figure 6.8,

R2 = (R − δ )2 + L

2 2

(6.36)

=   R2 − 2Rδ  + δ 2 + L2

4  (6.37)

⇒ 2Rδ − δ 2 =  L2

4  (6.38)

since the deflection is small, δ 2 → 0 (6.39)

∴ 2Rδ    =  L2

4  (6.40)

or  δ    =  L2

4  ·   1

2R  (6.41)

but  1

R   =  3

2d (α1 − α2)T    (6.42)

∴ δ    =  L2

4  ·   3

4d(α1 − α2)T    (6.43)

The term   34

(α1 − α2) = K s  is known as the strip deflection constant and is used by manufacturers

in classifying bimetallic strips.

δ  = L2

4dK sT    (6.44)

Equation 6.44 is known as the free deflection of the strip.

Restraining Force

If a restraining force W was applied to restrain the strip from deflecting, from simple theory of 

bending,

δ    =  W L3

48EI   =

 L2

4dK sT    (6.45)

⇒ W    =  48K sEI L2T 

4dL3  =

 12K sEI T 

d  but  I  =

 bd3

12  (6.46)

Hence  W    =  K sEbd2

L

  T    (6.47)

Manufacturers have also specified another constant:   F s   =   E 4

  which is known as the strip force

constant.

⇒ W   = 4K sF sbd2

L  T    (6.48)

Page 80: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 80/98

EMT 2407: 6.5 Minimum Volume Concept   76

Figure 6.9: Cantilever strip

6.4.2 Cantilever Type

From Figure 6.9,

(R − δ )2 + L2 =   R2 (6.49)

R2 − 2δR + δ 2 =   R2 (6.50)

2δR  =  L2 ⇒   δ  =   L2

2R  (6.51)

δ    =  L2

d

3

4(α1 − α2)T   =

 L2K sT 

d  (6.52)

Restraining Force

The maximum deflection for a cantilever beam is given by:

W L3

3EI 

  =  L2

d

 K sT 

 ⇒W  =

 3EI K sT L2

L3

d

  (6.53)

W    =  bd2

4LEK sT    (6.54)

=  E 

4

bd2

L  T    (6.55)

=   K sF sbd2

L  T    (6.56)

6.5 Minimum Volume Concept

For proper operation, the free deflection of the bimetallic strip must be applied through a temper-ature range  rT   where  r < 1. For the rest of the temperature range (r − 1), a force  W   is exerted.

Page 81: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 81/98

EMT 2407: 6.5 Minimum Volume Concept   77

Figure 6.10: Restrained deflection

For a cantilever thermostat,

δ    =  L2

d K srT    (6.57)

and  W    =   K sF sbd2

L  (1 − r)T    (6.58)

Multiplying equation 6.57 and 6.58, we get:

W δ    =   K 

−s2F s

L2

d

bd2

L

  (1

−r)rT 2

=   K 2sF sLbd(1 − r)rT 2

V olumeV    =   Lbd

∴ W δ    =   K 2sF sV (1 − r)rT 2

⇒ V    =  W δ 

K − s2F sT 21

r − r2  =

  C 

r − r2

where  C  is a constant. For minimum volume,

dV 

dr

  = 0 =   C  d

dr

  1

r − r2

0 =  (r − r2)0 − 1(1 − 2r)

r − r2

=  2r − 1

r − r2 ⇒ 2r − 1 = 0

∴ r   =  1

2

Therefore, one half of the temperature range is taken up for free deflection while the other half is

used to exert the force W.

Example 6.5.1.   A cantilever bimetallic strip used in a commercial thermostat is to operate at a temperature range   T   = 100oC . The strip has to deflect 2mm and then exert a force of 7N.

Calculate the minimum volume of material of the bimetallic strip required. The strip has a strip

deflection constant  K s = 14 × 10−6/oC and a strip force constant  F s = 46GN/m 2.

Page 82: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 82/98

EMT 2407: 6.6 Tutorial 5   78

Solution

Let  rT   = T 1 = 50oC and (1 − r)T  = T 2  = 50oC.

