solution manual for advance math

Upload: marie-dianne-tampos

Post on 06-Apr-2018

566 views

Category:

Documents


5 download

TRANSCRIPT

  • 8/3/2019 Solution Manual for Advance Math

    1/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    1

    /

  • 8/3/2019 Solution Manual for Advance Math

    2/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    2

    TECHNOLOGICAL INSTITUTE OF THE PHILIPPPINES

    #938 Aurora Blvd., Cubao, Quezon City

    College of Engineering and ArchitectureDepartment of Electronics Engineering

    FINAL PROJECT

    In Partial Fulfillment of the RequirementsNeeded for the completion of the subject

    Advanced Engineering Mathematics for ECE(EC353)

    Submitted By:Agustin, John Christopher V.Arrobang, Ma. Bernadette T.

    Moreno, Kendrick Kent L.Susbilla, Mark Anthony F.

    Submitted To:Engr. Armil S. Monsura

    Instructor

    March 18, 2011

  • 8/3/2019 Solution Manual for Advance Math

    3/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    3

    This page intentionally leaved blank.

  • 8/3/2019 Solution Manual for Advance Math

    4/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    4

    This page intentionally leaved blank.

  • 8/3/2019 Solution Manual for Advance Math

    5/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    5

    UNIT 1

    COMPLEX

    NUMBERS

  • 8/3/2019 Solution Manual for Advance Math

    6/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    6

    Example 1.1

    Let z

    8 j3 and z

    9 j 2Find:(a)The real part of z1 and z2. (b) The imaginary part of z1 and z2.(c) The sum z1 z2. (d) The product z1 z2Solutions:(a)The following are the real part of z and z

    Re (z) 8Re (z) 9(b)The following are the imaginary part of z and z

    Im (z) 3Im (z) 2

    (c)Using the general rule for addition of complex numbers,z z (x x) j ( y y )z z (8 9) j ( 3 2 )

    (d)Using the general rule for multiplication of complex numbers,zz (xx yy ) j (xy xy )

    zz (8)(9) (3)(2) j (8)(2) (9)(3))zz 7 8 j 1 1

    z z 17 j

  • 8/3/2019 Solution Manual for Advance Math

    7/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    7

    Example 1.2

    Let z

    8 j3 and z

    9 j2.Find:(a)The difference z z (b) The quotient Solutions:(a)Using the general rule for subtraction of complex numbers,

    z z (x x) j(y y)z z (8 9) j(3 2)

    (b)Using the general rule for division of complex numbers,zz xx yyx y j xy xyx y

    Drill Problem 1.1

    Direction: For items 1 to 9, let z 2 j3 and z 4 j5. Showing the details of your work (inthe rectangular form x jy):1.) (5z 3z)

    z z 1 j5

    zz 8(9) (2)(3)9 2 j 9(3) 8(2)9 2 zz 6685 j 4385

  • 8/3/2019 Solution Manual for Advance Math

    8/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    8

    Solution:First, substitute the values for z 2 j3 and, z 4 j5 then perform it algebraically

    (5z 3z) 5(2 j 3) 3(4j5)(5z 3z) 1 0 j1 5 1 2 j1 5(5z 3z) 22

    2.)

    z

    z

    Solution:Using the general rule for complex conjugate defined as z x jy ,For z 2 j3 and z 4 j5

    To find zz we can use FOIL methodzz (2 j3) (4 j5)zz 8 j10 j12 j15zz 8 15 j12 j10

    3.) Re ZSolution :

    Substituting the value of z 2 j3 to , 1z 1(2 j 3)Get the square of z 2 j3 by using FOIL method

    (5z 3z) 484

    zz 23 j2

  • 8/3/2019 Solution Manual for Advance Math

    9/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    9

    1z 1(2 j 3)(2j3)

    1z 14 j 6 j 6 j9 1z 14 9 j 1 2 1z 15j12After getting the simplified form of , we can now multiply it by the complex conjugate ofthe denominator

    1z 15j12 . 5j125j12By cross multiplication, 1z 5j122 5 j6 0 j6 0 j2144Since j2 -1, we can now simplify the denominator

    1z 5j1225144

    1z 5j12169 Therefore,

    4.) Re (z) , Re (z)Solution: Re (z)Since z 4 j5 we can get z by FOIL method

    z ( 4 j5) (4 j5)z 16 j20 j20 j25

    Re 1z 5169

  • 8/3/2019 Solution Manual for Advance Math

    10/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    10

    z 16 25 j40z 9 j40

    Re (z)Sincez 4 j5 , thereforeRe (z) 4

    Re (z) 4

    5.) Solution:zz 4 j 52 j 3

    Multiply both the numerator and the denominator by the complex conjugate of thedenominator which is 2 j3zz 4 j 52 j 3 2 j 32 j 3zz 8 j 1 0 j 1 2 j154 j 6 j 6 j9 zz 8 1 5 j1 0 j1 24 9

    z

    z 7j2213 Therefore,

    Re (z) 9

    Re (z) 16

    zz 713 j 2233

  • 8/3/2019 Solution Manual for Advance Math

    11/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    11

    6.) , Solution:

    Since z 2j3 and z 4 j 5Multiplying the numerator and the denominator by the denominators complexconjugate, we have,z

    z 2 j 3

    4 j 5 4 j 5

    4 j 5

    zz 8 j 1 2 j 1 0 j151 6 j2 0 j2 0 j25zz 8 1 5 j 2 21 6 2 5 zz 7j2241 Therefore,

    7.) (4z z)Solution:

    Substitute the values for 1 and 2 in the expression then solve it algebraically

    (4z z) 4(2 j 3) (4 j 5)(4z z) (8 j 1 2 4 j 5)Performing binomial expansion,(4z z) (4 j1 7)(4z z) 1 6 j 6 8 j 6 8 j289

    zz 741 j 2241

  • 8/3/2019 Solution Manual for Advance Math

    12/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    12

    (4z z) 16289j136Therefore

    8.) , Solution: Since

    z 2j3 and z 2 j 3Multiplying the numerator and the denominator by the denominators complexconjugate, we havezz 2 j 32 j 3 2 j 32 j 3zz 4 j 6 j 6 j94 j 6 j 6 j9

    zz 4 9 j 1 24 9 zz 5j1213 Thereforezz 513 j 1213

    Multiplying the numerator and the denominator by the denominators complexconjugate, we have

    (4z z)

    273j136

  • 8/3/2019 Solution Manual for Advance Math

    13/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    13

    zz 2 j 32 j 3 2 j 32 j 3

    z

    z 4 j 6 j 6 j

    94 j 6 j 6 j9zz 4 9 j 1 24 9 zz 5j1213 Therefore

    9.) Solution:

    For the numerator: Perform addition of complex numbersz z 2 j 3 4 j 5

    z z 6 j 2For the denominator: Perform subtraction of complex numbersz z 2 j 3 4 j 5z z 2 j 8Substituting the values that we have in performing the addition and subtraction ofcomplex number to the expression and multiplying the numerator and thedenominator by the denominators complex conjugate, we havez zz z 6 j 2 2 j8 2 j8 2 j8z zz z 1 2 j 4 j 4 8 j164 j 1 6 j 1 6 j64 z zz z 1 2 1 6 j4 8 j44 6 4

    zz 513 j 1213

  • 8/3/2019 Solution Manual for Advance Math

    14/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    14

    z zz z 28j4468 Therefore

    Direction: For items 10 to 13, let z x jy. Find the rectangular form.10.)Im(z), Im(z)

    Solution:Im(z)

    z x j yz (x j y)(x j y)z (x j2 xy jy)(x j y)

    z (xy j2xy)(x j y)

    z (x y) j2xy(x j y)

    z (x y)x j2 xy (x y)j y j2xyGrouping like terms,z x xy 2xy j2xy y(x y)

    Therefore

    Im(z)since Im(z) jy

    z zz z 717 j 1117

    Im(z) 3xy y

  • 8/3/2019 Solution Manual for Advance Math

    15/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    15

    Im(z) (jy)Im(z) y

    Im(z)

    y

    11.)Re Solution:Since z x j yMultiply the numerator and the denominator by the denominators complexconjugate, we have 1z 1x j y x j yx j y

    1z x j yx j x y j x y jy 1z x j yx jy 1

    z x j y

    x

    y

    1z xx y jyx yTherefore

    12.)

    Im(1 j)z

    Solution:Perform first z by binomial expansion

    z (x j y)(x j y)z x j x y j x y jy

    Re 1z xx y

  • 8/3/2019 Solution Manual for Advance Math

    16/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    16

    z x j2 xy jyz x j2 xy y

    Then, Im (z

    ) 2xyDealing with (1 j) , we can say that it is just equal to (1 j) in termsof laws of exponents, so we have:(1 j) (1 j)

    (1 j) (1 j)(1 j)(1 j) 1 j j j

    (1 j) 1 1 j 2(1 j) j2(1 j) (j2)

    (1 j) (j)(2)(1 j) (1)(16)

    (1 j) 16Multiplying the answers that we haveIm(1 j)z 16 (2xy)

    13.)

    Re Z

    Solution: 1z 1(x j y)2

    Im(1 j)z 32xy

  • 8/3/2019 Solution Manual for Advance Math

    17/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    17

    Performing the operations, 1z 1(x j y)2

    1z 1(x j y)(x j y) 1z 1x2 j y x j y x j2y2 1z 1x2 y2 j2xy

    Multiply the numerator and the denominator by the denominators complexconjugate, we have 1z 1x2 y2 j2xy x2 y2 j2xyx2 y2 j2xy 1z x2 y2 j2xyx4 x2y2 j2x3y y4 x2y2 j2x3y j 2 x3y j 2 x3y 4 x2y2

    1z x2 y2 j2xyx4 2x2y2 4x2y2 y4

    1z x2

    y2

    j2xyx4 2x2y2 y4 1z x2 y2x4 2x2y2 y4 j2xyx4 2x2y2 y4Well have

    14.)Verify the following laws of conjugation(z z) z zIf 5 j3 and 2 j 4

    Re 1z x yx 2xy y or Re 1z x y(x y)

  • 8/3/2019 Solution Manual for Advance Math

    18/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    18

    Solution: (z z) z z

    (5 j 3) (2 j 4)

    (5 j 3) (2 j 4)7 j 7 jTherefore

    (zz) zzIf 5 j3 and 2 j 4

    (zz) zz(5 j 3)(2 j 4) (5 j 3)(2 j 4)1 0 j 2 0 j 6 j12 10 j20 j6 j1210 12 j14 10 12 j14

    22 j14 22 j14Therefore(zz) zz is correct.15.)Show that j2 -1 , j3 -j , j4 1, and -j , -1 , j , 1 . From the results of theseevaluate j2312 and its reciprocal j -2312

