solution set chapter 4 radiative transitions...

17
SOLUTION SET Chapter 4 ' RADIATIVE TRANSITIONS AND EMISSION LINEWIDTH "LASER FUNDAMENTALS" Second Edition By William T. Silfvast

Upload: ngonga

Post on 06-Mar-2018

232 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

SOLUTION SET

Chapter 4

'

RADIATIVE TRANSITIONS AND EMISSION LINEWIDTH

"LASER FUNDAMENTALS"

Second Edition

By William T. Silfvast

Page 2: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

CH L/

1. Show how to solve the differential equation ( 4.1) for Nu to obtain ( 4.2). Show that your answer is in fact a solution of the equation.

f. JN,,, - - Al<e -rJ_r .~ -

Dr

Ii.\ E- D L.-Y, I $

Page 3: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

2. Compute the power radiated from an electron oscillating at an angular frequency of ' w = 1015 rad/s. Assume that x 0 is equal to the Bohr radius of an orbiting electron. ·

,:) -~-

2... UJ() 'l ft: Xo )

3 ff t~ c J

~

U 0 '~}' { u .. x io-'"' c s-. ~ x to -".,) -~ fr ( g, ~ !: X Io ~ 12 F / /Ai..) ( 3 )', I 0 $> 1-'1/ $ ) 3

.. . .. - _ ......... -. i! ,. , 'IR J~

Page 4: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

lH L/ 3. If 10 Torr of He gas is added to an electrical discharge composed of H atoms,

how much would the decay time of the n = 2 state of H decrease if the pressure- . broadening factor due to He is 107/s-Torr? What would it be if the He pressure were increased to 100 Torr? (Recall that 1 Torr= 1/760 of atmospheric pressure.) flint: Use the average value of the transition probability for n = 2 ton = 1 of H c~lcu­lated in the example at the end of this chapter.

A'-1

::: L/. 7 x / o a/!>

-- -;;.

I _, ----· = 2.1~ XID $ 1..1t 7 x t() "I~

Ft> II'- p t"e s s u r-e b ~OA..ele !ft\ fA..i

0, I :::: A,_' + ¥ Hel1V.~

(0.) : LJ, '7 x10% + (!_o Tur.-J&o ~.rm·)

(b) '0,_ 1 -= '-l,71<1o"ls + ~ObTm)(to 7s;70

,,.)

-= '1. 7 x 1()1/ $ + I o 1 Is = I, '1? ~ / o ~s

1'2. = /. 'i 7 ~ ~ ':::: '· f't x /(J-10 $

A ktr-ettu ~f (_'2, 13 ,_ l» {,8) x 10~" s ::: /, '1.fX 1 o-3'_

Page 5: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

c /-1 'i 4. With reference to ( 4.24 ), obtain values of the frequency at which the intensity drops

to one half its maximum value. What is the FWHM (full width at half maximum) value for the frequency width?

l='"Y-~IM... l ~,21..1)

I l w) :=:: r o . ¥0 /:17- 2-

lw-wt>) + 1:r{)f:.t

L.{W);:.

, , f

s o I v e.- f o ...- w

-

'6' 11 I ± tfo 11 J - + u I\ -9' w ;;: f.N'() - . w-VV'o - - _....,. - 2...

'2-

2 / ( w..- wll}\ A w FW H-tl\ ::

6 W FW ltM -:::. °io , r f

- 2 'to -'2..

Page 6: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

5. Using the value of l(w) in (4.24), show that f000

l(w) dw = Io (eqn. 4.25). Hint: You need to assume that Yul << w 0 , a reasonable approximation.

F1'('7 T ~ .. t.:rl~..cct

b~I for W) 7 ¥0

tr;t/:)

He .... c.e. ) re IAl\ e1 w ;-0

x:..o

ta.'1- /XI

X'"'"~ - 00

+ 1C. 2.

6 + /!a,~-lt L~:) + ~ -:: 'fl {-of' U\,// t

~.-efo..._ (nw\Aw ::: T~::: To ()

Page 7: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

{_I-/ L(

6. Compute the Doppler broadening for the 632.8-nm laser transition in the He-Ne laser, assuming a single isotope of Ne20 and that the laser operates at a discharge·­bore temperature of 100°C. Compare this broadening to the natural broadening obtained in the example at the beginning of the chapter.

~V'OIM..

~T

l-le11t CA

=7/(pX/0-7 ]Xl~CJ~/'-:. ~ ~ 2, ~ X/0--?IM

Ta.. b fe Lf -·I (p~ 114)

b VN -::: 7

/, l/ '>( I 0 H -2-

'1T Cak.

ft>Y' n&t-1

LJ. VD /, '17 XI~ lfr = /().s;--h -pl'/ -

). '-/}(II) 7 H~

~ {I £u_ Wtol t~ b t ~b~ Th-A-IA..

o V'dell's e f Ma_. a,,,.: Tu~e ;

be ~eet-t

Ir-a tA_~; 7?01.1. .

Page 8: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

CH '-/ 7. Assume that you have the fallowing two special isotope mixtures of cadmium:

(a) equal amounts of Cd112 and Cd114 ;

(b) equal amounts of Cd no and Cd 114 .

Assume that the He-Cd laser is operating in a gaseous discharge at a temperature of 300°C. Make a plot of the emission envelope of the 441.6-nm transition for iso­tope mixtures (a) and (b). Use the following values for the difference in the center frequencies of the emission of the different isotopes on the 441.6-nm transition:

~v(Cdno - Cd112 ) = 1.57 x 109 Hz;

~v(Cd112 - Cd114

) = 1.46 x 109 Hz.