δ  = L2

d K sT 1   (6.59)

Restraining force W  =  bd2

L  K sF sT 2   (6.60)

Multiplying equation 6.59 and 6.60,

W δ    =   bdLK 2sF sT 1T 2

bdL =  V    =  W δ 

k2sF sT 1T 2

=  7 × 2 × 10−3

(14

×10−6)2

×46

×109

×502

= 621.12 × 10−9 m3 or 621.12 mm3

6.6 Tutorial 5

1. A bimetallic thermostat is 12.5mm wide by 25.0mm long. The thickness of each material is

1.0mm. It is clamped at one end and free at the other end. In operation, the thermostat is

to press a spring set at the free end.

Calculate the maximum temperature range of operation of the thermostat if the force on

the spring is not to exceed 110N and the maximum stress on the thermostat material isnot to exceed 138MN/m2. The Young’s modulus,  E  may be assumed to be the same for

both materials and = 185GN/m2. The difference between the coefficients of expansion of 

the materials is 16×10−6/oC.

[Ans: 93.24oC]

2. Fig.   6.11 shows a bimetallic strip of a commercial thermostat in form of a cantilever beam

havering the following specifications:

•  Strip Deflection Constant,  K s   =17 × 10−6/oC

•  Strip Force Constant, F s   =48 GN/m2

•  Effective Length, L   = 80mm

•  Width,  b   = 6mm

•  Total Thickness,  d   = 0.8mm

•  Thickness of each metal,  h   = 0.4mm

The modulus of elasticity for each material is the same and  α1   > α2. If contact is made

between the thermostat and the rigid stopper when the temperature is raised by 100 oC,

calculate:

(a) the distance,  δ  between the edge of the thermostat and the stopper.

Page 83: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 83/98

EMT 2407: 6.6 Tutorial 5   79

(b) the normal stress at the upper surface, interface and lower surface of the bimetallic

strip.

(c) the force that would be exerted on the stopper if the temperature is further increased

by 40oC. You may assume that:

1

R =

  3

2d(α1 − α2)T 

where  R is the radius of curvature and  T   is the temperature change.

Figure 6.11:

[Ans:   δ =13.6mm; σu=108.8MN/m2, σi = ±217.6 MN/m2, σl=-108.8MN/m2; W =1.567N ]

3. (a) A bi-metal element made of materials whose width,   b, length,   L, thickness of each

material,   d2

 and Young’s modulus, E  are the same is used for making thermostats to be

heated through a temperature range,  T . Show that the expression for the maximum

normal stress, σmax, on the element is given by:

σmax  =  AK sF sT 

where   K s   is the strip deflection constant,   F s   is the strip force constant and   A   is a

numerical constant. Evaluate  A   [A =   83

]

(b) A particular bi-metal element has the following specifications:   K s   = 17 × 10−6/oC,

F s  = 55GN/m2,   b  = 10mm,   L   = 60mm, and  d   = 0.8mm. If the element is used as

a simply supported beam, determine the maximum normal stress if the temperature

range of operation is 60oC. [Ans: 149.6MN/m2]

(c) If the element was restrained from deflecting, determine the restraining force,   W .

[Ans:   W   =23.9N]

4. Fig.   6.12   shows a bimetallic strip used in a commercial thermostat in form of a simply

supported beam of length  L  with the following characteristics:

Strip force constant (F s) = 49 GN/m2

Strip deflection Constant (K s) = 14×10−6 /oCWidth (b) = 6mm

Depth (d) = 0.8mm

Effective length,  L   = 108mm

Page 84: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 84/98

EMT 2407: 6.6 Tutorial 5   80

Figure 6.12:

(a) Determine the temperature change required for the thermostat to make contact with

the spring located at  δ  = 3mm. [Ans: 58.8oC]

(b) If the bimetallic strip deflects the spring by 2mm, determine the total temperature

change subjected to the bimetallic strip. The spring has a stiffness constant of k=1kN/m.[Ans: 118.5oC]

Page 85: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 85/98

81

Chapter 7

Rotating Discs and Cylinders

7.1 Introduction

A rotating disc is a uniformly thin disc which on rotating at constant velocity, is subjected to

stresses induced by centrifugal forces.

