solution of transcendental & algebraic equationsgraphical method a simple method for obtaining...

76
Solution of Transcendental & Algebraic Equations Dr. Sandeep Malhotra Department of Mathematics & Humanities, Institute of Technology, Nirma University. B. Tech. in Electrical Engineering (Semester III)

Upload: others

Post on 31-Jan-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Solution of Transcendental & Algebraic Equations

Dr. Sandeep Malhotra

Depar tment of Mathematics & Humanit ies,

Inst i tute of Technology,

Nirma Universi ty.

B. Tech. in Electrical Engineering (Semester III)

Page 2: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Electrical Engineering Problem

Find the resistance, R, of a circuit such that the charge reaches q atspecified time t,

(1.1)t

2-Rt 2L

0

1 R qf(R) = e cos - - = 0

LC 2L q

Where, L = inductance,

C = capacitance,

q0 = initial charge

Page 3: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Force on Falling Parachutist

By Newton second law of motion, which states that the time rate of change of momentum of a body is equal to the resultant force acting on it.

The mathematical expression, or model, of the second law is the well-known equation

F = ma (1.2)

⟹ 𝑭 = π’Žπ’…π’—

𝒅𝒕(1.3)

The force acting on the body : F = FU+ FD

Where, FD= mg & FU = -cv

c is a proportionality constant called the drag coefficient (kg/s).

FU

FD

Page 4: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Therefor, by Eq. (1.3)

This is a 1st Order Linear ODE, solving which we get,

𝒗 𝒕 =π’ˆπ’Ž

π’„πŸ βˆ’ π’†βˆ’

𝒄

π’Žπ’•

(1.5)

If the parameters are known, Eq. (1.5) can be used to predict theparachutist’s velocity as a function of time. Such computations can beperformed directly because v is expressed explicitly as a function of time. Thatis, it is isolated on one side of the equal sign.

mg - c𝒗 = π’Žπ’…π’—

𝒅𝒕

βŸΉπ’…π’—

𝒅𝒕= π’ˆ βˆ’

𝒄

π’Žπ’— (1.4)

Page 5: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

However, suppose we had to determine the drag coefficient for a parachutistof a given mass to attain a prescribed velocity in a set time period.

Although Eq. (1.5) provides a mathematical representation of theinterrelationship among the model variables and parameters, it cannot besolved explicitly for the drag coefficient.

There is no way to rearrange the equation so that c is isolated on one side ofthe equal sign. In such cases, c is said to be implicit.

This represents a real dilemma, because many engineering design problemsinvolve specifying the properties or composition of a system (as representedby its parameters) to ensure that it performs in a desired manner (asrepresented by its variables).

Thus, these problems often require the determination of implicit parameters.

Page 6: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

To solve the problem, it is conventional to re-express Eq. (1.5).

This is done by subtracting the dependent variable v from both sides ofthe equation to give,

The value of c that makes f(c) = 0 is, therefore, the root of the equation.

The solution to the dilemma is provided by numerical methods for roots ofalgebraic or transcendental equations.

𝒇 𝒄 =π’ˆπ’Ž

π’„πŸ βˆ’ π’†βˆ’

𝒄

π’Žπ’• βˆ’ 𝒗 (1.6)

Page 7: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Algebraic & Transcendental Equations By definition, a function given by y = 𝒇 𝒙 = 0 is algebraic if it can beexpressed in the form

𝒇 𝒙 = 𝒂𝒏𝒙𝒏 + π’‚π’βˆ’πŸπ’™

π’βˆ’πŸ +β‹―+ π’‚πŸπ’™ + π’‚πŸŽ = 𝟎.

Some specific examples are,

𝒇 𝒙 = 𝟏 βˆ’ 𝟐. πŸ‘πŸ•π’™ + πŸ•. πŸ“π’™πŸ = 𝟎 & 𝒇 𝒙 = πŸ•π’™πŸ” βˆ’ π’™πŸ‘ + πŸ“π’™πŸ = 𝟎

A transcendental function is one that is non algebraic. These includetrigonometric, exponential, logarithmic, and other, less familiar, functions.

Examples are,

𝒇 𝒙 = π₯𝐧 π’™πŸ βˆ’ 𝟏 = 𝟎 & 𝒇 𝒙 = π’†βˆ’πŸŽ.πŸπ’™ 𝐬𝐒𝐧 πŸ‘π’™ βˆ’ 𝟎. πŸ“ = 𝟎

Page 8: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

by Lale Yurttas, Texas A&M University PART 2 8

Why new methods to find Roots of Equations?

β€’ BUT

a

acbbxcbxax

2

40

22

?0sin

?02345

xxx

xfexdxcxbxax

Page 9: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Root finding Methods Essentially finding a root of a function, that is, a zero of the function.

The goal is to solve f(x) = 0, for the function f(x).

The values of x which make f(x) = 0 are the roots of the equation.

f(a)=0 f(b)=0

a, b are roots of the function f(x)

X

f(x)

Y= f(x)

Page 10: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Root finding Methods There are many methods for solving non-linear equations. The methods, which willbe highlighted have the following properties: The function f(x) is expected to be continuous. If not the method may fail.

The use of the algorithm requires that the solution be bounded.

Once the solution is bounded, it is refined to specified tolerance.

Such methods are:

1. Graphical Method

2. Interval Halving (Bisection method)

3. Regula Falsi (False position)

4. Newton’s method

5. Secant method

6. Fixed point iteration

Page 11: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Study Objectives

You should have sufficient information to successfully approach a

wide variety of engineering problems dealing with roots of

equations.

You should have

mastered the techniques,

have learned to assess their reliability,

and be capable of choosing the best method (or methods) for any

particular problem.

Page 12: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Important Instructions

You must have Scientific Calculator in each class.

Fix your Calculator digits to 6 decimals.

Put it in Radian mode.

Don’t cut the digits specially when you are usingthe Secant Method.

Page 13: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Nonlinear Equation

Solvers

Bracketing

Bisection

False Position

(Regula-Falsi)

Graphical Open Methods

Newton Raphson

Secant

All Iterative

Fixed Point

Page 14: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

GRAPHICAL METHOD

Page 15: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Graphical MethodA simple method for obtaining an estimate of the root of the equation f(x) = 0is to make a plot of the function and observe where it crosses the x axis.

This point, which represents the x value for which f(x) = 0, provides a roughapproximation of the root.

Illustration: Use the graphical approach to determine the drag coefficient cneeded for a parachutist of mass m = 68.1 kg to have a velocity of 40 m /safter free-falling for time t = 10 s.

Solution: This problem can be solved by determining the root of Eq. (1.6) usingthe parameters t = 10, g = 9.8, v = 40, and m = 68.1:

⟹ 𝒇 𝒄 =πŸ—.πŸ–(πŸ”πŸ–.𝟏)

π’„πŸ βˆ’ π’†βˆ’(

𝒄

πŸ”πŸ–.𝟏)𝟏𝟎 βˆ’ 40𝒇 𝒄 =

π’ˆπ’Ž

π’„πŸ βˆ’ π’†βˆ’

π’„π’Žπ’• βˆ’ 𝒗

Page 16: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Various values of c can be substituted into the right-hand side of this equation

to compute, These points are plotted in Fig. below,

The resulting curve crosses the c axis between 12

and 16. Visual inspection of the plot provides a

rough estimate of the root of 14.75. The validity

of the graphical estimate can be checked by

substituting it into Eq. (1.7) to yield,

⟹ 𝒇 𝒄 =πŸ”πŸ”πŸ•.πŸ‘πŸ–

π’„πŸ βˆ’ π’†βˆ’πŸŽ.πŸπŸ’πŸ”πŸ–πŸ’πŸ‘π’„ βˆ’40 (1.7)

𝒇 πŸπŸ’. πŸ•πŸ“ =πŸ”πŸ”πŸ•.πŸ‘πŸ–

πŸπŸ’.πŸ•πŸ“πŸ βˆ’ π’†βˆ’πŸŽ.πŸπŸ’πŸ”πŸ–πŸ’πŸ‘(πŸπŸ’.πŸ•πŸ“) βˆ’ 40

= 0.059

40

20

0

-10

4 8 12 16 20c

f(c)

Root

c f(c)

4 34.115

8 17.653

12 6.067

16 -2.269

20 -8.401

Page 17: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 1: Determine the real root of 𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™βˆ’ 𝟐 graphically.