    Solution:

    (z z) z z is correct

    (1) 1For j2

    --1Since j 1 (1) 1(1)(1) j

    For j3

    -jSince j 1 (1) 1(1) 1For j

    4

    1Since j 1

  • 8/3/2019 Solution Manual for Advance Math

    19/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    19

    To evaluate j and j. We need to divide the exponent by 4 and if the results will be0 then j 11 then j j2 then j 13 then j j

    For jSince j 1

    Getting the reciprocal of . -j -j

    11 1

    For 1

    Since j2

    -1

    1j j1j . jj j

    1j j

    For j

    Since j2 -jGetting the reciprocal

    jSince j2 -1

    11 1

    For 1Since j4 1

  • 8/3/2019 Solution Manual for Advance Math

    20/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    20

    For j 23124 578

    Since there is no remainder, we can say that

    For j By laws of exponents, we can say that

    j 1j since j 1Therefore,

    Example 1.3

    For z 1 j, z 1 j and z 3 j 33 ind(a)The modulus r, the principal argument and express each in polar form.(b)All possible arguments(c)The plot of each one in complex plane

    SolutionsFor z(a)The modulus rr (1) (1)

    j 1

    j 1

    r 2

  • 8/3/2019 Solution Manual for Advance Math

    21/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    21

    The principal argument

    Expressing in polar form,

    (b)All possible arguments

    (c)Graph in the complex plane

    or

  • 8/3/2019 Solution Manual for Advance Math

    22/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    22

    For z(a)The modulus r

    r (1)

    (1)

    The principal argument

    Arg z tan yx

    Arg z tan 11Arg z 4

    Since is directed angle from the positive axis to the terminal point z. Here, allangles are measured in the counter clockwise sense. Thus,

    Arg z 4 Arg z 34 Expressing in polar form,

    (b)All the possible arguments

    r 2

    z 2 cos 34 j sin 34 or z 2 34

    argz 34 2n ( n 1, 2, )

  • 8/3/2019 Solution Manual for Advance Math

    23/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    23

    (c)Graph in the complex plane

    For

    (a)The modulus r

    The principal argument

  • 8/3/2019 Solution Manual for Advance Math

    24/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    24

    Expressing in polar form,

    (b)All the possible arguments

    (c)Graph in the complex plane

    Example 1.4

    Given and

    (a)Find the product of and the quotient in rectangular form, without converting to polarform.

  • 8/3/2019 Solution Manual for Advance Math

    25/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    25

    (b)Find the product zz and the quotient Z by converting first to polar form, then back torectangular formSolutions:

    (a)ProductPerform distributionzz ( 2 j2)(j3)zz j6 j6

    Quotient zz 2 j2j3 Multiplying j3 to both numerator and denominator, we havezz 2 j2j3 j3j3zz j6j26j9 Since, j 1 zz 6 j 69 Therefore

    (b)Convert z and z into their polar formConvert z firstr x y

    r (2) (2)

    zz 6 j 6

    z

    z 2

    3 j 2

    3

  • 8/3/2019 Solution Manual for Advance Math

    26/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    26

    r 22Arg z tan y

    x

    Arg z tan 22 since all angles must be in counter clockwise sense,Arg z 4

    Arg z 34

    Now, convert z r x yr 0 3r 3

    Arg z tan yx

    Arg z tan 30

    Arg z 2Now that we have our values converted in polar form, let us get first theproduct of z and zzz rrcos() jsin()

    zz 22 (3) cos34 2 j s i n 34 2zz 62cos 54 jsin 54

  • 8/3/2019 Solution Manual for Advance Math

    27/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    27

    zz 62 22 j 22

    Then, we can also get the quotient of z and zzz rr cos() jsin()zz 223 cos34 2 j s i n 34 2zz

    223

    22

    j 22

    Example 1.5

    Direction: Evaluate the following, expressing the answer in rectangular form(a) (3 j4)Solution:z (3 j4) z (3 j4)

    First, get the magnitude and the principal argument

    r 3 4r 5 tan 43 0 . 9 3

    zz 6 j 6

    zz 23 j 23

  • 8/3/2019 Solution Manual for Advance Math

    28/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    28

    Using De Moivres Formula,z r (cosnjsin n) r

    We can now substitute the values that we computedz 5 (cos 0.93 j sin 0.93 )z 5cos(3)0.93j sin (3)0.93

    (b)(1 j)Solution:

    z ( 1 j) z ( 1 j )First, get the magnitude and the principal argumentr 1 1

    r 2

    tan 11 4Using De Moivres Formula,z r (cosnjsin n) r

    z 2 ( cos 4 j sin 4 )

    z 117j43

    z 64

  • 8/3/2019 Solution Manual for Advance Math

    29/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    29

    Example 1.6

    Find all the roots of the following in rectangular form and plot them(a)j(b)5j12Solutions:(a)j

    Using De Moivres Formula

    z

    r

    cos 2 k

    n r 1 n 2 2 k 0, 1If k 0 we can obtain the 1st root

    1st root 1 cos

    2 2 (0)

    2 j sin

    2 2 (0)

    2

    1st root 1 22 j 22

    If k 1 we can obtain the 2nd

    root2nd root 1 cos 2 2 (1)2 j sin 2 2 (1)2 2nd root 1 ( 22 j 22 )

    1st root 22 j 22

  • 8/3/2019 Solution Manual for Advance Math

    30/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    30

    Graph of the Roots:

    (b)

    If k 0 we can obtain 1stroot

  • 8/3/2019 Solution Manual for Advance Math

    31/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    31

    If k 1 we can obtain the 2nd root

    Graphs of the roots

    Drill Problems 1.2

    Direction: For items 1 to 8, represent the following numbers in polar form. Show the details of your

    work.

    1.)Solution:

    We must first obtain the magnitude and the principal argument

  • 8/3/2019 Solution Manual for Advance Math

    32/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    32

    r 3 2

    t a n

    yx

    t a n 33 4 Since the formula to convert to polar form isz r(cos js in) r

    We can substitute the values that we have in the equation2.) j2,j2

    Solution:(a)j2

    We must first obtain the magnitude and the principal argumentr (0) (2)r 4r 2 t a n yx

    t a n 20 2Since the formula to convert to polar form isz r (cos js in) r

    z 3 2 cos 4 jsin 4 or z 32 4

  • 8/3/2019 Solution Manual for Advance Math

    33/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    33

    We can substitute the values that we have in the equation

    3.) 5Solution:We must first obtain the magnitude and the principal argument

    r (5) 0r 25r 5 tan yx tan 05

    Since the formula to convert to polar form is

    z r (cos j sin) rWe can substitute the values that we have in the equation

    4.) j Solution:We must first obtain the magnitude and the principal argumentr 12 14

    r 0 . 9 3

    z 2 cos

    2 jsin

    2 or z 2

    2

    z 5(cos0jsin0) or 5

  • 8/3/2019 Solution Manual for Advance Math

    34/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    34

    t a n yx

    t an 14 12 1.004Since the formula to convert to polar form is

    z r(cos js in) rWe can substitute the values that we have in the equation

    5.)

    Solution: We must first obtain the magnitude and the principal argumentFor the numerator,

    32j2r 32 (2)

    r 2 2 t a n yx

    tan1 232

    z 0 . 9 3(cos1.004jsin1.004) or z 0.93 1.004

  • 8/3/2019 Solution Manual for Advance Math

    35/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    35

    0.44For the denominator,

    2 j 23r 2 23

    r 223

    t a n yx t a n 232 2.70

    We can now perform the division in polar form,zz rr zz 22223 0.442.70zz 3 2.26Converting to its polar form, we can come up to

    zz 3cos(2.26) jsin(2.26)or zz 3 2.26

  • 8/3/2019 Solution Manual for Advance Math

    36/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    36

    6.) Solution:

    We must first obtain the magnitude and the principal argumentFor the numerator,32j2

    r 32 (2)

    r 2 2

    t a n yx tan 232 0 . 4 4

    For the denominator,

    2 j 23r 2 23

    r 223

    t a n yx t a n 232 2 . 7 0

  • 8/3/2019 Solution Manual for Advance Math

    37/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    37

    Using the general equation for finding the equation for the division ofcomplex numbers in polar formz

    z r

    r

    zz 22223 0.442.70Therefore

    7.)

    Solution: We must first obtain the magnitude and the principal argumentFor the numerator,

    6 j5r (6) (5)r 6 1

    t a n yx tan1 56 0.69 2 . 4 5

    For the denominator,r (0) (3)

    r 9r 3 t a n yx

    zz 3cos() jsin() or zz 3

  • 8/3/2019 Solution Manual for Advance Math

    38/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    38

    tan1 30

    2

    Using the general equation for finding the equation for the division ofcomplex numbers in polar formzz rr zz 613 2.45 2

    8.) Solution:

    We must first obtain the magnitude and the principal argumentFor the numerator,2 j 3r (2) (3)r 4 9r 1 3

    t a n yx t a n 32 0 . 9 8

    zz 613 cos (0.87) jsin(0.87) or zz 613 0.87

  • 8/3/2019 Solution Manual for Advance Math

    39/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    39

    For the denominator,5 j 4

    r (5)

    (4)

    r 2 5 1 6r 4 1 t a n yx tan1 45 0.67

    Using the general equation for finding the equation for the division ofcomplex numbers in polar formzz rr zz 1341 0.980.67

    For items 9 through 11, find all the roots of the given expression in rectangular form. Plot the rootsin the complex plane.9.)1

    Let z1,We must first find the values for r and ,r x y Arg z tan yx

    r (1)0 A r g z t a n r 1 A r g z

    zz cos(0.31) jsin(0.31) or zz 53341 0.31

  • 8/3/2019 Solution Manual for Advance Math

    40/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    40

    r 1 n 4 , k 0, 1, 2, & 3

    Using De Moivres formula,z r cos 2 kn jsin 2 kn We can now find the first root,

    if k0,1st root 1 cos 2 (0)4 jsin 2 (0)4

    1st root cos4 jsin

    41st root 22 j 22 For the second root,

    if k 1,2nd root 1 cos 2 (1)4 js in 2 (1)4

    2nd root cos 34 js in 34

    For the third root,if k 2,

    3rd root 1 cos 2 (2)4 jsin 2 (2)4 3rd root cos 54 jsin 54

    2nd root 22 j 22

    3rd root 22 j 22

  • 8/3/2019 Solution Manual for Advance Math

    41/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    41

    For the fourth root,

    if k 3,

    Graph in the complex plane

    10.)Let

    We must first find the values for r and ,

  • 8/3/2019 Solution Manual for Advance Math

    42/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    42

    r5 Argz0.927295218r 5 0.927295218n 4 , k 0, 1, 2, & 3Using De Moivres formula,

    z r cos 2 kn jsin 2 kn We can now find the first root,

    if k 0,1st root 5 cos 0.9272952182(0)3 js in 0.9272952182(0)3

    For the second root,

    if k 1,2nd root 5 cos 0.9272952182(1)3 js in 0.9272952182(1)3 For the third root,

    if k 2,

    3rd root 5

    cos0.9272952182(2)

    3 jsin0.9272952182(2)

    3

    1st root 1.628937 j0.5201745

    2nd root 1.26495 j1.1506

    3rd root 0.36398 j1.670788

  • 8/3/2019 Solution Manual for Advance Math

    43/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    43

    Graph in the complex plane

    11.)