Components modeled as uniform discs include:

- gas turbine rotors

- flywheel

- rotating shrink-fit assemblies e.g. shaft-hub assemblies, pulleys

For a thin disc, plane stress is assumed such that we only have

i.   σh  = Circumferential (hoop stress)

ii.   σr  = Radial stress

iii.   σa  = 0 (axial stress)

For a solid disc,

Figure 7.1: Solid disc

Page 86: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 86/98

EMT 2407: 7.2 Circumferential and Radial Strains   82

Consider the element of the disc, a distance   r   from the center. Assuming unit thickness, for

equilibrium of forces in the radial direction, we have:

2σh sin

 dθ

2   · dr + σr · rdθ − σr +

 dσr

dr dr

r + dr

dθ − F    = 0 (7.1)

For small angles, sin dθ

2  ≈   dθ

2  (7.2)

∴ 2σh ·  dθ

2 dr + σrrdθ − σrrdθ − dσr

dr rdrdθ − σrdrdθ − dσr

dr dr2dθ − F    = 0 (7.3)

ignoring higher powers of small quantities,

∴ σhdr − rdσrdr

 dr − σrdr −   F 

dθ = 0 (7.4)

where,  F   is the centrifugal force on the element given by:

F  = mω2r =  ρdr · rdθ · rω2 = ρr2ω2drdθ

where  ω  is the angular speed of the disc and  ρ  is the density of the disc

Equation 7.4 becomes,

rdσrdr

  + σr − σh + ρr2ω2 = 0 (7.5)

or  dσr

dr  +

 σr − σhr

  + ρrω2 = 0 (7.6)

7.2 Circumferential and Radial Strains

Figure 7.2: Deformed element

εh   =  New circumference - initial circumference

initial circumference

=  2π(r + u) − 2πr

2πr  =

 u

r

εr   =  New thickness - Initial thickness

Initial thickness

=  u +   du

drdr + dr − u) − dr

dr  =

 du

dr

Page 87: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 87/98

EMT 2407: 7.2 Circumferential and Radial Strains   83

From the general stress-strain relationships:

εh   =  σh

E  − ν 

σrE 

  = u

r  (7.7)

εr   =   σrE 

 − ν σh

E   =  du

dr  (7.8)

Differentiating equation 7.7 with respect to  r, we get,

r dudr

 − u

r2  =

  1

dσhdr

 − ν dσrdr

1

r

du

dr −   u

r2  =

  1

dσhdr

 − ν dσrdr

du

dr  =

  u

r +

  r

E dσhdr

 − ν dσrdr

From equation 7.8,   1E 

(σr − σh) =   1E 

(σh − σr) +   rE 

dσhdr

 − ν dσrdr

σr(1 + ν ) − σh(1 + ν ) =   r

dσhdr

 − ν dσrdr

(1 + ν )

σr − σhr

  =  dσh

dr − ν 

dσrdr

or  σr − σh

r  =

  1

1 + ν 

dσhdr

 − ν dσrdr

From equation 7.6,

dσrdr

  +   11 + ν 

dσhdr

 − ν dσrdr

+ ρrω2 = 0

(1 + ν )dσrdr

  + dσh

dr − ν 

dσrdr

 + (1 + ν )ρrω2 = 0

dσrdr

 (1 + ν − ν ) + dσh

dr + (1 + ν )ρrω2 = 0

dσrdr

  + dσh

dr + (1 + ν )ρrω2 = 0 (7.9)

Integrating equation 7.9,

σr + σh   =   −(1 + ν ) ρr2ω2

2  + 2A   (7.10)

from equation 7.6  σh − σr − rdσrdr

  =   ρrω2 (7.11)

equation 7.10   −   equation 7.11   (7.12)

2σr + rdσrdr

  =

− 1 + ν 

2  − 1

ρω2r2 + 2A   (7.13)

2σr + rdσrdr

  = 2A − 3 + ν 

2  ρω2r2 (7.14)

Rewriting equation 7.14,

1

r

2σrr + r2

dσrdr

  = 2A − 3 + ν 

2  ρω2r2

or  d

dr

σrr2

− 2Ar +

 3 + ν 

2  ρω2r3 = 0

Page 88: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 88/98

EMT 2407: 7.2 Circumferential and Radial Strains   84

Integrating,

σrr2 − 2Ar2

2  +

 3 + ν 

2  ρω2 r4

4  + B   = 0 (7.15)

or   σr   =   A −  Br2

 −  3 + ν 8

  ρω2r2 (7.16)

From equation 7.10,

σh   = 2A − 1 + ν 

2  ρω2r2 − σr   (7.17)

= 2A − 1 + ν 

2  ρω2r2 − A +

 B

r2 +

 3 + ν 

8  ρω2r2 (7.18)

=   A + B

r2 −  4 + 4ν − 3 − ν 

8  ρω2r2 (7.19)