Solution: Lets prepare a table and graph of values for x and f(x),

π‘₯ = 0.4 ⟹ 𝑓 π‘₯ = βˆ’0.08

π‘₯ = 0.42 ⟹ 𝑓 π‘₯ = 0.008 β‰ˆ 0.

x f(x)

0 -2

1 4

2 30

-1 -18

-1 1 2 x

f(x)

Root

40

20

0

-20

The resulting curve crosses the x axis between 0

and 1. Visual inspection of the plot provides a

rough estimate of the root of 0.4. The validity of

the graphical estimate can be checked by

substituting it into original Eq. to yield,

Ans.: Approximate root of the equation is x = 0.42.

Page 18: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Pitfalls of Graphical Method Graphical technique is of limited practical value because it is not precise.

However, graphical methods can be utilized to obtain rough estimates of roots. Theseestimates can be employed as starting guesses for numerical methods discussed in the nexttopic.

From providing rough estimates of the root, graphical interpretations are importanttools for understanding the properties of the functions and anticipating the pitfalls ofthe numerical methods.

Intermediate Value property: The function changes sign on opposite sides of the root.If one root of a real and continuous function, f(x) = 0, is bounded by values x = a, x = bthen f(a) . f(b) < 0.

It is the simplest root-finding step which requires previous knowledge of two initialguesses, a and b, so that f(a) and f(b) have opposite signs. These guesses must β€œbracket”or be on either side of the root.

Page 19: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Bracketing Methods

In bracketing methods, the method starts with an intervalthat contains the root and a procedure is used to obtain asmaller interval containing the root.

Such methods are always convergent.

Examples of bracketing methods:

β—¦Bisection method

β—¦False position method

Page 20: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Bisection Method

Page 21: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Bisection Method Assumptions:

Given an interval [a, b]

f(x) is continuous on [a, b]

f(a) and f(b) have opposite signs.

These assumptions ensure the existence of at least one zero in the interval [a, b] and thebisection method can be used to obtain a smaller interval that contains the zero.

For that we perform the following steps:

1. Compute the mid point c = (a + b) / 2

2. Evaluate f(c)

3. If f(a) f(c) < 0 then new interval [a, c]

If f(a) f(c) > 0 then new interval [c, b]

4. Repeat the procedure until we get convergence.

a

b

f(a)

f(b)

c

a C1 C2

b

Page 22: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 2: Determine the real root of 𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Bisection Method.

Solution: Lets find the interval first,

π‘₯ = 0 ⟹ 𝑓 0 = βˆ’2π‘₯ = 1 ⟹ 𝑓 1 = 4∴ π‘₯ ∈ [0, 1]

Lets start the Bisection iterations now,

π‘₯1 =0+1

2= 0.5, 𝑓 π‘₯1 = 𝑓 0.5 = 0.375 > 0 ∴ π‘₯ ∈ [0, 0.5]

π‘₯2 =0 + 0.5

2= 0.25, 𝑓 π‘₯2 = 𝑓 0.25 = -0.7344 < 0 ∴ π‘₯ ∈ [0.25, 0.5]

π‘₯3 =0.25 + 0.5

2= 0.375, 𝑓 π‘₯3 = 𝑓 0.375 =-0.1895<0 ∴ π‘₯ ∈ [0.375, 0.5]

< 0> 0

Page 23: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Table Showing The Iterations

a = 0, f(a) < 0 b = 1, f(b) > 0 x1 = 0.5 f(x1) = 0.375 > 0

a = 0 x1 = 0.5 x2 = 0.25 f(x2) = -0.7344 < 0

x2 = 0.25 x1 = 0.5 x3 = 0.375 f(x3) = 0.1895 > 0

x3 = 0.375 X1 = 0.5 x4 = f(x4) =

Page 24: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π‘₯4 =0.375 + 0.5

2= 0.4375, 𝑓 π‘₯4 = 𝑓 0.4375 = 0.0867 > 0 ∴ π‘₯ ∈ [0.375, 0.4375]

π‘₯5 =0.375 + 0.4375

2= 0.4063, 𝑓 π‘₯5 = 𝑓 0.4063 = -0.0522 < 0 ∴ π‘₯ ∈ [0.4063, 0.4375]

π‘₯6 =0.4063 + 0.4375

2= 0.4219,𝑓 π‘₯6 = 𝑓 0.4219 = 0.0169 > 0 ∴ π‘₯ ∈ [0.4063, 0.4219]

π‘₯7 =0.4063 + 0.4219

2= 0.4141,𝑓 π‘₯7 = 𝑓 0.4141 = -0.0177 < 0 ∴ π‘₯ ∈ [0.4141, 0.4219]

π‘₯8 =0.4141 + 0.4219

2= 0.418, 𝑓 π‘₯8 = 𝑓 0.418 = -0.00044 < 0 ∴ π‘₯ ∈ [0.418, 0.4219]

π‘₯9 =0.418 + 0.4219

2= 0.42, 𝑓 π‘₯9 = 𝑓 0.42 = 0.0084 > 0 ∴ π‘₯ ∈ [0.42, 0.4219]

|0.42 – 0.4219| = 0.0019 β‰ˆ 0

∴ 𝒙 = 𝟎. πŸ’πŸ is one of the approximate real root of the given equation

correct up to 2 decimal places.

Page 25: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 3: Determine the negative real root of 𝒇 𝒙 = π’™πŸ‘ + πŸπŸπ’™ + 35

using Bisection Method correct up to 2 decimal places.

Solution: Lets find the interval first, π‘₯ = 0 ⟹ 𝑓 0 = 35

π‘₯ = βˆ’1 ⟹ 𝑓 βˆ’1 =13

∴ π‘₯ ∈ [βˆ’2,βˆ’1]

Lets start the Bisection iterations now,

π‘₯1 =βˆ’2βˆ’1

2= βˆ’1.5, 𝑓 π‘₯1 = 𝑓 βˆ’1.5 = 0.125 > 0 ∴ π‘₯ ∈ [βˆ’2,βˆ’1.5]

π‘₯2 =βˆ’2 βˆ’ 1.5

2= βˆ’1.75, 𝑓 π‘₯2 = 𝑓 βˆ’1.75 = -7.12 < 0 ∴ π‘₯ ∈ [βˆ’1.75,βˆ’1.5]

π‘₯3 =βˆ’1.75 βˆ’ 1.5

2= βˆ’1.625, 𝑓 π‘₯3 = 𝑓 βˆ’1.625 = -3.42 < 0

∴ π‘₯ ∈ [βˆ’1.625, βˆ’1.5]

> 0

> 0

π‘₯ = βˆ’2 ⟹ 𝑓 βˆ’2 = -15 < 0

Page 26: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π‘₯4 =βˆ’1.625 βˆ’ 1.5

2= βˆ’1.563, 𝑓 π‘₯4 = 𝑓 βˆ’1.563 = -1.641 < 0 ∴ π‘₯ ∈ [βˆ’1.563,βˆ’1.5]

π‘₯5 =βˆ’1.563 βˆ’ 1.5

2= βˆ’1.532, 𝑓 π‘₯5 = 𝑓 βˆ’1.532 = -0.768 < 0 ∴ π‘₯ ∈ [βˆ’1.532,βˆ’1.5]

π‘₯6 =βˆ’1.532 βˆ’ 1.5

2= βˆ’1.516, 𝑓 π‘₯6 = 𝑓 βˆ’1.516 = -0.32 < 0 ∴ π‘₯ ∈ [βˆ’1.516,βˆ’1.5]

π‘₯7 =βˆ’1.516 βˆ’ 1.5

2= βˆ’1.508, 𝑓 π‘₯7 = 𝑓 βˆ’1.508 = -0.097 < 0 ∴ π‘₯ ∈ [βˆ’1.508,βˆ’1.5]

π‘₯8 =βˆ’1.508 βˆ’ 1.5

2= βˆ’1.504, 𝑓 π‘₯8 = 𝑓 βˆ’1.504 = 0.014 > 0 ∴ π‘₯ ∈ [βˆ’1.508,βˆ’1.504]

|(-1.508) – (-1.504)| = 0.004 β‰ˆ 0

∴ 𝒙 = βˆ’πŸ.504 is one of the approximate negative real root of the given equation

correct up to 2 decimal places.