    Let

    We must first find the values for r and ,

    Using De Moivres formula,

  • 8/3/2019 Solution Manual for Advance Math

    44/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    44

    We can now solve for the first root,if k 0

    1st root 1

    cos0 2 (0)

    8 js in0 2 (0)

    8 1st root (cos0jsin0)

    For the second root,if k 1,

    2nd root 1 cos 0 2 (1)8 js in 0 2 (1)8 2nd root cos 4 js in 4

    For the third root,if k 2,3rd root 1 cos 0 2 (2)8 jsin 0 2 (2)8

    3rd root cos 2 jsin 2

    For the fourth root,if k 3,4th root 1 cos 0 2 (3)8 jsin 0 2 (3)8

    1st root 1

    2nd root 22 j 22

    3rd root j

  • 8/3/2019 Solution Manual for Advance Math

    45/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    45

    4th root cos 34 js in 34

    For the fifth root,if k 4,5th root 1 cos 0 2 (4)8 jsin 0 2 (4)8

    5th root (cosjsin)

    For the sixth root,if k 5,

    6th root 1 cos 0 2 (5)8 js in 0 2 (5)8

    6th root cos 54 js in 54

    For the seventh root,if k 6,

    7th root 1 cos 0 2 (6)8 jsin 0 2 (6)8 7th root cos 32 jsin 32

    4th root 22

    j 22

    5th root 1

    6th root 22 j 22

    7th root j

  • 8/3/2019 Solution Manual for Advance Math

    46/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    46

    For the eighth root,

    if k 7,

    Graph in the

    complex plane

    For items 12 & 13, evaluate the following, expressing the final answers in rectangular form.

    12.)Let

    We must first find the values for r and ,

  • 8/3/2019 Solution Manual for Advance Math

    47/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    47

    r 99 A r g z t a n 99

    r 9 2 A r g z 4Using De Moivres formula,

    z r(cosnjsinn) rn(9 j 9) 92 cos3 4 js in3 4

    (9 j 9) 92 22 j 22 (9 j 9) 729 (2) 22 22

    13.)( 2 j6)Let z 2 j6

    We must first find the values for r and ,r xy A r g z t a n yxr (2)6 A r g z t a n 62r210 Argz1.249045772Using De Moivres formula,

    z r(cosnjsinn) rn( 2 j6) 210cos2(1.249045772) js in2(1.249045772)

    (9 j 9) 1458j1458

    ( 2 j6) 32j24

  • 8/3/2019 Solution Manual for Advance Math

    48/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    48

    For items 14 & 15, prove the following trigonometric identities using De Moivres formula.14.)cos2cos s i n 15.)sin22cossin

    Solution for numbers 14 and 15Using the De Moivres formula,(c os js in) cosnjsinnwhere in n 2 (c os js in) cos2jsin2

    cos j 2 c o s s i n j sin c os 2 js in2

    (cos

    s in

    ) j2cossincos2jsin2Since in trigonometry, cosine is located at the x-axis where your x-axis (real axis) isconsidering only the real part of the equation, we can already say that:

    Also in trigonometry, sine is located at the y-axis where it is called imaginary axisbecause it only considering the imaginary part of the equation, therefore we can saythat:

    Example 1.7

    Evaluate the following expressions, expressing answers in rectangular form.a.)cos(1 j)

    Solution:Using the trigonometric identity of sum of two angles of cosine,cos(A B) cosAcosBsinAsinB

    cos(1 j) cos1cosjsin1sinj

    cos2cos s in

    sin22cossin

  • 8/3/2019 Solution Manual for Advance Math

    49/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    49

    Since,cosjcosh1

    sinjsinhjcos (1 j) cos 1cosh 1 j sin1 sinh1b.) sinh(4 j 3)

    Solution:

    Using the trigonometric identity of difference of two angles of hyperbolic sine,sinh (A B) sinhAcoshBcoshAsinhBsinh(4 j 3) sinh4 cosh(j3) cosh4sinh(j3)Since, cosjcosh1

    sinjsinhjsinh(4 j 3) sinh(4) cos(3) jcosh(4) sin(3)

    Example 1.8

    Evaluate the following logarithms, expressing the answers in rectangular form.

    a.)

    ln1,Ln1

    Solution: ln 1Since it doesnt consider the principal argument, we will use the equation

    cos (1 j) 0.8337 j 0.9889

    sinh(4 j 3) 27.0168j 3.8537

  • 8/3/2019 Solution Manual for Advance Math

    50/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    50

    l n z l n r j j 2 nLet z 1

    r x

    y

    A r g z 0r 10 r 1l n 1 l n 1 j(0) j2n

    Ln 1Since it consider the principal argument, we will use the equationL n z l n|z| jA rg z

    Let z 1r xy A r g z 0r 10

    r 1 L n 1 l n 1 j(0)

    ln 1 0 j2n ; n 0,1,2,

    L n 1 l n 1 j(0)

  • 8/3/2019 Solution Manual for Advance Math

    51/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    51

    b.) ln(3 j 4) , Ln (3 j4)Solution:

    ln(3 j 4)Since it doesnt consider the principal argument, we will use the equationl n z l n r j j 2 n

    Let z 3 j4r xy A r g z t a n yxr 3(4) A r g z t a n

    r5 Argz0.927295

    ln(3 j 4) l n 5 j(0.927295) j2n

    Ln (3 j4)Since it consider the principal argument, we will use the equation

    L n z l n|z| jA rg zLet z 3 j4r xy A r g z t a n r 3(4) A r g z t a n 43r5 Argz0.927295Ln(3 j 4) l n 5 j(0.927295)

    Example 1.9

    Evaluate the following, expressing the answers in rectangular form.a.) j

    ln(3 j 4) 1.609 j 0.927 j2n ; n 0,1,2,

    Ln(3 j 4) 1.609 j 0.927

  • 8/3/2019 Solution Manual for Advance Math

    52/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    52

    Solution:The general power of a complex number z x jy are defined by theformula,

    z

    e

    Let zj and cjWe must first solve for the value of r and r xy Arg z tan yxr 01 Arg z tan 10

    r 1 2Then solve for lnz l n z l n r j j 2 nl n j l n 1 j 2 j2nl n j j 2 j2nTherefore,

    z

    e

    z ez eb.) (1 j)()

    Using the general power for a complex number,

    Let z 1 j and c 2 j

    r xy Arg z tan r 11 Arg z tan 11

    r 2 4

    j e

  • 8/3/2019 Solution Manual for Advance Math

    53/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    53

    Solve for the value of lnz,l n z l n r j j 2 n

    ln(1 j) l n 2 j 4 j2nThen, z e (1 j)() e() (1 j)() e (1 j)() e ee

    Since e c o s j s i n e c o s j s i n (1 j)() 2e cos 2 jsin 2 cosln2jsinln2

    (1 j)() 2ejcosln2jsinln2

    (1 j)() 2ejcosln2j sinln2(1 j)() 2e sinln2 jcosln2(1 j)() 2e sin12 ln2 jc os 12 ln2

  • 8/3/2019 Solution Manual for Advance Math

    54/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    54

    Drill Problem 1.3

    For number 1 through 4, find the principal value of lnz, rectangular form, when z equals,1.) -10Solution:|z| r x y Arg z tan

    |z| r (10) (0) Arg z tan 010|z

    | r 10 Using the formula: l n z l n|z| j Arg z

    2.) 2 j 2

    Solution:|z| r x y Arg z tan yx|z| r 2 2 Arg z tan 22|z| r 2 2 4

    Using the formula: l n z l n|z| j Arg zln(2 j 2) l n 2 2 j 4

    ln(10) l n 1 0 j

    ln(2 j 2) 12 l n 8 j 4

  • 8/3/2019 Solution Manual for Advance Math

    55/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    55

    3.) 2 j 2Solution:

    |z| r x y Arg z tan yx|z| r 2 (2) Arg z tan 22|z| r 2 2 4

    Using the formula:

    l n z l n|z| j Argzln(2 j 2) l n 2 2 j 4

    4.)

    je

    Solution:|z| r x y Arg z tan yx

    |z| r 0 (e) Arg z tan e0|z| r e 2

    Using the formula: l n z l n|z| j Arg zln(je) l n e j 2

    ln(2 j 2) 12 l n 8 j 4

  • 8/3/2019 Solution Manual for Advance Math

    56/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    56

    For number 5 through 8, evaluate the following answers in rectangular form.5.) ln e Solution:

    Let z eThen, find the values for r and

    r x y Arg z tan yxr e 0 Arg z tan 0er e 0

    Since it doesnt consider the principal value, we will use the formulal n z l n r j j 2 n

    l n e l n e j 0 j 2 n

    6.) lne Solution:

    Considering the value of z e and c j, we use the formula

    z

    e

    Let z eSolve for the values of r and r x y Arg z tan yxr e 0 Arg z tan 01

    ln(je) 1 j 2

    ln(e) 1 j2n ; n (0,1,2, )

  • 8/3/2019 Solution Manual for Advance Math

    57/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    57

    r e Since it doesnt consider the principal value, we will use the formula,

    l n z l n r j j 2 nln(e) l n e 1 j j 2 nz e

    e e() lne ln e()

    lne

    j(1 j j2 n)

    lne ( j j) j2nlne ( j j2 n)7.) ln(4 j 3)

    Solution:Since it doesnt consider the principal value, we will use the formulal n z l n r j j 2 nLet z 4 j3, find the values for r and r x y Arg z tan yxr 4 3 Arg z tan 3

    4

    r5 0.6435011ln(4 j 3) ln5j0.6435011j2n

    lne ( 1 2 n)j ; n (0,1,2, )

    ln(4 j 3) 1.6094 j0.6435 j2n ;n (0,1,2, )

  • 8/3/2019 Solution Manual for Advance Math

    58/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    58

    8.) ln eSolution:

    Considering the value of z e and c j3, we use the formulaz e Let us solve for the value of r and r x y Arg z tan yxr e 0 Arg z tan 0e

    r e 0l n z l n r j j 2 nl n e l n e j(0) j2n

    l n e 1 j 2 ne e()

    ln e l n e()