=   A +  Br2

 −  1 + 3ν 8

  ρω2r2 (7.20)

7.2.1 Solid Disc with Unloaded Boundaries

(a) Rotating disc Disc (b) Stress distribution

Figure 7.3:

Apply boundary conditions,

When  r  = 0, both  σr  and  σh → ∞. This is not practical and so we set  B = 0

When  r  =  R2, σr  = 0

∴ 0 =   A − 3 + ν 

8  ρω2R2

2

⇒ A   =

  3 + ν 

8   ρω2

R2

2

σr   =  3 + ν 

8  ρω2R2

2 − 3 + ν 

8  ρω2r2 =

 3 + ν 

8  ρω2(R2

2 − r2)

σh   =  3 + ν 

8  ρω2R2

2 − 1 + 3ν 

8  ρω2r2

Page 89: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 89/98

EMT 2407: 7.2 Circumferential and Radial Strains   85

at  r =  R2,  σr  = 0 and:

σh   =  3 + ν − 1 − 3ν 

8  ρω2R2

2  = 2 − 2ν 

8  ρω2R2

2

=   1 − ν 4

  ρω2R22

7.2.2 Maximum Speed for Initial Yielding

Tresca’s Criterion (Max shear stress criterion)

Tresca’s Yielding criterion states that:

σmax − σmin2

  = σy

2  = τ max

The maximum stress occurs at  r = 0 and is:

σr  = σh = 3 + ν 

8  ρω2R2

2

Minimum stress  σz  = 0

∴ σmax   =   σy3 + ν 

8  ρω2

yR22   =   σy

ωy   =  1

R2   8σy

(3 + ν )ρ

von-Mises Criterion (Shear strain energy criterion)

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 2σ2y

σ1  =  σ2   =  3 + ν 

8  ρω2R2

2

σ3  = 0   ⇒   σ1 = σy

ωy   =  1

R2   8σy

(3 + ν )ρ

which is the same value as for the Trescas criterion

7.2.3 Increase in Radius

εh   =  1

E (σh − νσr) =

  u

R2∵ r  =  R2

∴ u   =  R2

 (σh

−νσr  but  atr =  R2, σr  = 0

⇒ u   =  R2

E  σh  =

 R2

1 − ν 

4  ρω2R2

2

u   =  ρω2R2

2

4

1 − ν 

Page 90: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 90/98

EMT 2407: 7.2 Circumferential and Radial Strains   86

7.2.4 Change in Thickness

Let the original thickness be  t. The change in thickness in the z-direction is ∆t

εz   =   σzE 

 −   ν E 

(σr + σh) but  σz  = 0

∴ εz   =   − ν 

E (σr + σh) =

 ∆t

t

at  r = 0,  σr  = σh

∆t

t  =   − ν 

2

3 + ν 

8  ρω2R2

2

∆t   =   − ν 

E 2

3 + ν 

4  ρω2R2

2t

when  r  =  R2, σr  = 0,

∆t

t  =   − ν 

0 +

 1 − ν 

4  ρω2R2

2

 = − ν 

1 − ν 

4  ρω2R2

2

∆t   =   − ν 

1 − ν 

4  ρω2R2

2

t

Figure 7.4: Change in thickness

Page 91: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 91/98

EMT 2407: 7.3 Disc with Central Hole and Unloaded Boundaries   87

7.3 Disc with Central Hole and Unloaded Boundaries

Boundary conditions:

at  r =  R1,  σr  = 0 and at  r  =  R2, σr  = 0

0 =   A −   B

R22

− 3 + ν 

8  ρω2R2

2

0 =   A −   B

R21

− 3 + ν 

8  ρω2R2

1

⇒ B = 3 + ν 

8  ρω2R2

1R22, A =

 3 + ν 

8  ρω2(R2

1 + R22)

∴ σr   =  3 + ν 

8  ρω2

R21 + R2

2 − 2R21R2

2

r2  − r2

σh   =

  3 + ν 

8   ρω2

R2

1 + R2

2 − 2R2

1R22

r2   − 1 + 3ν 

3 + ν   r2

Maximum σh  occurs at  r =  R1

σhmax  = 3 + ν 

8  ρω2

R2

1 + R22 − 1 + 3ν 

3 + ν  r2

Maximum σr  occurs at  r =√ 

R1R2. Stresses are either zero or tensile

7.4 Disc Shrunk onto a Shaft

Applied in shaft-hub assemblies.