Page 27: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 4: Determine the nontrivial root of π’”π’Šπ’ 𝒙 = π’™πŸ‘ using Bisection Method correct up to 2 decimal places.

Solution: Lets find the interval for 𝑓 π‘₯ = 𝑠𝑖𝑛π‘₯ βˆ’ π‘₯3 = 0,

π‘₯ = 0.5 ⟹ 𝑓 0.5 = 0.3544

∴ π‘₯ ∈ [0.5, 1]

Lets start the Bisection iterations now,

π‘₯1 =0.5+1

2= 0.75, 𝑓 π‘₯1 = 𝑓 0.75 = 0.26 > 0 ∴ π‘₯ ∈ [0.75, 1]

π‘₯2 =0.75 + 1

2= 0.875, 𝑓 π‘₯2 = 𝑓 0.875 = 0.098 > 0 ∴ π‘₯ ∈ [0.875, 1]

π‘₯3 =0.875 + 1

2= 0.9375, 𝑓 π‘₯3 = 𝑓 0.9375 = -0.018 < 0

∴ π‘₯ ∈ [0.875, 0.9375]

> 0

π‘₯ = 1 ⟹ 𝑓 1 = -0.159 < 0

Page 28: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π‘₯4 =0.875 + 0.9375

2= 0.9063, 𝑓 π‘₯4 = 𝑓 0.9063 = 0.0428 > 0 ∴ π‘₯ ∈ [0.9063, 0.9375]

π‘₯5 =0.9063 + 0.9375

2= 0.9219, 𝑓 π‘₯5 = 𝑓 0.9219 = 0.013 > 0 ∴ π‘₯ ∈ [0.9219, 0.9375]

π‘₯6 =0.9219 + 0.9375

2= 0.9297,𝑓 π‘₯6 = 𝑓 0.9297 = -0.002 < 0 ∴ π‘₯ ∈ [0.9219, 0.9297]

|0.9219 - 0.9297| = 0.0078 β‰ˆ 0

∴ 𝒙 = 𝟎. πŸ—πŸ is one of the approximate real root of the given equation

correct up to 2 decimal places.

Page 29: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Pitfalls of Bisection MethodPros

Easy

Always find root

Number of iterationsrequired to attain anabsolute error can becomputed a priori as thesize of the intervalcontaining the zero isreduced by 50% aftereach iteration.

Cons

Slow

Only find one root at atime.

Not applicable whenthere are Multiple roots.

Good intermediateapproximations may bediscarded.

i 1 imax maxE 0.5 E

Page 30: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

False Position Method(Regula Falsi)

Page 31: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Method of False Position

This technique is similar to the bisection

method except that the next iteration

is taken as the line of interception

between the pair of x-values and the

x-axis rather than at the midpoint.

(a, f(a))

(b, f(b))

By two point line formula,

π’š βˆ’ π’šπŸπ’šπŸ βˆ’ π’šπŸ

=𝒙 βˆ’ π’™πŸπ’™πŸ βˆ’ π’™πŸ

βŸΉπ’‡(𝒙) βˆ’ 𝒇(𝒂)

𝒇(𝒂) βˆ’ 𝒇(𝒃)=𝒙 βˆ’ 𝒂

𝒂 βˆ’ 𝒃

βŸΉβˆ’π’‡(𝒂)

𝒇(𝒂) βˆ’ 𝒇(𝒃)=π’™πŸ βˆ’ 𝒂

𝒂 βˆ’ 𝒃𝒇𝒐𝒓 𝒙 = π’™πŸ, 𝒇 𝒙 = 𝟎 ⟹ π’™πŸ = 𝒂 βˆ’

(𝒂 βˆ’ 𝒃)𝒇(𝒂)

𝒇(𝒂) βˆ’ 𝒇(𝒃)

⟹ π’™πŸ =βˆ’π’‚π’‡(𝒃) + 𝒃𝒇(𝒂)

𝒇(𝒂) βˆ’ 𝒇(𝒃)⟹ π’™πŸ =

𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)

𝒇(𝒃) βˆ’ 𝒇(𝒂)Iterative formula for Method

of False Position

X

f(x)

Roota

b

π’™πŸ π’™πŸ

Page 32: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Method of False PositionAssumptions:

Given an interval [a, b]

f(x) is continuous on [a, b]

f(a) and f(b) have opposite signs.

These assumptions ensure the existence of at least one zero in the interval [a, b] and thefalse position method can be used to obtain a smaller interval that contains the zero.

For that we perform the following steps:

1. Compute the in between point on x-axis,

2. Evaluate f(π’™πŸ)

3. If f(a) f(π’™πŸ) < 0 then new interval [a, π’™πŸ]

If f(a) f(π’™πŸ) > 0 then new interval [π’™πŸ, b]

4. Repeat the procedure until 𝒇(π’™π’Š) < tolerance value.

π’™πŸ =𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)

𝒇(𝒃) βˆ’ 𝒇(𝒂)

Page 33: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Solution: Lets find the interval first,

π‘₯ = 0 ⟹ 𝑓 0 = βˆ’2 < 0π‘₯ = 1 ⟹ 𝑓 1 = 4 > 0∴ π‘₯ ∈ [0, 1]

Lets start the iterations now,

Example 5: Determine the real root of

𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Method of False Position.

π’™πŸ =𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)

𝒇(𝒃) βˆ’ 𝒇(𝒂)=πŸŽπ’‡ 𝟏 βˆ’ πŸπ’‡(𝟎)

𝒇(𝟏) βˆ’ 𝒇(𝟎)=𝟎 βˆ’ 𝟏(βˆ’πŸ)

πŸ’ βˆ’ (βˆ’πŸ)=𝟐

πŸ”= 𝟎. πŸ‘πŸ‘πŸ‘

𝒇 π’™πŸ = 𝒇 𝟎. πŸ‘πŸ‘πŸ‘ = -0.372 < 0 ∴ 𝒙 ∈ [𝟎. πŸ‘πŸ‘πŸ‘, 𝟏]

Page 34: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Table Showing The Iterations

a = 0, f(a) < 0 b = 1, f(b) > 0 x1 = 0.333 f(x1) = -0.372 < 0

x1 = 0.333 b = 1 x2 = 0.3898 f(x2) = -0.125 < 0

x2 = 0.3898 b = 1 x3 = 0.4083 f(x3) = -0.043 < 0

x3 = 0.4083 b = 1 x4 = f(x4) =

Page 35: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π’™πŸ =π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ)=𝟎. πŸ‘πŸ‘πŸ‘π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ‘πŸ‘πŸ‘)

𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ‘πŸ‘πŸ‘)=𝟎. πŸ‘πŸ‘πŸ‘(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸ‘πŸ•πŸ)

πŸ’ βˆ’ (βˆ’πŸŽ. πŸ‘πŸ•πŸ)= 𝟎. πŸ‘πŸ–πŸ—πŸ–

𝒇 π’™πŸ = 𝒇 𝟎. πŸ‘πŸ–πŸ—πŸ– = -0.125 < 0 ∴ 𝒙 ∈ [𝟎. πŸ‘πŸ–πŸ—πŸ–, 𝟏]

π’™πŸ‘ =π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ)=𝟎. πŸ‘πŸ–πŸ—πŸ–π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ‘πŸ–πŸ—πŸ–)

𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ‘πŸ–πŸ—πŸ–)=𝟎. πŸ‘πŸ–πŸ—πŸ–(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸπŸπŸ“)

πŸ’ βˆ’ (βˆ’πŸŽ. πŸπŸπŸ“)= 𝟎.4083

𝒇 π’™πŸ‘ = 𝒇 𝟎. πŸ’πŸŽπŸ–πŸ‘ = -0.043 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸŽπŸ–πŸ‘, 𝟏]

π’™πŸ’ =π’™πŸ‘π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ‘)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ‘)=𝟎. πŸ’πŸŽπŸ–πŸ‘π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸŽπŸ–πŸ‘)

𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸŽπŸ–πŸ‘)=𝟎. πŸ’πŸŽπŸ–πŸ‘(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸ’πŸ‘)

πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸ’πŸ‘)= 𝟎.415

𝒇 π’™πŸ’ = 𝒇 𝟎. πŸ’πŸπŸ“ = -0.014 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ“, 𝟏]

π’™πŸ“ =π’™πŸ’π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ’)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ’)=𝟎. πŸ’πŸπŸ“π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ“)

𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ“)=𝟎. πŸ’πŸπŸ“(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸπŸ’)

πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸπŸ’)= 𝟎.417

𝒇 π’™πŸ“ = 𝒇 𝟎. πŸ’πŸπŸ• = -0.005 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•, 𝟏]

Page 36: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π’™πŸ” =π’™πŸ“π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ“)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ“)=𝟎. πŸ’πŸπŸ•π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ•)

𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ•)=𝟎. πŸ’πŸπŸ•(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸŽπŸ“)

πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸŽπŸ“)= 𝟎.4177

𝒇 π’™πŸ” = 𝒇 𝟎. πŸ’πŸπŸ•πŸ• = -0.0018 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•πŸ•, 𝟏]

π’™πŸ• =π’™πŸ”π’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ”)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ”)=𝟎. πŸ’πŸπŸ•πŸ•π’‡ 𝟏 βˆ’ πŸπ’‡(𝟎. πŸ’πŸπŸ•πŸ•)

𝒇(𝟏) βˆ’ 𝒇(𝟎. πŸ’πŸπŸ•πŸ•)=𝟎. πŸ’πŸπŸ•πŸ•(πŸ’) βˆ’ 𝟏(βˆ’πŸŽ. πŸŽπŸŽπŸπŸ–)

πŸ’ βˆ’ (βˆ’πŸŽ. πŸŽπŸŽπŸπŸ–)= 𝟎.4179

𝒇 π’™πŸ• = 𝒇 𝟎. πŸ’πŸπŸ•πŸ— = -0.0009 < 0 ∴ 𝒙 ∈ [𝟎. πŸ’πŸπŸ•πŸ—, 𝟏]

∴ 𝒙 = 𝟎. πŸ’πŸπŸ•πŸ— is one of the approximate real root of the given equation

correct up to 3 decimal places.

|f(0.4179)| = 0.0009 β‰ˆ 0

Page 37: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 6: Determine the real root of 𝒍𝒏 π’™πŸ’ = 𝟎. πŸ• using Regula – Falsi

Method correct up to three decimal places.

Solution: Lets find the interval for,

π‘₯ = 1 ⟹ 𝑓 1 = βˆ’0.7π‘₯ = 2 ⟹ 𝑓 2 = 2.073∴ π‘₯ ∈ [1, 2]

Lets start the iterations now,

𝒇 𝒙 = 𝒍𝒏 π’™πŸ’ βˆ’ 𝟎. πŸ•

π’™πŸ =𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)

𝒇(𝒃) βˆ’ 𝒇(𝒂)=πŸπ’‡ 𝟐 βˆ’ πŸπ’‡(𝟏)

𝒇(𝟐) βˆ’ 𝒇(𝟏)=𝟐. πŸŽπŸ•πŸ‘ βˆ’ 𝟐(βˆ’πŸŽ. πŸ•)

𝟐. πŸŽπŸ•πŸ‘ βˆ’ (βˆ’πŸŽ. πŸ•)= 𝟏. πŸπŸ“πŸ

𝒇 π’™πŸ = 𝒇 𝟏. πŸπŸ“πŸ = 0.199 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ“πŸ]

< 0> 0

Page 38: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Table Showing The Iterations

a = 1, f(a) < 0 b = 2, f(b) > 0 x1 = 1.252 f(x1) = 0.199 > 0

a = 1 x1 = 1.252 x2 = 1.196 f(x2) = 0.016 > 0

a = 1 x2 = 1.196 x3 = f(x3) =

Page 39: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π’™πŸ =𝒂𝒇 π’™πŸ βˆ’ π’™πŸπ’‡(𝒂)

𝒇(π’™πŸ) βˆ’ 𝒇(𝒂)=πŸπ’‡ 𝟏. πŸπŸ“πŸ βˆ’ 𝟏. πŸπŸ“πŸπ’‡(𝟏)

𝒇(𝟏. πŸπŸ“πŸ) βˆ’ 𝒇(𝟏)=𝟎. πŸπŸ—πŸ— βˆ’ 𝟏. πŸπŸ“πŸ(βˆ’πŸŽ. πŸ•)

𝟎. πŸπŸ—πŸ— βˆ’ (βˆ’πŸŽ. πŸ•)= 𝟏.196

𝒇 π’™πŸ = 𝒇 𝟏. πŸπŸ—πŸ” = 0.016 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸ”]

π’™πŸ‘ =𝒂𝒇 π’™πŸ βˆ’ π’™πŸπ’‡(𝒂)

𝒇(π’™πŸ) βˆ’ 𝒇(𝒂)=πŸπ’‡ 𝟏. πŸπŸ—πŸ” βˆ’ 𝟏. πŸπŸ—πŸ”π’‡(𝟏)

𝒇(𝟏. πŸπŸ—πŸ”) βˆ’ 𝒇(𝟏)=𝟎. πŸŽπŸπŸ” βˆ’ 𝟏. πŸπŸ—πŸ”(βˆ’πŸŽ. πŸ•)

𝟎. πŸŽπŸπŸ” βˆ’ (βˆ’πŸŽ. πŸ•)= 𝟏.192

𝒇 π’™πŸ‘ = 𝒇 𝟏. πŸπŸ—πŸ = 0.0025 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸ]

π’™πŸ’ =𝒂𝒇 π’™πŸ‘ βˆ’ π’™πŸ‘π’‡(𝒂)

𝒇(π’™πŸ‘) βˆ’ 𝒇(𝒂)=πŸπ’‡ 𝟏. πŸπŸ—πŸ βˆ’ 𝟏. πŸπŸ—πŸπ’‡(𝟏)

𝒇(𝟏. πŸπŸ—πŸ) βˆ’ 𝒇(𝟏)=𝟎. πŸŽπŸŽπŸπŸ“ βˆ’ 𝟏. πŸπŸ—πŸ(βˆ’πŸŽ. πŸ•)

𝟎. πŸŽπŸŽπŸπŸ“ βˆ’ (βˆ’πŸŽ. πŸ•)= 𝟏.1913

𝒇 π’™πŸ’ = 𝒇 𝟏. πŸπŸ—πŸπŸ‘ = 0.00002 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸπŸ‘]

π’™πŸ“ =𝒂𝒇 π’™πŸ’ βˆ’ π’™πŸ’π’‡(𝒂)

𝒇(π’™πŸ’) βˆ’ 𝒇(𝒂)=πŸπ’‡ 𝟏. πŸπŸ—πŸπŸ‘ βˆ’ 𝟏. πŸπŸ—πŸπŸ‘π’‡(𝟏)

𝒇(𝟏. πŸπŸ—πŸ) βˆ’ 𝒇(𝟏)=𝟎. 𝟎𝟎𝟎𝟎𝟐 βˆ’ 𝟏. πŸπŸ—πŸπŸ‘(βˆ’πŸŽ. πŸ•)

𝟎. 𝟎𝟎𝟎𝟎𝟐 βˆ’ (βˆ’πŸŽ. πŸ•)= 𝟏.19129

𝒇 π’™πŸ“ = 𝒇 𝟏. πŸπŸ—πŸπŸπŸ— = 0.00001 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. πŸπŸ—πŸπŸπŸ—]

∴ 𝒙 = 𝟏. πŸπŸ—πŸπŸπŸ— is the approximate real root of the given equation correct up to 3 decimal places.

Page 40: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 7: Determine the real root of π’™πŸπŸŽ= 1.1 using Method of False

Position & Bisection Method correct up to three decimal places.