    For numbers 9 through 12, find the principal value in rectangular form.9.) j , j2

    Solution: jConsidering the value of z j and c j2, we use the formulaz e

    ln e j3 j2n ; n (0,1,2, )

  • 8/3/2019 Solution Manual for Advance Math

    59/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    59

    Let us solve for the value of r and r x y Arg z tan yx

    r 0 1 Arg z tan 10r 1 2Using the general equation,lnz ln r j Argz

    l n j l n 1 j 2

    l n j j 2j e j e

    j2Considering the value of z j2 & c j, we use the formula

    z e Let us solve for the value of r and

    r x y Arg z tan yxr 0 2 Arg z tan 20r 2 2

    j e

  • 8/3/2019 Solution Manual for Advance Math

    60/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    60

    Using the general equation,l n z l n r j

    l n j 2 l n 2 j 2

    j2 ej2 e using logarithmic exponent rulee ee

    j2 e esince,e cos j sin , therefore

    10.) 4() Solution:Considering the value of z 4 & c (3 j), we use the formulaz e Let us solve for the value of r and

    r x y Arg z tan yxr 4 0 Arg z tan 04r 4 0Using the general equation for natural logarithm of a complex number,

    l n z l n|z| jln(4) l n 4 j(0)ln(4) l n 4

    4() e() using the logarithmic exponent rule e ee

    j2 e(cosln2jsinln2)

  • 8/3/2019 Solution Manual for Advance Math

    61/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    61

    4() e e

    Since e

    c o s j s i n e 4(cosln4jsinln4)

    11.)(1 j)() Solution:

    Considering the value of z 1 j and c 1 j, we use the formulaz e r x y Arg z tan yx

    r 1 (1) Arg z tan 11

    r 2 4

    Using the formula for natural logarithm of z,l n z l n r j

    l n z l n 2 j 4

    (1 j)() e() (1 j)() e Using the logarithmic exponent rule, e ee

    z 6 4 cos(ln 4) jsin(ln 4)

  • 8/3/2019 Solution Manual for Advance Math

    62/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    62

    (1 j)() e e Since e c o s j s i n e e e cos ln2

    4 jsin ln2

    4

    12.)(1)()Solution:

    Considering the value of z 1 and c (1 j 2), we use the formula

    z e r x y Arg z tan yxr (1) 0 Arg z tan 01r 1

    Using the general formula of natural logarithm of z,l n z l n r j l n z l n 1 j

    l n z j (1)() e()()

    (1)() ee(1)() eesince e c o s j s i n

    z 2 e cos ln2 4 jsin ln2 4

  • 8/3/2019 Solution Manual for Advance Math

    63/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    63

    e e(cos2jsin2)

    For numbers 13 through 15, solve for z in rectangular form13.) l n z 2 j Solution:

    To eliminate the natural logarithm, we need to equate on both sides,e ez ez eesince,e c o s j s i n

    z e cos

    2 js in

    2

    14.) lnz0.3j0.7Solution:

    To eliminate the natural logarithm, we need to equate on both sides,

    e e(..)

    z e(..)z e.e.

    z e

    z e

  • 8/3/2019 Solution Manual for Advance Math

    64/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    64

    since,e c o s j s i n z e.(cos0.7jsin0.7)

    15.) l n z e j Solution:To eliminate the natural logarithm, we need to equate on both sides,

    e e()

    z ee since,e c o s j s i n z e(c os js in)

    z e

    z1.032j0.870

    z15.154

  • 8/3/2019 Solution Manual for Advance Math

    65/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    65

    UNIT 2

    LAPLACE ANDINVERSE LAPLACE

    TRANSFORM

  • 8/3/2019 Solution Manual for Advance Math

    66/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    66

    Example 2.1

    Direction: Using the Laplace integral, find the Laplace transform of the following:a.) f(t) 1Solution:Using the general equation of the function defined for s ,F(s) ef(t)dt

    F(s) l i m ef(t)dt F(s) l i m e(1)dt

    F(s) l i m edt F(s) l i m 1s e 1 T0F(s) l i m

    1

    se 1

    F(s) 1s e() 1F(s) 1s 0 1 Therefore,

    b.) f(t) eSolution:using the general equation of the function defined for s ,

    F(s) 1s

  • 8/3/2019 Solution Manual for Advance Math

    67/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    67

    F(s) e f(t)dt

    F(s) l i m e

    f(t)dt

    F(s) l i m e(e)dt F(s) l i m edt F(s) l i m e()dt

    F(s) l i m 1s a e() 1 T0F(s) 1s a lime() 1 T0F(s) 1s a lime() 1

    F(s) 1s a e() 1

    F(s) 1s a 0 1

    c.) f(t) t

    Solution:Using the general equation of the function defined for s ,F(s) ef(t)dt F(s) l i m ef(t)dt

    F(s) 1s a

  • 8/3/2019 Solution Manual for Advance Math

    68/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    68

    F(s) l i m e(t)dt Integrating by parts we let: ()

    1 Then,

    F(s)lim t 1s e 1s edt T0F(s)lim ts e 1s (e)dt T0F(s)lim ts e 1s 1s e T0

    F(s)lim ts e 1s (e) T0F(s)lim ts e 1s (e) T0

    F(s)lim Ts e 1s e 1sF(s)lim Ts e l i m 1s e l i m 1sF( s ) 1s lime 0 1s

    F( s ) 1s e() 1s

    F ( s ) 0 1sF(s) 1s

  • 8/3/2019 Solution Manual for Advance Math

    69/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    69

    d.) f(t) cos t , is a constantSolution:Using the general equation of the function defined for s ,F(s) ef(t)dt F(s) l i m ef(t)dt

    F(s) l i m e(cost)dt Integrating by parts we let

    1 Then,

    F(s)costs e 1s esintdt

    F(s) 1s e cos t T0 s e sintdt

    Integrating by parts for e sintdt , we let:

    1

    Then, e costdt 1s e sint T0 ( 1s e) cost dt e costdt 1s e sint T0 s e costdt

  • 8/3/2019 Solution Manual for Advance Math

    70/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    70

    e costdt 1s e cos t T0 s 1s e sint T0 s e costdt

    e

    costdt

    1s e

    cos t T0

    s

    e

    sint T0

    s

    e

    costdt

    e costdt 1s e cos t T0 s e sint T0 s e costdt e costdt s e costdt 1s e cos t T0 s e sint T0

    1 s e costdt 1s e cost T0 s e sint T0 11 s

    e costdt 1s e cos t 1 s s e sint 1 s Then, applying the limits,

    F(s) 1s e cosT1 s s e sinT 1 s

    F(s) ss e cosTs

    s e sinTs Sincecos 1 sin 0 e 0

    Applying the limits: lim

    F(s) ss e cos()

    e

    sin()s F(s) ss

  • 8/3/2019 Solution Manual for Advance Math

    71/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    71

    e.) f(t) sint , is a constantSolution:Using the general equation of the function defined for s

    F(s) ef(t)dt F(s) l i m ef(t)dt

    F(s) l i m e(sint)dt Integrating by parts we let:

    1 Then,

    e sintdt 1s e sint T0 s e costdt

    Integrating by parts for e costdt , we let: du

    e costdt 1s e cos t T0 s e sintdt e sintdt 1s e sint T0 s 1s e cost T0 s e sintdt

    e sintdt 1s e sint T0 s 1s e cost T0 s e sintdt 1 s e sintdt 1s e sint T0 s e cost T0 s e sintdt

  • 8/3/2019 Solution Manual for Advance Math

    72/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    72

    e sintdt 1s e sint T0 s e cost T0 ( 1s s )

    e sintdt ( 1s ) ss e sint T0 ss e sint s Applying the limits:

    F(s) se sinTs s e cosT

    F(s) s

    s e cosTs

    s e

    sinTs Sincecos 1 sin 0 e 0

    Example 2.2

    Direction: Using linearity theorem and the previously obtained Laplace transform pairs, find theLaplace transform pairs, find the Laplace transform ofa.) coshat

    Solution:Since coshat e e2 We can now use the linearity theorem,coshat e e2

    F(s) s

  • 8/3/2019 Solution Manual for Advance Math

    73/274

  • 8/3/2019 Solution Manual for Advance Math

    74/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    74

    sinhat 12 2as a

    c.) costSolution:Since

    cost e e2

    We can now apply the Linearity theorem cos t e e2 cos t 12 e eSince

    e 1s j and e 1s j

    cos t 12 1s j 1s j cos t 12 s j s j s j

    cos t 12 2ss

    F(s) as a

    F(s) ss

  • 8/3/2019 Solution Manual for Advance Math

    75/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    75

    d.) sintSolution:Sincesint e ej2 Using the Linearity theorem

    sint e ej2 sin t 1j2 e e

    Since e 1s j and e 1s j sin t 1j2 1s j 1s j sin t 1j2s j s j s j

    sin t 1j2

    2js

    Example 2.3

    Direction: Apply the shifting theorem and the previously obtained Laplace transform of the

    following:a.) e costSolution: cost ss2 2 .s s a

    F(s) s

  • 8/3/2019 Solution Manual for Advance Math

    76/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    76

    b.)

    e

    sintSolution: sint s2 2 .s s a

    Example 2.4

    Direction: Find the Laplace transform of the following functions using the table (variables otherthan t are considered constant).a.) t 2tSolution:

    By linearity, t 2t t 2 t

    Since t 2!s and t 1sThen,t 2t 2!s 1s

    b.) costSolution:Since

    cost s a( s a )2 2

    sint ( s a )2 2

    t 2t 2 1s 1s

  • 8/3/2019 Solution Manual for Advance Math

    77/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    77

    cost ss Then,

    c.) e coshtSolution:Using shifting theorem,

    cosh t ss aThen, e cosht ss 1 .s s 2

    e cosht s 2( s 2 ) 1

    e cosht s 2s 2 s 4 1d.) e Solution:

    Using logarithmic propertiese

    e

    e

    Then, e e e

    Since e is a constant, and e

    cos t ss

    e cosht s 2s 2 s 3

  • 8/3/2019 Solution Manual for Advance Math

    78/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    78

    e.) cos(t )Solution:Using a trigonometric identity (sum of two angles of cosine)

    cos()coscossinsinSo,

    cos(t)costcossintsinSince cos and sin are constant, and cost ss and sin t s Then,

    cos(t ) scoss sins

    Simplifying further, we get

    Example 2.5

    Direction: Find the inverse Laplace transform of the following functions using he table (variablesother than s are constants).a.) Solution:

    By Linearity theorem,

    e es 2 b

    cos(t ) s c os s ins

  • 8/3/2019 Solution Manual for Advance Math

    79/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    79

    4s3s 4ss 3s

    Since ss cost and s sintThen,

    b.) Solution:Expanding the term,s 3s 12s 3 12

    s 3s 12s 3 12s Sincen!s tThen

    c.)