Use shrink-fit (interference fit) between components instead of mechanical fittings e.g. keys and

keyways, rivetting, bolts etc.

Same principle used for compound cylinders applies.

At the mating surface, we have radial compressive stresses set up by the shrink fit and on rotation,

radial tensile stresses are set-up. It is therefore necessary to ensure that the shrink-fit stress is

always greater than the rotational stresses to avoid the disc running free from the shaft.

Figure 7.5: Free body diagrams of shrink-fit components

Let

δ    = shrinkage between the hub and the shaft.

= difference in radius between the mating surfaces

= uhub − ushaft

Page 92: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 92/98

EMT 2407: 7.4 Disc Shrunk onto a Shaft   88

when the assembly is stationary,  ω = 0 and the contact pressure is  P c. Therefore,

σr   =   A −  B

r2

σh   =   A + Br2

We can determine the contact pressure by using a similar analysis to that of compound cylinders.

Applying the boundary conditions:

Considering the hub,

at  r  =  R1, σr  = −P c

at  r =  R2   =   σr  = 0

∴ −P c   =   A −  B

R21

(7.21)

0 =   A −   B

R22

(7.22)

subtracting equation 7.22 form 7.21,we obtain:

−P c = −B   1

R21

−   1

R22

  ⇒   B  =

  R21R2

2

R22 − R2

1

Eliminating  B,

−P cR21   =   AR2

1 − B

subtracting 0 =   AR22 − B

−P cR21  = −A(R2

2 − R21)   ⇒   A =

  P cR21

R22 − R2

1

The radial and circumferential strains become:

σr   =  P cR

21

R22 − R2

1

1 − R2

2

r2

σh   =  P cR

2

1R22 − R2

1

1 +

 R2

2r2

Considering the shaft,

σr  and  σh → ∞   at   r = 0 ⇒ B  = 0

∴ σr  = σh   = = A  = −P c  everywhere on the shaft

For the hub,

εh  =

  uh

R1 =

  1

E (σh − νσr) =

  1

P cR21 + R2

2

R22 − R2

1 + νP c

uh   =  R1P c

P c

R21 + R2

2

R22 − R2

1

+ ν 

Page 93: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 93/98

EMT 2407: 7.4 Disc Shrunk onto a Shaft   89

For the shaft:

εh =  usR1

=  1

E (σh − νσr) =

  1

E (−P c + νP c)

us   =   −P cR1

E   (1 − ν )

δ    =   uh − us

=  R1P c

P c

R21 + R2

2

R22 − R2

1

+ ν 

+ P cR1

E   (1 − ν )

=  R1P c

P c

R21 + R2

2

R22 − R2

1

+ ν  + 1 − ν 

=  R1P c

E P 

c

R21 + R2

2 + R22 − R2

1

R22 − R21

=  R1P c

P c

2R22

R22 − R2

1

⇒ P c   =  Eδ (R2

2 − R21)

2R1R22

Loosening speed

When rotating freely, σr  = 0 at the interface.

•   Hub can be considered as a disc with a central hole and unloaded boundaries

σh   =  3 + ν 

8  ρω2

R2

1 + R22 − 2R2

1R22

r2  − 1 + 3ν 

3 + ν  r2

at  r  =  R1   σh   =  3 + ν 

8  ρω2

R2

1 + R22 − 1 + 3ν 

3 + ν   r2

uh   =  R1

E  (σh − νσr) =

 R1

3 + ν 

8  ρω2

R21 + R2

2 − 1 + 3ν 

3 + ν   r2

• Shaft can be considered as a solid disc with unloaded boundaries.

At the loosening speed,

δ  = uh − us

Example 7.4.1.  A solid steel disc of small constant thickness has a steel ring of outer diameter 

610 mm and same thickness shrunk onto it. The assembly has an interface diameter of 457mm. If 

the interface pressure is reduced to zero at a rotational speed of 3000rpm, calculate the difference 

in diameters of the mating surfaces of the disc and the ring before assembly and the interface 

pressure. Take  ν  = 0.29  and  E  =207 GN/m 2

Page 94: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 94/98

EMT 2407: 7.5 Disc with Loaded Outer Boundary   90

7.5 Disc with Loaded Outer Boundary

Rotor discs normally have a large number of blades mounted on the outer boundary layer. These

will themselves have a centrifugal force component acting at the periphery of the disc. Given themass of each blade, its effective centre of mass and the number of blades, we can compute the

total force acting on the outer surface. Dividing this force by the area of the outer surface gives

us the required value of  σr  to be used as a boundary condition.