Solution: Lets find the interval for, 𝒇 𝒙 = π’™πŸπŸŽ βˆ’ 1.1

π‘₯ = 1 ⟹ 𝑓 1 = βˆ’0.1π‘₯ = 2 ⟹ 𝑓 2 = 1022.9

< 0> 0

∴ π‘₯ ∈ [1, 2]

Part 1. Iterations for Method of False Position

π’™πŸ =𝒂𝒇 𝒃 βˆ’ 𝒃𝒇(𝒂)

𝒇(𝒃) βˆ’ 𝒇(𝒂)=πŸπ’‡ 𝟐 βˆ’ πŸπ’‡(𝟏)

𝒇(𝟐) βˆ’ 𝒇(𝟏)=𝟏𝟎𝟐𝟐. πŸ— βˆ’ 𝟐(βˆ’πŸŽ. 𝟏)

𝟏𝟎𝟐𝟐. πŸ— βˆ’ (βˆ’πŸŽ. 𝟏)= 𝟏.0001

𝒇 π’™πŸ = 𝒇 𝟏. 𝟎𝟎𝟎𝟏 = -0.099 < 0 ∴ 𝒙 ∈ [𝟏. 𝟎𝟎𝟎𝟏, 𝟐]

Page 41: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π’™πŸ =π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ)=𝟏. πŸŽπŸŽπŸŽπŸπ’‡ 𝟐 βˆ’ πŸπ’‡(𝟏. 𝟎𝟎𝟎𝟏)

𝒇(𝟐) βˆ’ 𝒇(𝟏. 𝟎𝟎𝟎𝟏)=(𝟏. 𝟎𝟎𝟎𝟏)(𝟏𝟎𝟐𝟐. πŸ—) βˆ’ 𝟐(βˆ’πŸŽ. πŸŽπŸ—πŸ—)

𝟏𝟎𝟐𝟐. πŸ— βˆ’ (βˆ’πŸŽ. πŸŽπŸ—πŸ—)

= 𝟏.0002𝒇 π’™πŸ = 𝒇 𝟏. 𝟎𝟎𝟎𝟐 = -0.098 < 0 ∴ 𝒙 ∈ [𝟏. 𝟎𝟎𝟎𝟐, 𝟐]

π’™πŸ‘ =π’™πŸπ’‡ 𝒃 βˆ’ 𝒃𝒇(π’™πŸ)

𝒇(𝒃) βˆ’ 𝒇(π’™πŸ)=𝟏. πŸŽπŸŽπŸŽπŸπ’‡ 𝟐 βˆ’ πŸπ’‡(𝟏. 𝟎𝟎𝟎𝟐)

𝒇(𝟐) βˆ’ 𝒇(𝟏. 𝟎𝟎𝟎𝟐)=(𝟏. 𝟎𝟎𝟎𝟐)(𝟏𝟎𝟐𝟐. πŸ—) βˆ’ 𝟐(βˆ’πŸŽ. πŸŽπŸ—πŸ–)

𝟏𝟎𝟐𝟐. πŸ— βˆ’ (βˆ’πŸŽ. πŸŽπŸ—πŸ–)

= 𝟏.0003𝒇 π’™πŸ‘ = 𝒇 𝟏. πŸŽπŸŽπŸŽπŸ‘ = -0.097 < 0 ∴ 𝒙 ∈ [𝟏. πŸŽπŸŽπŸŽπŸ‘, 𝟐]

We are getting very slow convergence by Method of False position for this example.

X

f(x)

Roota

b

π’™πŸ π’™πŸFunctions with Significant Curvature

π’™πŸπŸŽ= 1.1

Page 42: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π‘₯3 =1+1.25

2= 1.125, 𝑓 π‘₯3 = 𝑓 1.125 =2.147 > 0 ∴ π‘₯ ∈ [1, 1.125]

π‘₯4 =1+1.125

2= 1.063, 𝑓 π‘₯4 = 𝑓 1.063 =0.742 > 0 ∴ π‘₯ ∈ [1, 1.063]

π‘₯5 =1+1.063

2= 1.032, 𝑓 π‘₯5 = 𝑓 1.032 = 0.27 > 0 ∴ π‘₯ ∈ [1, 1.032]

π‘₯6 =1+1.032

2= 1.016, 𝑓 π‘₯6 = 𝑓 1.016 =0.07 > 0 ∴ π‘₯ ∈ [1, 1.016]

Part 2. Iterations for Bisection Method

π‘₯1 =1+2

2= 1.5, 𝑓 π‘₯1 = 𝑓 1.5 = 56.57 > 0 ∴ π‘₯ ∈ [1, 1.5]

π‘₯2 =1+1.5

2= 1.25, 𝑓 π‘₯2 = 𝑓 1.25 = 8.21 > 0 ∴ π‘₯ ∈ [1, 1.25]

Page 43: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

π‘₯11 =1.009+1.01

2= 1.0095, 𝑓 π‘₯11 = 𝑓 1.0095 =-- 0.00008 < 0

∴ π‘₯ ∈ [1.0095, 1.01]

π‘₯12 =1.0095+1.01

2= 1.0098, 𝑓 π‘₯12 = 𝑓 1.0098 = - 0.002 > 0

∴ π‘₯ ∈ [1.0095, 1.0098]

∴ 𝒙 = 𝟏. πŸŽπŸŽπŸ— is the approximate real root of the given equation correct up to 3 decimal

places.

π‘₯8 =1.008+1.016

2= 1.012, 𝑓 π‘₯8 = 𝑓 1.012 =0.027 > 0 ∴ π‘₯ ∈ [1.008, 1.012]

π‘₯9 =1.008+1.012

2= 1.01, 𝑓 π‘₯9 = 𝑓 1.01 = 0.005 > 0 ∴ π‘₯ ∈ [1.008, 1.01]

π‘₯10 =1.008+1.01

2= 1.009, 𝑓 π‘₯10 = 𝑓 1.009 = -0.006 < 0 ∴ π‘₯ ∈ [1.009, 1.01]

π‘₯7 =1+1.016

2= 1.008, 𝑓 π‘₯7 = 𝑓 1.008 = -0.017 < 0 ∴ π‘₯ ∈ [1.008, 1.016]

Page 44: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Pitfalls of the False-Position Method

Although the false-position method would seem to always be the bracketing

method of preference, there are cases where it performs poorly (as we have seen

in the last example), there are certain cases where bisection yields superior results,

particularly for functions with Significant Curvature.

The example also illustrates a major weakness of the false-position method: its

one sidedness. That is, as iterations are proceeding, one of the bracketing points

will tend to stay fixed. This can lead to poor convergence.

If f(a) and f(b) have the same sign, the function may have an even number of real

zeroes in the interval [a, b]. The False Position Method can not work for such

problems.

Page 45: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Open Methods

In the open methods, the method starts with one or more initialguess points. In each iteration, a new guess of the root is obtained.

Open methods are usually more efficient than bracketing methods.

They may not converge to a root.

Examples of open methods:

β—¦Newton - Raphson Method

β—¦ Fixed Point Iteration Method

Page 46: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Newton - Raphson Method

Page 47: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Newton - Raphson Method

x

f(x)

0 π’™π’Š

𝒇(π’™π’Š)

Root

π’™π’Š+𝟏

𝒇(π’™π’Š) βˆ’ 𝟎

π’™π’Š βˆ’ π’™π’Š+𝟏

Slope = 𝒇′(π’™π’Š)

If the initial guess at the root is xi, a

tangent can be extended from the point

[xi, f (xi)]. The point where this tangent

crosses the x axis usually represents an

improved estimate of the root.

As in Fig., the first derivative at x is

equivalent to the slope:

Slope = 𝒇′(π’™π’Š) =𝒇 π’™π’Š βˆ’πŸŽ

π’™π’Šβˆ’π’™π’Š+𝟏

⟹ π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

Iterative formula for Newton Raphson Method

Page 48: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 8: Determine the real root of

𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐 = 𝟎 using Newton Raphson Method.

Solution: 𝒇 𝒙 = πŸ“π’™πŸ‘ βˆ’ πŸ“π’™πŸ + πŸ”π’™ βˆ’ 𝟐

⟹ 𝒇′ 𝒙 = πŸπŸ“π’™πŸ βˆ’ πŸπŸŽπ’™ + πŸ”

π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

By Newton Raphson Method,

Let us start the iterations with the initial guess π’™πŸŽ = 𝟎,

∴ π’™πŸ= π’™πŸŽ βˆ’π’‡ π’™πŸŽπ’‡β€² π’™πŸŽ

= 0 -βˆ’πŸ

πŸ”= 0.333

∴ π’™πŸ= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 0.333 -βˆ’πŸŽ.πŸ‘πŸ•πŸ

πŸ’.πŸ‘πŸ‘πŸ‘= 0.419= 𝟎. πŸ‘πŸ‘πŸ‘ βˆ’

𝒇 𝟎.πŸ‘πŸ‘πŸ‘

𝒇′ 𝟎.πŸ‘πŸ‘πŸ‘

∴ π’™πŸ‘= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 0.419 -𝟎.πŸŽπŸŽπŸ‘πŸ’

πŸ’.πŸ’πŸ’πŸ‘= 0.4198= 𝟎. πŸ’πŸπŸ— βˆ’

𝒇 𝟎.πŸ’πŸπŸ—

𝒇′ 𝟎.πŸ’πŸπŸ—

∴ 𝒙 = 𝟎. πŸ’πŸπŸ—πŸ– is one of the approximate real root of the given equation correct up to 3 decimal places.