    Solution:Completing the square of the denominator well have15s 4 s 2 9 15( s 2 ) 25Since e sint ( s a )

    4 s 3 s 4 cos t 3 s int

    s 3s 12s 1 32 t 12 t

  • 8/3/2019 Solution Manual for Advance Math

    80/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    80

    Then 15(s 2) 25 155 5( s 2 ) 5Therefore,

    d.)

    Solution:Performing partial fraction expansion 8s(s4) As Bs 4 s(s4)

    8 A(s 4) B(s)s : 0 A Bs: 8 4 A

    Well have the value of A and B as,A 2; B -2 8s(s 4) 2s 2s 4Therefore,

    e.) Solution:Performing partial fraction expansion 1s 2s 5 As 2 Bs 5 s 2s 5

    15(s 2) 25 3e sin5t

    8s(s 4) 2 2 e

  • 8/3/2019 Solution Manual for Advance Math

    81/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    81

    1 A s 5 Bs 2s: 0 A Bs: 1 A5 B2By elimination method,

    A B Then,

    1s 2s 5 5 32 s 5 32s 4 Therefore,

    Drill Problem 2.1Direction: Find the Laplace transform of the following functions. Variables other than t areconstants.

    1.) (t 3)Performing binomial expansion,

    (t

    3)

    t

    6t

    9(t 3) (t 6t 9)Then, applying the distributive property of Laplace,(t 3) t 6t 9

    1s 2s 5 e e5 3

  • 8/3/2019 Solution Manual for Advance Math

    82/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    82

    (t 3) 4!s 6 (2!)s 9s

    2.) sin 4tUsing the trigonometric identity for double angle formula of sine,sin A 12 (1 cos 2A)

    (sin 4t) 1

    2(1cos8t)

    (sin 4t) 12( 1 cos8t)(sin 4t) 12 1s ss 64

    (sin 4t) 12 s 64 ss (s 64)

    3.) e sinh5tUsing the shifting theorem, (sinh5t) 5s 25 .s s 1

    (e sinh5t) 5( s 1 ) 254.) sin 3t Using trigonometric identity for the sum of two angles of sine,sin(A B) sinAcosB cosAsinB

    (t

    3)

    24s

    12s

    9s

    (sin 4t) 32s (s 64)

    3

  • 8/3/2019 Solution Manual for Advance Math

    83/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    83

    sin3t 12sin3tcos 12 cos3tsin 12sin3t 1

    2 c o s 1

    2sin3t sin 1

    2cos3t

    5.) 8sin0.2t (8 sin 0.2t ) 8 sin0.2t

    since, sint

    s

    (8sin0.2t) 8 0.2s 0.04

    6.)

    sintcostUsing the trigonometric identity for product formula of the angles sine and cosine,sinAcosB 12 sin(A B) 12 sin(AB)sintcost 12 sin(tt) 12 sin(tt)

    sintcost 12 sin2t 12 sin0(sintcost) 12 sin2t(sintcost) 12 2s 4

    sin3t 12 3 cos 0.5 s sin 0.5s 9

    (8 sin 0.2t) 1.6s 0.04 4

  • 8/3/2019 Solution Manual for Advance Math

    84/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    84

    7.)( t 1 )

    ( t 1 ) t 3t 3 t 1By applying the linearity theorem,(t1) t 3t 1(t1) 3!s 3 (2!)s 2s 1s

    (t1) 6s 6s 2s 1s8.)3.8te.

    By shifting theorem,(3.8t) 3.8

    s .

    s ( s 2 . 4 )

    (3.8te.) 3.8(s2.4)9.)3te.By shifting theorem,

    (3t) 3(4!)s .s (s0.5)

    10.)5e sintBy shifting theorem,

    (5sint) 5s .s ( s a )

    (sintcost) 1s 4

    (3te.) 72(s0.5)

  • 8/3/2019 Solution Manual for Advance Math

    85/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    85

    (5e sint) 5(sa)

    II. Direction: Find the Inverse Laplace transform of the following functions. Variables other than sare constant.11.)

    1s 5 1s 5 1s 5 1s 5

    Multiplying in in order to satisfy (sin t) 1s 5 1s 5 15 sin 5 t e

    12.)2s16s 16 2ss 16 16s 16

    2 s 1 6s 16 25s 16 16s 16Since, ss cosht and s sinht

    13.) 102 2 102 1 22

    2 s 1 6s 16 2cosh4tsinh4t

  • 8/3/2019 Solution Manual for Advance Math

    86/274

  • 8/3/2019 Solution Manual for Advance Math

    87/274

  • 8/3/2019 Solution Manual for Advance Math

    88/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    88

    1(s a)( s b) 1a bs a

    1a bs b

    18.) Performing completing the square in the denominator, we will arrive at:

    4 s 2s 6 s 1 8 4 s 2s 6 s 9 1 8 94 s 2s 6 s 1 8 4 s 2(s 3) 9In order to satisfy the form of the numerator to obtain its inverse Laplace transform,we must get the value of x. We will able to form the equation,

    4 s 2 4(s 3) x4 s 2 4 s 1 2 xx 2 12x 1 0 4 s 2s 6 s 1 8 4 (s 3)( s 3 ) 9 10(s3) 9

    Since, s a(s a) e cosht and (s a) e sinhtTherefore, 4 s 2s 6 s 1 8 4e cosh3t 103 e sinh3t

    1(s a)( s b) 1b a (e e)

  • 8/3/2019 Solution Manual for Advance Math

    89/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    89

    19.)

    Performing completing the square in the denominator of the equation,s 10s24 s 10s25 24 25s 10s24 (s 5 ) s 10s24 (s 5 )

    20.) Performing completing the square in the denominator of the equation,2 s 5 6s 4 s 1 2 2 s 5 6s 4 s 4 1 2 4

    2 s 5 6

    s

    4 s 1 2 2 s 5 6

    ( s 2 )

    16

    in order to satisfy the form of the numerator to obtain its inverse Laplace transformwe must get the value of x. We will be able to form the equation:2 s 5 6 2(s 2) x2 s 5 6 2 s 4 x

    x 4 5 6x 52

    2 s 5 6s 4 s 1 2 2 (s 2)( s 2 ) 16 13 4(s 2) 16 2 s 5 6s 4 s 1 2 2e cosh4t 13e sinh4t

    s

    10s24 e sinht

    2 s 5 6s 4 s 1 2 e(2cosh4t 13e sinh4t)

  • 8/3/2019 Solution Manual for Advance Math

    90/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    90

    Example 2.6Direction: Find the Laplace transform of the following using the differentiation property.

    a.) teSolution:f(t) te F(s)

    Whenf(0) 0

    f(t) kte e

    f(t) k f(t) ef(t) k f(s) 1s kDP:f(t) s f(s) f(0)

    k f(s) 1s k s f(s) f(0)

    k f(s) 1s k s f(s)(s k)f(s) 1s k

    b.)

    tsintSolution: f(t) t s i n t F(s)f(0) 0f(t) tcostsint

    f(0) 0

    f(t) 1(s k)

  • 8/3/2019 Solution Manual for Advance Math

    91/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    91

    f(t) ts intcostcost

    f

    (t)

    tsint2cost

    f(t) F(s) 2ss DP:f(t) sF(s) s f(0) f(0)

    F(s) 2ss sF(s)

    (s

    )F(s) 2ss

    c.) sin tSolution:f(t) sin t F(s)

    f(0) 0f(t) 2sin tcos tf(t) 2 sin t2cos t

    f(0) 0f(t) 2 F(s) 2cos t

    f(t) 0

    f(t) 2 F(s) 2 12 1s ss

    DP:f(t) s F(s) s f(0) f(0)

    f(t) 2s(s )

  • 8/3/2019 Solution Manual for Advance Math

    92/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    92

    f(t) s F(s) 0 02 F(s) 1s ss 4 s f(s)

    (s 2)F(s) 1s ss 4F(s) 1s ss 4(s 2) F(s)

    s 4 ss(s 4)(s 2)

    F(s)

    s

    4

    s

    s 6s 8s

    F(s) 2(s 2)(s 4s)(s 2)F(s) 2(s 4s)

    Example 2.7Direction: Find the inverse Laplace transform of the following using the integration property.

    a.) ( )Solution: F(s) 1s(s ) G(s)

    G(s) s 1F(s) G(s)s

    F(s) 22

    s(s2

    42

    )

  • 8/3/2019 Solution Manual for Advance Math

    93/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    93

    f(t) g()d

    g() 1 sin

    f(t) g()d f(t) 1 sind f(t) 1 cos f(t) 1

    (cost1)

    b.) ( )Solution:

    F(s) 1

    s(s )

    F(s) 1s s(s )G(s) 1s(s )

    F(s) G(s)s f(t) g()d

    g() 1 (1cost)f(t) g()d f(t) 1 (1cost)d

    f(t) 1 (1cost)

  • 8/3/2019 Solution Manual for Advance Math

    94/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    94

    f(t) 1 1 sin

    f(t) 1

    (t 0) 1 (sin0)

    Example 2.8

    Direction: Find the general solution of the differential equation.a.) y 2y 2y 0 for y (0) 1 and y(0) 3Solution: sY(s) sY(0) Y(0) 2sY(s) y(0) 2Y(s) 0

    sY(s) s 3 2 s Y(s) 2 2 Y(s) 0

    (s

    2 s 2)Y(s) s 1

    Y(s) s 1s 2 s 2Y(s) s 1s 2 s 1 1

    Y(s) s 1 1 1(s 1) 1 Y(s) s 1

    (s 1)

    1 2

    (s 1)

    1

    f(t) sint

    y(t) e cost2e sint

  • 8/3/2019 Solution Manual for Advance Math

    95/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    95

    b.) y y t for y(0) y(0) 1Solution:

    sY(s) sY(0) Y(0) Y(s) 1s

    sY(s) s ( 1 ) 1 Y(s) 1s(s 1)Y(s) 1s s 1

    Y(s) 1s(s 1) s 1s 1

    By Partial Fraction Expansion,1s(s 1) As Bs Cs 1 Ds 11 A s(s 1) B(s 1) C(s)(s 1) D(s)( s 1 )

    1 A(s s) B(s 1) C(s s) D(s s)s: 0 A C D

    s

    : 0 B C Ds: 0 As: 1 BA 0 B 1 C 1 2 D 1 2

    1s(s 1) 1s 1 2s 1 1 2s 1 1s 1

    y(t) e s i n h t t

  • 8/3/2019 Solution Manual for Advance Math

    96/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    96

    Drill Problem 2.2Direction: Use the differentiation property to find the Laplace transform of the following:

    1.) tcos5tSolution:f(0) 0

    f(t) t(5sin5t) cos5tf(t) 5tsin5tcos5tf(0) 1f(t) 5t(5cos5t) sin5t5sin5tf(t) 25tcos5t5sin5t5sin5t f(t) 25tcos5t10sin5t f(t) 25f(t) 10sin5t

    f(t) 25F(s) 50s 25

    DP: s

    F(s) sF(s) f

    (0)

    sF(s) sF(s) f(0) 25F(s) 50s 25sF(s) 25F(s) 1 50s 25sF(s) 25 F(s) s 2 5 5 0s 25 (s 25) F(s) s 25s 25s 25

    2.) cos tF(s) s 25(s 25)

  • 8/3/2019 Solution Manual for Advance Math

    97/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    97

    Solution:f(0) 1

    f(t) 2cost(sint)f(t) 2costsintf(0) 0f(t) 2cost costsintsintf(t) 2cos tsin tf(t) 2f(t) sin tf(t) 2 F(s) 12 1s ss 4

    f(t) 2 F(s) 2s(s 4)f(t) 2F(s) 4s(s 4)DP: sF(s) sF(s) f(0)

    sF(s) sF(s) f(0) 2F(s) 4s(s 4)

    (s s)F(s) 2F(s) 4s(s 4)(s 2)F(s) s 4s(s 4)(s 2)F(s) s(s 4) 4s(s 4) (s 2)F(s) s 4s 4s(s 4)(s 2)

    F(s) (s 2)(s 2)s(s 4)(s 2)

    F(s) (s 2)s(s 4)

  • 8/3/2019 Solution Manual for Advance Math

    98/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    98

    3.) sinh at

    Solution: f(0) 0f(t) 2 sinhat a cosh atf(t) 2asinhatcoshatf(0) 0f(t) 2asinhat asinhatcoshat acoshat

    f(t) 2asinh atcosh at

    f(t) 2af(t) cosh atf(t) 2a F(s) 12 1s ss 4af(t) 2a F(s) 12 2s 4as(s 4a)f(t) 2aF(s) a 2s 4as(s 4a)

    DP: sF(s) sF(s) f(0)sF(s) sF(s) f(0) 2aF(s) a 2s 4as(s 4a)(s 2a)F(s) 2a s 2as(s 4a)s 2a

    4.) cosh tSolution:

    f(0) 1

    F(s) 2a

    s(s

    4a

    )

  • 8/3/2019 Solution Manual for Advance Math

    99/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    99

    f(t) 2cosh 12 t 12 sinh 12 tf(t) cosh 12 tsinh 12 t

    f(0) 0

    f(t) 12 cosh 12 t 12 sinh 12 tf(t) 12 f(t) 12 sinh 12 tf(t) 12 F(s) 12 1s ss 1

    f(t) 12 F(s) 12s(s 1)f(t) 12 F(s)

    14s(s 1)DP:sF(s) sF(s) f(0)

    sF(s) sF(s) f(0) 12 F(s) 14s(s 1)

    sF(s) 12 F(s) s 14s(s 1) s 12 F(s) s(s 1)

    14s(s 1) s 12 F(s) s s

    14s(s 1) s 12 F(s) s 12s(s 1)s 12

    F(s) s 12s(s 1)

  • 8/3/2019 Solution Manual for Advance Math

    100/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    100

    5.)

    sin

    t

    Solution: f(0) 0f(t) 4 s in tcostf(0) 0

    f

    (t) 4sin

    tcost

    f(t) 4sin t (sint) cost (3sin t)(cost)f(t) 4sin t 3 s i n tcos tf(t) 4sin t12sin tcos tf(t) 4f(t) 12sin tcos tf(t) 4F(s) 12sin tcos tf(t) 4F(s) 3sin 2tf(t) 4F(s) 3

    21s

    ss

    16

    f(t) 4F(s) 32 s 1 6 ss(s 16) f(t) 4F(s) 24s(s 16)DP:sF(s) sF(s) f(0)sF(s) sF(s) f(0) 4F(s) 24s(s 16)

    (s

    4)F(s) 24

    s(s 16)s 4

    6.) F(s) 24s(s 4)(s 16)

  • 8/3/2019 Solution Manual for Advance Math

    101/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    101

    Solution:F(s) G(s)s

    f(t) g()d F(s) 10s sF(s) 10s(s )F(s) 10s(s)(s )

    G(s) 10s(s )

    g(t) 10ef(t) g()d

    f(t) 10ed

    f(t) 10e

    t0

    g(t) 10e 10 f(t) g()d

    f(t) 10 (e 1)d

    f(t) 10 (e 1)dt

    f(t) 10 e t f(t) 10e 10t 10

  • 8/3/2019 Solution Manual for Advance Math

    102/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    102

    f(t) 10e 10t10

    7.) Solution:

    F(s) G(s)s

    f(t) g()d

    F(s) 1s(s 1)G(s) 1s(s 1)g(t) s intf(t) g()d

    f(t) sind f(t) cos t0f(t) c o s t c o s 0g(t) c o s t 1f(t) g()d

    f(t) ( c o s 1)d f(t) s i n t0

    f(t) 10(e t 1)

    f(t) s i n t t

  • 8/3/2019 Solution Manual for Advance Math

    103/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    103

    8.) Solution:

    F(s) G(s)s f(t) g()d F(s) 5s(s 5)G(s) 5s 5g(t) 55 5

    s

    5

    g(t) 55 sinh 5tf(t) g()d f(t) 55 sinh 5d f(t) 5

    5 sinh 5d

    f(t) 55 15 cosh 5 f(t) 55 cosh 5 t0f(t) cosh 5 t0f(t) cosh 5tcosh0

    9.)

    Solution:F(s) G(s)s f(t) g()d

    f(t) cosh 5 t 1

  • 8/3/2019 Solution Manual for Advance Math

    104/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    104

    F(s) 1s(s 4)F(s) 1s(s)(s 4)

    G(s) 1s(s 4)

    G(s) 12 (sinh2t)f(t) g()d f(t) 12 (sinh2)d

    f(t) 12 12 cosh2

    f(t) cosh24 t0f(t) cosh2t4 14f(t) g()d f(t) 14 (cosh21)d

    f(t) 14 sinh22

    f(t) 14 sinh2t2 t

    10.)

    Solution: F(s) G(s)s f(t) g()d F(s) 2s(s 3)

    f(t) 18 sinh2t 14 t

  • 8/3/2019 Solution Manual for Advance Math

    105/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    105

    G(s) 2(3)(s 3)

    G(s) 23 sin3t

    f(t) g()d f(t) 23 sin3d f(t) 23 sin3d f(t) 23 cos33 f(t) 2cos3t9 2cos09

    f(t) 29 (cos3t1)

    11.)y 4y 0; y(0) 2.8

    Solution: sY(s) y(0) 4 Y(s) 0sY(s) 2 . 8 4 Y(s) 0(s 4)Y(s) 2.8Y(s) 2.8s 4Y(s) 2 . 8 1s 4

    12.)y y 17 sin 2t ; y(0) 1Solution:13.) y y 6 y 0 ; y(0) 6 , y(0) 13

    f(t) 29 (1cos3t)

    y(t) 2.8e

  • 8/3/2019 Solution Manual for Advance Math

    106/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    106

    Solution: sY(s) sy(0) y(0) sY(s) y(0) 6Y(s) 0

    s

    Y(s)

    6 s 1 3 s Y(s

    ) 6 6 Y

    (s

    ) 0

    (s s 6)Y(s) 6 s 7Y(s) 6 s 7s s 6Y(s) 6 s 7(s 3)(s 2)Y(s) 6 s 7(s 3)(s 2) As 3 Bs 2 (s 3)(s 2)Y(s) 6 s 7 A(s 2) B(s 3)

    if s 3

    2 5 A(s 2)

    2 5 5 AA 5if s 2 5 B(s 3) 5 B( 2 3)B 1Y(s) 5 1s 3 1s 2

    14.)y 4y 4y 0; y(0) 2.1,y(0) 3.9Solution:

    sy(s) sy(0) y(0) 4sy(s) y(0) 4y(s) 0s

    y(s) 2.1s3.94sy(s) 4(2.1) 4y(s) 0

    (s 4 s 4)y(s) 2.1s4.5Y(s) 2.1s4.5s 4 s 4Y(s) 2.1s4.5(s 2)(s 2)

    y(t) 5e e

  • 8/3/2019 Solution Manual for Advance Math

    107/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    107

    Y(s) 2.1s4.5(s 2)(s 2) As 2 B(s 2) (s 2)2 . 1 s 4 . 5 A(s 2) Bs: 0 0s : 2 . 1 A

    A 2 . 1s: 4 . 5 A(2) B4.52.1(2) B 4 . 5 4 . 2 BB 0 . 3Y(s) 2.1s 2 0.3(s 2)

    Y(s) 2 . 1 1s 2 0 . 3 1(s 2)

    Y(s) 2.1e 0.3te

    15.)y ky 2ky 0; y(0) 2 , y(0) 2kSolution: sy(s) sy(0) y(0) ksy(s) y(0) 2ky(s) 0

    s

    y(s)

    2 s 2 k k s y(s

    ) 2 k 2 k

    y(s

    ) 0

    (s k s 2 k)y(s) 2 s 4 k

    Y(s) 2 s 4 ks k s 2 kY(s) 2 s 4 k(s 2 k)(s k)Y(s) 2(s 2 k)(s 2 k)(s k)Y(s) 2s k

    Y(s) 2 1s k

    Example 2.8

    y(t) e(2.10.3t)

    y(t) 2e

  • 8/3/2019 Solution Manual for Advance Math

    108/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    108

    Directions: Write the following function using unit step functions and find its transform.

    a.) f(t)

    2 0 1. t

    1

    .cost t

    Solution:f(t) 2 0 11

    2t 1 2

    cost t 2

    since f(t)u(t a) ef(ta)for 2 2s 2es t

    for 2 2s 2e

    s

    for; 12 t 12 tu(t 1) tu t 2for; 12 t 12 e(t 1) e t 2

  • 8/3/2019 Solution Manual for Advance Math

    109/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    109

    for ; 12 t 12 et 2 t 1 e t t 4

    for;12 t

    1s

    1s

    1

    2s e

    1s

    2s

    8s e

    for ; cos t cos t u t 2for; cos t e cos t 2

    for ;c os t e costcos 2 sintsin 2

    for;coste sint

    for; cost e s 1Therefore,

    Example 2.9Direction: Find the inverse Laplace Transform of

    F(s) e es e(s2)