F c  =  N  × ω2 × re

and,

at  r =  R2, σr  =  F c2πR2t

Example 7.5.1.   A steel rotor disc of uniform thickness 50mm has an outer rim of diameter 750mm and a central hole of diameter 150mm. There are 200 blades each of mass 0.22kg at 

an effective radius of 430mm pitched evenly around the periphery of the rotor. Determine the 

rotational speed at which yielding first occurs according to the maximum shear stress criterion.

Yield stress in simple tension for the steel is 700MN/m 2,   ν   = 0.29,   ρ   = 7300kg/m 3 and   E   =

207GN/m 2

Solution

centrifugal force caused by each blade, =   mω2re

= 0.22ω2 × 0.43 = 0.0946ω2

Total centrifugal force  F    = 200 × 0.0946ω2 = 18.92ω2

Radial stress on the outer surface,

σr|r=R2  =

  F 

2πR2t =

  18.92ω2

2π × 0.375 × 0.05 = 160.598ω2

General expressions for radial and hoop stress are:

σr   =   A −  B

r2 −  3 + ν 

8  ρω2r2

σh   =   A −  B

r2 +

 1 + 3ν 

8  ρω2r2

Boundary conditions:

at  r =  R1 = 0.075, σr  = 0

at  r =  R1 = 0.375, σr  = 160.598ω2

Applying Boundary conditions,

A − 177.78B   = 16.89ω2 (7.23)

A − 7.11B   = 582.77ω2 (7.24)

Page 95: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 95/98

EMT 2407: 7.6 Disc of Uniform Strength   91

Equation 7.24 - 7.23 gives,

170.67B   = 565.88ω2

⇒ B   = 3.316ω2

A   = 606.35ω2

and the general equations for the radial and hoop stress become:

σr   = 606.35ω2 − 3.316ω2

r2  − 3002.125ω2r2

σh   = 606.35ω2 + 3.316ω2

r2  + 1706.375ω2r2

(σr)max  occurs at  dσr

dr   = 0

dσrdr

  =   −r2(0) − 2r × 3.316ω2

(r2)2  − 2 × 3002.125ω2r = 0

6.632ω2

r3  = 6004.25ω2r

r4 =  6.632

6004.25  ⇒   r = 0.182

(σr)max   = 606.35ω2 − 3.316ω2

0.1822  − 3002.125ω2 × 0.1822 = 406.78ω2

The maximum circumferential stress occurs at  r =  R1

σh  = 606.35ω2 + 3.316ω2

0.0752  + 1706.375ω2 × 0.0752 = 1186.26ω2

at  r =  R1,  σr  = 0

σmax   = 1186.26ω2

σmin   = 0σmax − σmin

2  =

 σy2

  ⇒   σmax=σy

1186.26ω2 = 700 × 106 ⇒   ω  = 768.173ω2 rad/s

N    =  60ω

2π  = 7335.5 rpm

7.6 Disc of Uniform Strength

A disc of uniform strength is one in which the values of radial and circumferential stresses are

equal in magnitude for all values of the radius  r. This means that the disc of uniform strength

must have varying thickness.

In practice, components such as rotor of a steam turbine which have constant strength throughout

are designed by varying their thickness. centrifugal force on the element is given by:

F   = ρ · dr · t · rdθω2r =  ρω2tdrdθr2 (7.25)

Page 96: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 96/98

EMT 2407: 7.7 Tutorial 6   92

Figure 7.6: Disc with varying thickness

Considering equilibrium of forces in the radial direction,

2σdθ

2 tdr + σrtdθ − σ(r + dr)dθ(t + dt) − F    = 0

σtdrdθ + σrtdθ − σrtdθ − σtdrdθ − σrdtdθ − σdrdtdθ − ρω2tdrdθr2 = 0

Ignoring products of small quantities,

σrdt + ρtω2r2dr   = 0

dt

t  =   −ρω2r

σ  dr

integrating, ln t   =   −ρω2r2

2σ  + A

Applying the boundary conditions,

at  r = 0, t =  to

∴ ln to   =   A

ln t   =   −ρω2r2

2σ  + ln to

or ln  t

to=   −ρω2r2

t   =   e−ρω2r2

7.7 Tutorial 6

1. A steel ring has been shrunk onto the outside of a solid steel disc. The interface radius is

250mm and the outer radius of the assembly is 356mm. If the pressure between the ring

Page 97: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 97/98

EMT 2407: 7.7 Tutorial 6   93

and the disc is not to exceed 34.5 N/mm2 and the circumferential pressure must not exceed

207N/mm2;

(a) Determine the maximum speed at which the assembly can be rotated(b) Determine the stress at the centre of the disc at this maximum speed.