= 0 -𝒇(𝟎)

𝒇′(𝟎)

Page 49: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 9A: Determine the lowest positive root of πŸ–π’”π’Šπ’(𝒙)π’†βˆ’π’™ βˆ’ 𝟏 = 𝟎using N - R Method correct to 3 decimal places by taking π’™πŸŽ = 𝟎.3.

Solution: 𝒇 𝒙 = πŸ–π’”π’Šπ’(𝒙)π’†βˆ’π’™ βˆ’ 𝟏

⟹ 𝒇′ 𝒙 = πŸ–π’„π’π’” 𝒙 π’†βˆ’π’™ βˆ’ πŸ–π’”π’Šπ’ 𝒙 π’†βˆ’π’™ = πŸ–π’†βˆ’π’™(𝒄𝒐𝒔𝒙 βˆ’ π’”π’Šπ’π’™)

By Newton Raphson Method,

Let us start the iterations with the initial guess π’™πŸŽ = 𝟎. πŸ‘,

∴ π’™πŸ= π’™πŸŽ βˆ’π’‡ π’™πŸŽπ’‡β€² π’™πŸŽ

= 0.3 -𝒇(𝟎.πŸ‘)

𝒇′(𝟎.πŸ‘)= 0.108

∴ π’™πŸ= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 0.108 -βˆ’πŸŽ.πŸπŸπŸ”

πŸ”.πŸ‘πŸ”πŸ“= 0.144= 𝟎. πŸπŸŽπŸ– βˆ’

𝒇 𝟎.πŸπŸŽπŸ–

𝒇′ 𝟎.πŸπŸŽπŸ–

∴ π’™πŸ‘= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 0.144 -βˆ’πŸŽ.πŸŽπŸŽπŸ“πŸ—

πŸ“.πŸ–πŸ”πŸ= 0.145= 𝟎. πŸπŸ’πŸ’ βˆ’

𝒇 𝟎.πŸπŸ’πŸ’

𝒇′ 𝟎.πŸπŸ’πŸ’

= 0.3 -𝟎.πŸ•πŸ“πŸ

πŸ‘.πŸ—πŸπŸŽ

π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

Page 50: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 9B: Solve the same example by starting with π’™πŸŽ = 𝟎.

Solution:

Let us start the iterations with the initial guess π’™πŸŽ = 𝟎,

∴ π’™πŸ= π’™πŸŽ βˆ’π’‡ π’™πŸŽπ’‡β€² π’™πŸŽ

= 0 -𝒇(𝟎)

𝒇′(𝟎)= 0.125

∴ π’™πŸ= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 0.125 -βˆ’πŸŽ.πŸπŸπŸ—πŸ–

πŸ”.πŸπŸπŸ“= 0.145= 𝟎. πŸπŸπŸ“ βˆ’

𝒇 𝟎.πŸπŸπŸ“

𝒇′ 𝟎.πŸπŸπŸ“

∴ π’™πŸ‘= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 0.145 -βˆ’πŸŽ.πŸŽπŸŽπŸŽπŸŽπŸ—

πŸ“.πŸ–πŸ’πŸ–= 0.145= 𝟎. πŸπŸ’πŸ“ βˆ’

𝒇 𝟎.πŸπŸ’πŸ“

𝒇′ 𝟎.πŸπŸ’πŸ“

∴ 𝒙 = 𝟎. πŸπŸ’5 is one of the approximate real root of the given equation correct up to 3 decimal places.

= 0 -βˆ’πŸ

πŸ–

∴ π’™πŸ’= π’™πŸ‘ βˆ’π’‡ π’™πŸ‘π’‡β€² π’™πŸ‘

= 0.145 -βˆ’πŸŽ.πŸŽπŸŽπŸŽπŸŽπŸ—

πŸ“.πŸ–πŸ’πŸ–= 0.145= 𝟎. πŸπŸ’πŸ“ βˆ’

𝒇 𝟎.πŸπŸ’πŸ“

𝒇′ 𝟎.πŸπŸ’πŸ“

∴ 𝒙 = 𝟎. πŸπŸ’5 is one of the approximate real root of the given equation correct up to 3

decimal places.

Page 51: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 10: Determine the real root of πŸπ’™ βˆ’ π’π’π’ˆπŸπŸŽπ’™ = 7 using N - R

Method correct to 4 decimal places.

Solution: 𝒇 𝒙 = πŸπ’™ βˆ’ π’π’π’ˆπŸπŸŽπ’™ βˆ’ 7

⟹ 𝒇′(𝒙) = 𝟐 βˆ’πŸŽ. πŸ’πŸ‘πŸ’πŸ‘

𝒙

By Newton Raphson Method,

Let us start the iterations with the initial guess π’™πŸŽ = 𝟏,

∴ π’™πŸ= π’™πŸŽ βˆ’π’‡ π’™πŸŽπ’‡β€² π’™πŸŽ

= 1 -𝒇(𝟏)

𝒇′(𝟏)= 4.1935

∴ π’™πŸ= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 4.1935 -𝟎.πŸ•πŸ”πŸ’πŸ’

𝟏.πŸ–πŸ—= 3.790= 4. πŸπŸ—πŸ‘πŸ“ βˆ’

𝒇 πŸ’.πŸπŸ—πŸ‘πŸ“

𝒇′ πŸ’.πŸπŸ—πŸ‘πŸ“

= 1 -βˆ’πŸ“

𝟏.πŸ“πŸ”πŸ“πŸ•

π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

= πŸπ’™ βˆ’π’π’π’ˆπ’†π’™

π’π’π’ˆπ’†πŸπŸŽβˆ’ 7

= πŸπ’™ βˆ’ 𝟎. πŸ’πŸ‘πŸ’πŸ‘ 𝒍𝒏 𝒙 βˆ’ 7

Page 52: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

∴ π’™πŸ‘= π’™πŸ βˆ’π’‡ π’™πŸπ’‡β€² π’™πŸ

= 3.790 -𝟎.πŸŽπŸŽπŸπŸ’

𝟏.πŸ–πŸ–πŸ“πŸ’= 3.7893= πŸ‘. πŸ•πŸ—πŸŽ βˆ’

𝒇 πŸ‘.πŸ•πŸ—πŸŽ

𝒇′ πŸ‘.πŸ•πŸ—πŸŽ

∴ π’™πŸ’= π’™πŸ‘ βˆ’π’‡ π’™πŸ‘π’‡β€² π’™πŸ‘

= 3.7893 -𝟎.πŸŽπŸŽπŸŽπŸŽπŸ‘πŸ’

𝟏.πŸ–πŸ–πŸ“πŸ’= 3.7893= πŸ‘. πŸ•πŸ–πŸ—πŸ‘ βˆ’

𝒇 πŸ‘.πŸ•πŸ–πŸ—πŸ‘

𝒇′ πŸ‘.πŸ•πŸ–πŸ—πŸ‘

∴ 𝒙 = πŸ‘. πŸ•πŸ–πŸ—πŸ‘ is one of the approximate real root of the given equation correct up to 4

decimal places.

Example 10: Find the Newton Raphson Iteration formula for finding thevalue of cube root of any natural number N. Using it find one of the value ofπŸ‘πŸπŸ correct to 3 decimal places.