    Solution:We will first solve on the first term, by expanding the term, we can get two terms,For es

    f(t) 2s

    2e

    s 1

    s 1

    s 1

    2s e 1

    s

    2s

    8s e/ 1

    s

    1e/

  • 8/3/2019 Solution Manual for Advance Math

    110/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    110

    F(s) 1s f(t) sint t (t -1)f(t) 1 sin(t)f(t) 1 (sintcoscostsin)

    f(t) 1 (sint)Then,

    For e

    s

    F(s) 1s f(t) sint t (t -2)f(t) 1 sin(t2)

    f(t) 1

    (sintcos2costsin2)f(t) 1 (sint)Now, for the second term,

    e(s2)

    f

    (t) te

    t

    (t -3)

    f(t) (t3)e()

    f(t)

    0 0 1sint 1 20 1 3(t 3)e() t 3

  • 8/3/2019 Solution Manual for Advance Math

    111/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    111

    Drill Problems 2.3

    Direction: Sketch or graph the given function (assumed to be zero outside the given interval).Represent it using unit step function. Find its transform.1.) t (0 1)Solution:

    f(t) u(t a) e f(t a) t u(t 0) t u(t 1) e t e t 1

    t u(t 0) t u(t 1) 1s e 1s 1s

    2.) s i n 3 t ( 0 )

    Solution: f(t) u(t a) e f(t a) sin3t u(t 0) sin 3t u(t ) e sin3t e sin3(t) sin 3t u(t 0) sin 3t u(t ) sin3t e sin3tcos3cos3tsin3

    sin 3t u(t 0) sin 3t u(t ) sin3t e sin3t sin 3t u(t 0) sin 3t u(t ) 3

    9 3

    9

    sin 3t u(t 0) sin3t u(t ) 3s 9 3es 9

    t u(t 0) t u(t 1) 1 es es

    sin 3t u(t 0) sin3t u(t ) 3s 9 ( 1 e

  • 8/3/2019 Solution Manual for Advance Math

    112/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    112

    3.) t(t 3)Solution:

    t

    u(t 3) e

    (t 3)

    t u(t 3) e t 6 t 9 t u(t 3) e 2!s 6s 9s

    4.) 1 e ( 0 )Solution: (1 e) u(t 0) (1 e) u(t u) e(1 e) e1 e() (1 e) u(t 0) (1 e) u(t u) e(1 e) e(1 ee)

    (1 e) u(t 0) (1 e) u(t u) (1 e) e(1 ee)

    (1 e) u(t 0) (1 e) u(t u) 1s 1s 1 e

    s e

    e

    s 1

    5.) sin t (t )Solution: sint u t 6 e sin(t 6 )

    sint u t 6 e sintcos6costsin6

    t u(t 3) e 2s 6s 9s

    (1 e) u(t 0) (1 e) u(t u) 1 es (ee) 1s 1

  • 8/3/2019 Solution Manual for Advance Math

    113/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    113

    sin t u t 6 e sint sin t u t 6 e sint

    Direction : Find and sketch or graph f(t) is F(s) equals6.)

    Solution: se s

    ss ss cost t (t 1)

    7.) e

    Solution: F(s) 1s 1sF(s) t 1 . ( )F(s) t (t 1) 1 u(t 1)F(s) t (t 1 1) u(t 1)

    F(s) t(t) u(t1)8.)

    sin t u t 6 e s

    f(t) 0 t 1c os ( t 1 ) t 1

    f(t) t 0 10 t 1

  • 8/3/2019 Solution Manual for Advance Math

    114/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    114

    Solution:F(s) 1

    s

    2 s 2

    By completing the square,F(s) 1(s 1) 1F(s) e sint . ( )

    F(s) e() sin(t ) u(t)F(s) e()sintcoscostsin u(t)

    F(s) e()sint u(t)

    9.) ()

    Solution:Expanding the term, we get F(s) 1s k es kF(s) 1s k ees kF(s) e ee . ( )

    F(s) e ee()u(t1)

    10.)2.5 ..

    f(t) 0 t e() s i n t t

    f(t) e 0 10 t 1

  • 8/3/2019 Solution Manual for Advance Math

    115/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    115

    Solution:F(s)2.5 e.

    s e.

    s

    F(s)2.5 t . ( .) 1 . ( .)F(s)2.5 u(t 3 . 8) u(t 2.6)

    Example 2.10

    Direction: Determine the response of a system described by the differential equationy 3y 2 y r( t )For y (0) y(0) 0 and inputs r(t).

    a.) r(t) u(t 1) u ( t 2 )may GRAPH DITO

    Solution: y(0) y(0) 0r(t) u(t 1) u ( t 2 )sY(s) sy(0) y(0) 3sY(s) 3y(0) 2Y(s) 1s (e e)

    f(t) 2.5 2 .63.80 elsewhere

  • 8/3/2019 Solution Manual for Advance Math

    116/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    116

    sY(s) 3sY(s) 2Y(s) 1s (e e)Y(s)s 3 s 2 1

    s(e e)

    Y(s) (e e)ss 3 s 2By partial fraction expansionFor ess 3 s 21s(s 1)( s 2 ) As 1 Bs 2 Cs

    1 A(s 4 s 5) B(2 s 4)(s 1) C ( s 1 )

    1 A s(s 2) Bs(s1)C(s 3 s 2 )1 A(s 2s) B(s 1s)C(s 3 s 2 )s: 0 A B C A 1

    s: 0 2A B 3C B 1

    2

    s: 1 2C C 12

    F(s) 1s 1 12s 2

    12s f(t)e() 12 e() 12

    For ess 3 s 21s(s 1)( s 2 ) As 1 Bs 2 Cs

  • 8/3/2019 Solution Manual for Advance Math

    117/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    117

    1 A(s 4 s 5) B(2 s 4)(s 1) C ( s 1 )1 A s(s 2) Bs(s1)C(s 3 s 2 )

    1 A(s

    2s)

    B(s

    1s)C(s

    3 s 2 )

    s: 0 A B C A 1s: 0 2A B 3C B 12s: 1 2C C 12

    F(s) 1s 1 12s 2

    12s

    f(t)e() 12 e() 12

    b.)r(t) ( t 1 )Drill Problem 2.4

    Direction: Showing the details, find and graph the solution.1.) y y (t 2 ) y(0) 1, y(0) 0

    Solution:

    s

    Y(s) sy(0) y

    (0) Y(s) e

    sY(s) 10s Y(s) eY(s)s 1 e 10sY(s) es 1 10ss 1

    y(t)

    0 0 112 e() 12 e() 1 2e() e() 12 e() 12 e() t 2

  • 8/3/2019 Solution Manual for Advance Math

    118/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    118

    For :

    F(s) 1s 1f(t) sint t (t 2)f(t) sin(t 2 ) u(t2)Then,

    Y(s) 10costsin(t 2 ) u(t2)Y(s) 10 cos t sint cos 2 cos tsin 2 u(t 2)

    2.) y 2y 2 y e 5 (t 2) y(0) 0, y(0) 1Solution:sY(s) sy(0) y(0) 2sY(s) 2y(0) 2Y(s) 1s 1 5e

    s

    Y(s) 1 2sY(s) 2Y(s) 1

    s 1 5e

    Y(s)s 2 s 2 1s 1 5e 1Y(s) 1( s 1 )s 2 s 2 5es 2 s 2 1s 2 s 2

    For () : 1( s 1 )s 2 s 2 A ( 2 s 2 ) Bs 2 s 2 Cs 11 A(2 s 2)(s 1) B(s 1) C(s 2 s 2 )

    y(t) 10 cos t sint u(t 2)

  • 8/3/2019 Solution Manual for Advance Math

    119/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    119

    1 A ( 2 s 4 s 2 ) B(s 1) C(s 2 s 2 )

    s

    : 0 2A C

    s: 0 4A B 2Cs: 1 2A B 2CA 12 , B 0 , C 1Then,

    Y(s) ( 12 )(2s2)s

    2 s 2 1

    s 1 5e

    s

    2 s 2 1

    s

    2 s 2

    Completing the square of the denominators:Y(s) (s1)( s 1 ) 1 1s 1 5e( s 1 ) 1 1( s 1 ) 1

    3.)

    y

    y 10 t 100 (t 1) y(0) 10, y(0) 1

    Solution:sY(s) sy(0) y(0) Y(s) 10e 100e

    Y(s)s 1 10e 100e 1 0 s 1

    Y(s) 10e

    s 1 100e

    s 1 10ss 1 1s 1

    For , 10sinht . ( )

    y(t) e s i n t e c o s t e 5e() sin(t 2) u (t 2)

  • 8/3/2019 Solution Manual for Advance Math

    120/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    120

    10es 1 10sinh(t 12) u t 12

    For , 100sinht . ( )100es 1 100 sinh(t 1) u t 12

    4.)

    y 3y 2 y 1 0 s int 1 0 (t 1) y(0) 1, y(0) 1

    Solution:sY(s) sy(0) y(0) 3sY(s) 3y(0) 2Y(s) 10s 1 10esY(s) s 1 3sY(s) 3 2 Y(s) 10s 1 10e

    Y(s)s 3 s 2 10s 1 10e s 2

    Y(s)s 3 s 2 10s 1 10e s 25.) y 4y 5 y 1 u(t 1 0)e e(t 1 0) y(0) 0, y(0) 1Solution:sY(s) sy(0) y(0) 4sY(s) 4y(0) 5Y(s) e e u(t 1 0)

    sY(s) 1 4sY(s) 5Y(s) 1s 1 ee 1s 1 1Y(s)s 4 s 5 1s 1 1 ee 1s 1 1

    y(t)10sinh(t 12) u t 12 100 sinh(t 1) ut 1210coshtsinht

  • 8/3/2019 Solution Manual for Advance Math

    121/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    121

    Y(s)s 4 s 5 1 s 1s 1 ee 1 s 1s 1 Y(s)s 4 s 5 ss 1 ee ss 1

    Y(s) s(s10)s 4 s 5 (ee)(s)(s1)s 4 s 5By partial fraction expansion:

    s As 1 B ( 2 s 4 ) Cs 4 s 5 s A(s 4 s 5) B(2 s 4)(s 1) C ( s 1 )s A(s 4 s 5) B(2s 2 s 4 ) C ( s 1 )s: 0 A 2Bs : 1 4 A 2 B C

    s: 0 5A 4B CA 110 , B 120 , C 710

    s 110s 1 120 (2s4)s 4 s 5 710s 4 s 5 6.) y 2y 3y 100 (t 2) 100 (t 3) y(0) 1, y(0) 0