Take ν  = 0.28 and  ρ  = 7570kg/m3

[Ans: 3323 rpm; -11MN/m2]

2. A steel rotor which is part of a turbine assembly has a uniform thickness of 80mm. The

outside diameter of the rotor is 800mm while the inside diameter is 360mm. 240 blades each

of mass 0.16kg are pitched evenly around the periphery of the disc at an effective radius

of 430mm. Calculate the required speed of revolution for the internal radius to change by

0.14mm. Take  ν  = 0.29,  E  = 200GN/m2 and  ρ = 7560kg/m3

[Ans: 3376rpm]

3. A steel rotor disc which is part of a turbine assembly has a uniform thickness of 60mm.

The disc has an outer diameter of 700mm and a central hole of diameter 150mm. If there

are 300 blades each of mass 0.225kg pitched evenly around the periphery of the disc at an

effective radius of 370mm, determine the rotational speed at which the yielding of the disc

first occurs according to the maximum shear stress criterion. The yield stress in simpletension is 550MN/m2. Take  ν  = 0.3,  E  = 200GN/m2, ρ = 7470kg/m3

[Ans: 6870rpm]

4. A steel disc of uniform thickness is hollow and has an outer diameter of 660mm and an inside

diameter of 120mm. The disc is made to rotate at a speed of 600 rad/s and a radial stress

of 92MN/m2 is generated at the outer circumference due to blades attached to the disc. At

this speed, calculate:

(a) the change in inner diameter,

(b) the change in outer diameter.

Take ν  = 0.3, E  = 200GN/m2, ρ = 7740kg/m3

[u1=0.1334mm,  u2=0.218mm]

5. A disc of uniform thickness having inner and outer diameters, 100mm and 400mm respec-

tively is rotating at 5000rpm about its axis. The density of the material of the disc is

7800kg/m3 and Poisson’s ratio is 0.28. Determine the maximum radial and circumferential

stresses, and maximum shear stress. [Ans: (σr)max=19.74MN/m2

, (σh)max=71.09MN/m2

,τ max=35.54MN/m2 ]

Page 98: Solids Andstructures Mehanics IV Notes

7/17/2019 Solids Andstructures Mehanics IV Notes

http://slidepdf.com/reader/full/solids-andstructures-mehanics-iv-notes 98/98

EMT 2407: 7.7 Tutorial 6   94

6. A steam turbine rotor is to be designed so that the radial and circumferential stresses are

to be the same and constant throughout and equal to 90MN/m2, when running at 4000rpm.

If the axial thickness at the centre is 20mm, what is the thickness at a radius of 400mm?

Assume the density of the material of the rotor is 7800kg/m3.

[Ans:   t= 5.93mm]

Assignment 3

Thermal stresses arise in the rotor of the turbine of a gas turbine engine, or steam turbine when

there are radial variations in temperature due to the action of cooling air which is applied to the

surfaces of the disc in order to prevent it from reaching excessive temperature. In these turbines,

the thermal effect is of interest because it tends to offset the radial and circumferential stressescaused by rotation.

If plane stress is assumed, equilibrium of an element of the disc requires that:

dσrdr

  + σr − σh

r  + ρω2r = 0 (7.26)

For a linear thermo-elastic material, the stress-strain relationships are:

εr  = du

dr  =

  σrE 

 − ν σhE 

  + αT    (7.27)

εh =  ur

  =   σhE 

 − ν σrE 

  + αT    (7.28)

where  T  = temperature change in the disk which is a function of the radial position  r, measured

from the centre of the disc and  α is the linear coefficient of expansion.

(a) Show that the general expressions of radial and circumferential stress with thermal effects are:

σr   =   A −  B

r2 −  3 + ν 

8  ρω2r2 − αE 

r2

   T  · rdr