Solution: Let, 𝒙 =πŸ‘π‘΅ ⟹ π’™πŸ‘ = N

∴ 𝒇 𝒙 = π’™πŸ‘ βˆ’ N = 0

∴ 𝒇′ 𝒙 = πŸ‘π’™πŸ

Where, N ∈ β„•

Page 53: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

By Newton Raphson Method, π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

∴ π’™π’Š+𝟏= π’™π’Š βˆ’π’™π’Š

πŸ‘ βˆ’π‘΅

πŸ‘π’™π’ŠπŸ =

πŸπ’™π’ŠπŸ‘ +𝑡

πŸ‘π’™π’ŠπŸ

∴ π’™π’Š+𝟏=πŸπ’™π’Š

πŸ‘ +𝑡

πŸ‘π’™π’ŠπŸ

Iterative formula for πŸ‘π‘΅

By N R Method

Lets find one of the value of πŸ‘πŸπŸ by using it.

Let us start the iterations with N = 12 and the initial guess π’™πŸŽ = 𝟏,

∴ π’™πŸ=πŸπ’™πŸŽ

πŸ‘ +𝑡

πŸ‘π’™πŸŽπŸ

Can we take π’™πŸŽ = 𝟎? =

𝟐+𝟏𝟐

πŸ‘= 4.667

Page 54: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

∴ π’™πŸ=πŸπ’™πŸ

πŸ‘ +𝑡

πŸ‘π’™πŸπŸ =

𝟐 πŸ’.πŸ”πŸ”πŸ•πŸ‘ +𝟏𝟐

πŸ‘ πŸ’.πŸ”πŸ”πŸ•πŸ= πŸπŸπŸ“.πŸ‘πŸŽπŸ‘

πŸ”πŸ“.πŸ‘πŸ’πŸ‘= 3.295

∴ π’™πŸ‘=πŸπ’™πŸ

πŸ‘ +𝑡

πŸ‘π’™πŸπŸ =

𝟐 πŸ‘.πŸπŸ—πŸ“πŸ‘ +𝟏𝟐

πŸ‘ πŸ‘.πŸπŸ—πŸ“πŸ= πŸ–πŸ‘.πŸ“πŸ’πŸ–

πŸ‘πŸ.πŸ“πŸ•= 2.565

∴ π’™πŸ’=πŸπ’™πŸ‘

πŸ‘ +𝑡

πŸ‘π’™πŸ‘πŸ =

𝟐 𝟐.πŸ“πŸ”πŸ“πŸ‘ +𝟏𝟐

πŸ‘ 𝟐.πŸ“πŸ”πŸ“πŸ=

πŸ’πŸ“.πŸ•πŸ“

πŸπŸ—.πŸ•πŸ‘πŸ–= 2.318

∴ π’™πŸ“=πŸπ’™πŸ’

πŸ‘ +𝑡

πŸ‘π’™πŸ’πŸ =

𝟐 𝟐.πŸ‘πŸπŸ–πŸ‘ +𝟏𝟐

πŸ‘ 𝟐.πŸ‘πŸπŸ–πŸ= πŸ‘πŸ”.πŸ—πŸ

πŸπŸ”.𝟏𝟐= 2.2897

∴ π’™πŸ”=πŸπ’™πŸ“

πŸ‘ +𝑡

πŸ‘π’™πŸ“πŸ =

𝟐 𝟐.πŸπŸ–πŸ—πŸ•πŸ‘ +𝟏𝟐

πŸ‘ 𝟐.πŸπŸ–πŸ—πŸ•πŸ= πŸ‘πŸ”.πŸŽπŸŽπŸ—

πŸπŸ“.πŸ•πŸ‘= 2.2892

βˆ΄πŸ‘πŸπŸ = 𝟐. πŸπŸ–πŸ—πŸ correct to 3 decimal places.

Page 55: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 11: Find the Newton Raphson Iteration formula for finding the

reciprocal of any natural number N. Using it find the approximate value of𝟏

πŸπŸ—

correct to 3 decimal places.

Solution: Let, 𝒙 =𝟏

π‘΅βŸΉ

𝟏

𝒙= N

∴ 𝒇 𝒙 =𝟏

π’™βˆ’ N = 0 ∴ 𝒇′ 𝒙 = βˆ’

𝟏

π’™πŸ

Can’t we take 𝐱 βˆ’πŸ

𝑡= 𝟎?

By Newton Raphson Method, π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

∴ π’™π’Š+𝟏= π’™π’Š βˆ’

πŸπ’™π’Š

βˆ’π‘΅

βˆ’πŸπ’™π’Š

𝟐

= πŸπ’™π’Š βˆ’π‘΅π’™π’ŠπŸ

∴ π’™π’Š+𝟏= πŸπ’™π’Š βˆ’π‘΅π’™π’ŠπŸ Iterative formula for

𝟏

𝑡

By N R Method

Page 56: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Lets find the value of 𝟏

πŸπŸ—by using it.

Let us start the iterations with N = 19 and the initial guess π’™πŸŽ = 𝟎. 𝟎𝟏,

Just think about the interval for the root of

function 𝒇 𝒙 =𝟏

π’™βˆ’ πŸπŸ—.

∴ π’™πŸ= πŸπ’™πŸŽ βˆ’ πŸπŸ—π’™πŸŽπŸ = 𝟐(𝟎. 𝟎𝟏) βˆ’ πŸπŸ—(𝟎. 𝟎𝟏)𝟐

Can we take π’™πŸŽ = 𝟎?

= 𝟎. 𝟎𝟐 βˆ’ 𝟎. πŸŽπŸπŸ— = 𝟎. πŸŽπŸπŸ–πŸ

∴ π’™πŸ= πŸπ’™πŸ βˆ’ πŸπŸ—π’™πŸπŸ = 𝟐(𝟎. πŸŽπŸπŸ–πŸ) βˆ’ πŸπŸ—(𝟎. πŸŽπŸπŸ–πŸ)𝟐

= 𝟎. πŸŽπŸ‘πŸ”πŸ βˆ’ 𝟎. πŸŽπŸŽπŸ”πŸπŸ‘ = 𝟎. πŸŽπŸ‘

∴ π’™πŸ‘= πŸπ’™πŸ βˆ’ πŸπŸ—π’™πŸπŸ= 𝟐(𝟎. πŸŽπŸ‘) βˆ’ πŸπŸ—(𝟎. πŸŽπŸ‘)𝟐

= 𝟎. πŸŽπŸ” βˆ’ 𝟎. πŸŽπŸπŸ•πŸ = 𝟎. πŸŽπŸ’πŸπŸ—

∴ π’™πŸ’= πŸπ’™πŸ‘ βˆ’ πŸπŸ—π’™πŸ‘πŸ = 𝟐(𝟎. πŸŽπŸ’πŸπŸ—) βˆ’ πŸπŸ—(𝟎. πŸŽπŸ’πŸπŸ—)𝟐

= 𝟎. πŸŽπŸ–πŸ“πŸ– βˆ’ 𝟎. πŸŽπŸ‘πŸ“ = 𝟎. πŸŽπŸ“πŸŽπŸ–

Page 57: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

∴ π’™πŸ“= πŸπ’™πŸ’ βˆ’ πŸπŸ—π’™πŸ’πŸ = 𝟐(𝟎. πŸŽπŸ“πŸŽπŸ–) βˆ’ πŸπŸ—(𝟎. πŸŽπŸ“πŸŽπŸ–)𝟐

= 𝟎. πŸπŸŽπŸπŸ” βˆ’ 𝟎. πŸŽπŸ’πŸ— = 𝟎. πŸŽπŸ“πŸπŸ”

∴ π’™πŸ”= πŸπ’™πŸ“ βˆ’ πŸπŸ—π’™πŸ“πŸ = 𝟐(𝟎. πŸŽπŸ“πŸπŸ”) βˆ’ πŸπŸ—(𝟎. πŸŽπŸ“πŸπŸ”)𝟐

= 𝟎. πŸπŸŽπŸ“πŸ βˆ’ 𝟎. πŸŽπŸ“πŸπŸ”= 𝟎. πŸŽπŸ“πŸπŸ”

∴𝟏

πŸπŸ—= 𝟎. πŸŽπŸ“πŸπŸ” correct to 3 decimal places.

Page 58: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Pitfalls of N R Method f(x) is continuous and the first derivative is known.

An initial guess x0 such that f ’(x0) β‰  0.

If the initial guess of the root is far from the root the method may notconverge i.e., Convergence Depends on a Good Initial Guess.