    Solution:

    s

    Y(s) sy(0) y

    (0) 2sY(s) 2y(0) 3Y(s) 100e

    100e

    sY(s) s 2sY(s) 2 3 Y(s) 100e 100eY(s)s 2 s 3 100e 100e s 2Y(s) 100e 100es 2 s 3 s 2s 2 s 3

    Completing the square of the denominator:

    y(t) e e cost e sint e() e() cos (t 1 0) e() e u(t 1 0)

  • 8/3/2019 Solution Manual for Advance Math

    122/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    122

    Y(s) 100e 100e(s 3)( s 1 ) s 2(s 3)( s 1 )By partial fraction expansion:

    s 2 A(s 3) B( s 1 )s 2 A ( s 1 ) B(s 3)1 A B , 2 a 3 B

    A 14 , B 341 0 0 A ( s 1 ) B(s 3)0 A B , 1 0 0 a 3 B

    A 25 , B 25Y(s) 14(s 3)

    34(s 1) 100 25(s 3) 25(s 1) e 100 25(s 3) 25(s 1) e

    y(t) 14 e 34 e 25e() 25e()u(t 2) 25e() 25e()u(t 3)

    7.) y 2y 1 0 y 1 01 u(t 4) 10(t 5) y(0) 1, y(0) 1Solution:sY(s) sy(0) y(0) 2sY(s) 2y(0) 10Y(s) 1010(t 4) 10(t5)sY(s) s 1 2sY(s) 2 1 0 Y(s) 10s 10e 1s 4s

    Y(s)s 2 s 1 0 10e 10s 10es 40es

    y(t) 14 e 3e 2 5ee()u(t 2) 25 e e(t 3)

  • 8/3/2019 Solution Manual for Advance Math

    123/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    123

    Y(s) 10s(s 2 s 1 0 ) 10es(s 2 s 1 0 ) 40es(s 2 s 1 0 ) 10es 2 s 1 0For ()

    10s(s 2 s 1 0 ) As Bs C s Ds 2 s 1 01 0 A s(s 2 s 1 0) B(s 2 s 1 0) Cs(s) Ds1 0 A(s 2s 10s) B(s 2 s 1 0) C(s) Ds

    s: 0 A C s: 0 2A B D s: 0 10A 2B s: 1010BA 2 ; B 1 ; C 2 ; D 3

    10s(s 2 s 1 0 ) 2s 1s 2ss 2 s 1 0 3s 2 s 1 0For ()

    10es(s 2 s 1 0 ) 2s 1s 2ss 2 s 1 0 3s 2 s 1 0

    For () 40es(s 2 s 1 0 ) As B s Cs 2 s 1 0 4 0 A(s 2 s 1 0) Bs Cs

    s: 0 A B s: 0 2A C s : 4 0 1 0 AA 4 ; B 4 ; C 8

    40es(s 2 s 1 0 ) 4s 1s 4ss 2 s 1 0 8s 2 s 1 0Y(s) 2s 1s 2ss 2 s 1 0 3s 2 s 1 0 2s 1s 2ss 2 s 1 0 3s 2 s 1 0 4s 1s 4ss 2 s 1 0 8s 2 s 1 0 10s 2 s 1 0

  • 8/3/2019 Solution Manual for Advance Math

    124/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    124

    Competing the square of the denominatorY(s) 2s 1s 2(s 1)(s 1) 9 3(s 1) 9 2s 1s 2(s 1)(s 1) 9 3(s 1) 9

    4s 1s 4(s 1)(s 1) 9 2s 2 s 1 0 10(s 1) 9

    8.) y 5y 6 y t u(t ) cost y(0) y(0) 0

    Solution: y 5y 6 y t 12 u(t ) cost y(0) y(0) 0sY(s) sy(0) y(0) 5sY(s) 5y(0) 6Y(s) e e( ss 1)Y(s)s 5 s 6 e e( ss 1)

    Y(s) e s 5 s 6 se(s 1)s 5 s 6

    ecos(t)ecostcossintsinecostCompleting the square of the denominator

    Y(s) e (s 2)(s 3) se(s 1)(s 2)(s 3) 1(s 2) 1(s 3) e

    By partial fraction expansion:s A(2s) B(s 1) C(s 2) D(s 3)s A(2s)(s 5 s 6) B(s 5 s 6) C(s 1)(s 3) D(s 1)(s 2)

    s A(2s 10s 12s) B(s 5 s 6) C(s 3s s 3) D(s 2s s 2)

    y(t) 2 t 2e cos3te sin3t 2 (t 4) 2e() cos3(t 4)u(t 4) 4 4 e cos3(t 4) sin3(t 4) u(t 4) sin3(t 5) u(t5)

  • 8/3/2019 Solution Manual for Advance Math

    125/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    125

    A 120 , B 110 , C 25 , D 310

    Y(s) 1

    (s 2) 1

    (s 3) e

    120 (2s)(s 2)

    110(s 2)

    25(s 2)

    310(s 3) e

    y(t)(e e ) . ( ) ( cost sint e e ) . ( )y(t)e e u(t cos(t ) sin(t ) e () e () u(t)

    9.) y 2y 5 y 2 5 t 1 0 0 (t ) y(0) 2, y(0) 5Solution:

    sY(s) sy(0) y(0) 2sY(s) 2y(0) 5Y(s) 25s 100esY(s) 2s 5 2sY(s) 4 5 Y(s) 25

    s 100e

    Y(s)s 2 s 5 25s 100e 2 s 1Y(s) 25ss 2 s 5 100es 2 s 5 (2s1)s 2 s 5By partial fraction expansion:

    2 s 1 A(2 s 2) Bs 2 s 5

    2s 1 A(2 s 2) B

    A 1 , B 325 As Bs C(2 s 2) Ds 2 s 5

    25 A(s)(s 2 s 5) B(s 2 s 5) C(2 s 2)(s) D ( s)

    y(t)e e u(t cos (t ) sin(t ) e () e () u(t)

  • 8/3/2019 Solution Manual for Advance Math

    126/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    126

    25 A(s 2s 5s) B(s 2 s 5) C(2s 2s) D(s)s: 0 A 2C

    s

    : 0 2A B 2C D

    s: 0 5A2Bs: 25 5 BA 2 , B 5, C 1 , D 3

    2(2 s 2)s 2 s 5 3s 2 s 5 2s 5s (2 s 2)s 2 s 5 3s 2 s 5

    Y(s) 2s 5s 100es 2 s 5

    10.) y 5y 25t 100(t ) y(0) 2, y(0) 5Solution: sY(s) sy(0) y(0) 5Y(s) 25s 100e

    sY(s) 2s 5 5Y(s) 25s 100eY(s)s 5 25s 100e 2 s 5

    Y(s) 25

    ss 5 100es 5

    (2s5)s 5

    By partial fraction expansion: 2 s 5 A(2s) Bs 5 2s 5 A(2s) B

    y(t) 2 5 t 5 0 e() sin2(t ) u(t )

  • 8/3/2019 Solution Manual for Advance Math

    127/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    127

    A 1 , B 5

    25 As

    Bs

    C(2s) Ds 5

    25 A(s)(s 5) B(s 5) C(2s)(s) D ( s)25 A(s 5s) B(s 5) C(2s) D(s)s: 0 A 2Cs: 0 B D

    s: 0 A

    s: 2 5 5 B

    A 0 , B 5, C 0 , D 5(2s)s 5 5s 5 5 1s 1(s 5) 100es 5

    Example 2.11

    Direction: Find the response of a mass-spring system without damping to the following inputsa.) Hammerblow input (t)at t 0,zero initial conditions

    Solution:

    We are given the conditions,x(0) x(0) 02 0

    y(t) cos 5 t 5 t 2 05sin 5(t ) u(t)

  • 8/3/2019 Solution Manual for Advance Math

    128/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    128

    Then,x(t) 2x(t) x(t) F (t)

    x(

    t)

    x(t)

    F

    (t)

    sX(s) sx(0) x(0) X(s) F (s)sX(s) X(s) F (s)X(s)s F (s)X(s) F (s)s

    b.) no input, but with non-zero initial conditions (x(0) x( 0 ) 0 )Solution:We are given the condition,

    x(0) x(0) 0Then,

    x

    (t) 2x(t)

    x(t) F (t)

    sX(s) sx(0) x(0) 2sX(s) 2x( 0 ) X(s) F (s)X(s)s 2 s sx(0) x(0) 2x(0) F (s)X(s) sx(0) x(0) 2x(0)s 2 s F (s)s 2 s

    X(s) sx(0) x(0) 2x(0)(s ) ( )

    X(s) sx(0)(s ) x(0) 2x(0)(s ) x(t) x(0)e cost x(0)2x(0) e sint

    x(t) sint

  • 8/3/2019 Solution Manual for Advance Math

    129/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    129

    let C x(0) and C x(0)2x(0) Therefore

    x(t) e (CcostC sint)c.) sinusoidal driving force Asint with ,x(0) x( 0 ) 0 .Solution:We are given the conditions,

    x(0) x(0) 0

    F(s) A s in tThen,x(t) 2x(t) x(t) F (t)sX(s) sx(0) x(0) 2sX(s) 2x( 0 ) X(s) F (s)X(s)s 2 s sx(0) x(0) 2x(0) F (s)

    X(s) sx(0) x(0) 2x(0)s 2 s F (s)s 2 s

    X(s) sx(0) x(0) 2x(0)(s ) ( ) As 2 s (s )

    By partial fraction expansion:As 2 s (s ) M s Ns O s Ps 2 s A M s(s 2 s ) N(s 2 s )Os(s ) P( s )

    s: 0 M O

  • 8/3/2019 Solution Manual for Advance Math

    130/274

    Final answers are shaded in green.

    SSOOLLUUTTIIOONNSSMMAANNUUAALL IINNAADDVVAANNCCEEDDEENNGGIINNEEEERRIINNGGMMAATTHHEEMMAATTIICCSS

    P a g e

    130

    s: 0 2M N Ps: 0 M 2 N O s: A N P

    M 0 N A

    O 0 P A x(t) x(0)e cost x(0)sint A 1s A 1s 2 s

    Therefore

    d.) sinusoidal driving force Asint with ,x(0) x( 0 ) 0 .Solution:

    We are given the conditions,x(0) x(0) 0

    F(s) A s in tThen,x(t) 2x(t) x(t) F (t)sX(s) sx(0) x(0) 2sX(s) 2x( 0 ) X(s) F (s)X(s)s 2 s sx(0) x(0) 2x(0) F (s)

    X(s) sx(0) x

    (0) 2x

    (0)s 2 s F (s)s 2 s X(s) sx(0) x(0) 2x(0)(s ) () A(s ) (s )

    x(t) x(0)e costx(0)sint A sint A sint

  • 8/3/2019 Solution Manual for Advance Ma