X

f(x)

0x

1x2x 0x

1x

Page 59: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

N R Method can be divergent or can be produce oscillatory results.

Sometimes, it may converge very slowly.

1:of roots positive theFind :Example 10 xf(x)

5.0 use 10

19

10

1

o

i

iii x

x

xxx:FormulaR -N

Iteration

0

1

2

3

4

5

.

.

38

∞

x

0.5

51.65

46.485

41.8365

37.65285

33.887565

1.083

1.0000000

Page 60: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Fixed Point Iteration Method

Page 61: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Fixed Point Iteration

X

Root

x is a root if f(x) = 0,

xexf x

xe x 0

Page 62: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Fixed Point Iteration

X

X

f1(X)

f2(X)f1(X) f2(X)

root

root

xe x 0

xex

Page 63: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Fixed Point Iteration

x is a root if,

X

f1(X)

f2(X)

root

f2(X)

xex

f1(X)

f1(x) = f2(x)

Page 64: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and
Page 65: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and
Page 66: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and
Page 67: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and
Page 68: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Convergence Examples

Convergent staircase pattern Convergent spiral pattern

Page 69: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Divergence Example

Divergent staircase pattern Divergent spiral pattern

Page 70: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and
Page 71: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 14: Using the method of fixed point iteration, find the roots of π’™πŸ‘βˆ’π’™βˆ’ 𝟏 = 𝟎 correct to four decimal places.

Solution: To check the convergence criteria lets find the interval first,π‘₯ = 1 ⟹ 𝑓 1 = βˆ’1 < 0

π‘₯ = 2 ⟹ 𝑓 2 = 5 > 0

∴ π‘₯ ∈ [1, 2]

Lets think to take iterative formula, π‘₯ = π‘₯3 βˆ’ 1∴ 𝑔 π‘₯ = π‘₯3 βˆ’ 1 ⟹ 𝑔′ π‘₯ = 3π‘₯2

As, 𝑔′(π‘₯) > 1, π‘“π‘œπ‘Ÿ βˆ€π‘₯ ∈ [1,2]∴ π‘₯ = π‘₯3 βˆ’ 1 will not give the convergent iteration.

Lets think to take next iterative formula, π‘₯ = (π‘₯ + 1)1/3

∴ 𝑔 π‘₯ = (π‘₯ + 1)1/3⟹ 𝑔′ π‘₯ =1

3(π‘₯ + 1)2/3

As, 𝑔′(π‘₯) < 1, π‘“π‘œπ‘Ÿ βˆ€π‘₯ ∈ [1,2]

∴ π‘₯ = (π‘₯ + 1)1/3 will give the convergent iteration.

Page 72: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Hence, fixed point iterative formula be,

π‘₯𝑖+1 = (π‘₯𝑖 + 1)1/3, 𝑖 = 0,1,2, …

Let, initial approximation be π‘₯0 = 1.5,

π‘₯1 = (π‘₯0 + 1)1/3= (1.5 + 1)1/3= 1.3572

π‘₯2 = (π‘₯1 + 1)1/3= (1.3572 + 1)1/3= 1.3309

π‘₯3 = (π‘₯2 + 1)1/3= (1.3309 + 1)1/3= 1.3259

π‘₯4 = (π‘₯3 + 1)1/3= (1.3259 + 1)1/3= 1.3249

π‘₯5 = (π‘₯4 + 1)1/3= (1.3249 + 1)1/3= 1.3248

π‘₯6 = (π‘₯5 + 1)1/3= (1.3248 + 1)1/3= 1.3247

π‘₯7 = (π‘₯6 + 1)1/3= (1.3247 + 1)1/3= 1.3247

∴ 𝒙 =1.3247 is the approximate real root of the given equation correct up to 4

decimal places.

Page 73: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Example 15: Using the method of fixed point iteration, find the roots of πŸ‘π’™ + 𝟐 π’”π’Šπ’π’™ = 𝒆𝒙 correct to three decimal places.

Solution: To check the convergence criteria lets find the interval first,π‘₯ = 0 ⟹ 𝑓 0 = βˆ’1 < 0

π‘₯ = 1 ⟹ 𝑓 1 = 1.965 > 0

∴ π‘₯ ∈ [0, 1]

Lets iterative formula be, π‘₯ = ln(3π‘₯ + 2𝑠𝑖𝑛π‘₯)

∴ 𝑔 π‘₯ = ln(3π‘₯ + 2𝑠𝑖𝑛π‘₯) ⟹ 𝑔′ π‘₯ =3 + 2π‘π‘œπ‘ π‘₯

3π‘₯ + 2𝑠𝑖𝑛π‘₯As, gβ€² π‘₯ is undefined for π‘₯ = 0∴ π‘₯ = ln(3π‘₯ + 2𝑠𝑖𝑛π‘₯) will not give the convergent

iteration.

Lets think to take next iterative formula, π‘₯ =1

3(𝑒π‘₯ βˆ’ 2𝑠𝑖𝑛π‘₯)

∴ 𝑔 π‘₯ =1

3(𝑒π‘₯ βˆ’ 2𝑠𝑖𝑛π‘₯) ⟹ 𝑔′ π‘₯ =

1

3(𝑒π‘₯ βˆ’ 2π‘π‘œπ‘ π‘₯)

As, 𝑔′(π‘₯) < 1, π‘“π‘œπ‘Ÿ βˆ€π‘₯ ∈ [0,1]

∴ π‘₯ =1

3(𝑒π‘₯ βˆ’ 2𝑠𝑖𝑛π‘₯) will give the convergent iteration.

Page 74: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Hence, fixed point iterative formula be,

π‘₯𝑖+1 =1

3𝑒π‘₯𝑖 βˆ’ 2𝑠𝑖𝑛π‘₯𝑖 , 𝑖 = 0,1,2, …

Let, initial approximation be π‘₯0 = 0.5,

π‘₯1 =1

3𝑒π‘₯0 βˆ’ 2𝑠𝑖𝑛π‘₯0 =

1

3𝑒0.5 βˆ’ 2sin(0.5) = 0.23

π‘₯2 =1

3𝑒π‘₯1 βˆ’ 2𝑠𝑖𝑛π‘₯1 =

1

3𝑒0.23 βˆ’ 2sin(0.23) = 0.2676

π‘₯3 =1

3𝑒π‘₯2 βˆ’ 2𝑠𝑖𝑛π‘₯2 =

1

3𝑒0.2676 βˆ’ 2sin(0.2676) = 0.2593

π‘₯4 =1

3𝑒π‘₯3 βˆ’ 2𝑠𝑖𝑛π‘₯3 =

1

3𝑒0.2593 βˆ’ 2sin(0.2593) = 0.2611

π‘₯5 =1

3𝑒π‘₯4 βˆ’ 2𝑠𝑖𝑛π‘₯4 =

1

3𝑒0.2611 βˆ’ 2sin(0.2611) = 0.2607 β‰ˆ 0.261

∴ 𝒙 = 𝟎. πŸπŸ”πŸ is the approximate real root of the given equation correct up to 3 decimal

places.

Page 75: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Convergence Criterion of N-R Method

π’™π’Š+𝟏 = π’ˆ π’™π’Š

π’™π’Š+𝟏 = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

⟹ π’ˆ(π’™π’Š) = π’™π’Š βˆ’π’‡ π’™π’Šπ’‡β€² π’™π’Š

⟹ π’ˆ(𝒙) = 𝒙 βˆ’π’‡ 𝒙

𝒇′ π’™βŸΉ π’ˆβ€²(𝒙) = 𝟏 βˆ’

𝒇′(𝒙)𝒇′ 𝒙 βˆ’ 𝒇 𝒙 𝒇′′(𝒙)

𝒇′(𝒙)𝟐

⟹ π’ˆβ€²(𝒙) =𝒇 𝒙 𝒇′′(𝒙)

𝒇′(𝒙)𝟐

∴ π’ˆβ€²(𝒙) < 𝟏 ⟹ 𝒇 𝒙 𝒇′′ 𝒙 < 𝒇′ 𝒙 𝟐Convergence Criterion

for N - R Method

Page 76: Solution of Transcendental & Algebraic EquationsGraphical Method A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a plot of the function and

Next Chapter:Numerical Solution of System of Linear Equations