Note: Both isotopes radiate at a wavelength of approximately 441.6 nm, with only a very slight difference in their center frequencies as indicated here.

G:J. Jib

c,I H'l.

(_"' " L(

('.)

101;t$ a..::r :too C

Page 9: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

lN 'i -

8. The pulsed lead laser operates on several transitions in the visible and ultraviolet spectrum, including the 722.9-nm and 405.7-nm transitions. Compute the natu:r:al linewidth, the Doppler width, and 6.vD/v 0 for these two laser transitions. As­sume that the lead vapor is at a temperature of 1,300 K, providing a lead vapor pressure of approximately 1 Torr. The energy-level diagram associated with those transitions is shown in the figure. Why would the 6p7s 3Pf -7- 6p2 1D2 transition not

A.= 1.3µm 3 p 0

1

A 0 1s

.......

0

A.= 722.9nm

A = 8.9 x 10 5 /sec

10 2

A.= 405.7nm

A = 8.9 x 10 7 /sec 6s 2 6p 2

A.= 364.0nm 3 p 2

3 p

A.= 283.3nm 1

A= 5.8 x 10 7 /sec

3 p 0

The dominant isotope for lead is Pb 208 .

normally be allowed according to electric dipole transition selection rules? (This is a case where the rules break down; there is a finite value of the electric dipole ma­trix element connecting these two energy levels, because the 1D2 level is actually not a pure singlet state but instead has some triplet wave function mixed in with the singlet wave function. This often occurs for heavier atoms.)

For' 722.1 ttvt.\ A l/p-:. 7,lb XI0-7

lxto"l ~ H(}O -:::. 7' '12 J<IO ill~ -122."" 10-"I '" r

Fo v- l{o >.I YI... I\ ")) D"" 7.lh X""7 lX ID 7_ JiJ 0 Q - /, n x ID, H ~ L/D ~-.? ~ 14-' '2. D ~ -

130 R ir'AIA-$ ;~o~ "'-~~ ~ V'lt.J,;.,._fii>f eA..~ue..v fr& ~ 'tt..o.1"" lo~e,. l~vel. , N ttt;""'~ t .~ wt'd.~ tt.~ ~ ~A..~ ) 7 ,, Ll ~ = -2.-A~' = (?;r-1 J .. V-t-f.Clj f,10~' XIOA_rr .

N ~" J • ~~ ~ L ~ ~ x 10 7 Hr-. l)opp ltJr &;f.0""-· ik~UJQ

Page 10: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

CH L/

9. The selenium soft-X-ray laser operates at a wavelength of 20.6 nm in Se24+ ions. Those ions are produced at a plasma temperature of approximately 107 K. How large is the Doppler width of that laser transition compared with the width of the He-Ne 632.8-nm laser determined in Problem 6?

FrD~ (_ L/, S-4)

~'])D-:::7,///,)(/0_;j-i f~i

F r-o ..,,f\.. T\..e. A p p~k.e). t K \ f1...e.._ IM.-~.$ s. vi t-t ~ ~e .,. fo v- Se· t t 'ii D

, f' ,

7 _c.. -- ~ X ID~kt/'J -:::. /,t/' Xl,./'1 Hi T::: I D I<... "'"l )~ '::: -*I {/) " ~ Vt; 'f-. ?_O,({)')(/C> M'I.

/j,, VD-: 7, 1'4 KIO_., /,'l'*X'r/I> f 1:i··~

""1 o I ha..s ~ He - f"te ~ 3 2. c If\""'- D...sev--

()a> p fJ /Ji.r t;U i'e{ 11\ ( fr-t; CA.i_ n.._ b /tJ L/-1) /) f /, s- x ID '1 H ~ ------

f4.~ ~ ,_'-e Se s 0 f T x ..._ V't)...,v / ,._ ~ e It' ko..,.,

~. i':J" pp 14" w tel{ n 1> ~ f ...eA;fiI:I" ~ 3 D f'Je-V'-~ t>-f ~e(, 1 bu fu,~ ?rltJJ_fti'Y'

f1.._a. ~ l../e. - l'I e. I a_ s e V'\

Page 11: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

Cl-/ L/ 10. If two emission lines in two different species have the same center frequency v 0

and the same emission linewidth 6 v FWHM, but one is homogeneously broadened and the other is Doppler broadened, how much greater is the value of the emis­sion from the homogeneously broadened line at a frequency displaced from v0 by a factor of v = 56vFwHM?

AS$U~ b& 71._ et-<u.. ~ s~ ,·t.ii<'l ,,.Ms ha..ve ~ sa.~-

ro t°" J -e. ~ l ~ S I D t.\. / h ~ 1-t 5 ( t J 1 0 tJ Ve V' Tlu.. e '-~ t; r-e

e 1A-t.. I ~S $ j 6 "'\ Spe..c.. f ¥" i.t. ~ 0 f e nc. '1_ fY't,t "'t $; 1?() ~ • k r b. Vr-w HM be ~ SA.~ f -ci VI bl) n t ra,J,t_ $;ti ~(.)"1. $ a ~eit /er ~ 1/FWNM 6 VF f~r'" s/~r.:1/iG/fr . fle,,,.,,__ <2.VC<.-f«A.A..Te h6 J1_ e'4t-tS $i o"1 5 a.T{y-7.1;)= ~L1°Yp

r f

Page 12: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

CH 'i 11. Obtain the expression for the oscillator strength of ( 4.7) from ( 4.78).

Fvo IA._ (Lf,7~)

z1T e 2..

Al{Q -::: Cj_!_ fRl-(

fo Yl'le C A~Q f""-

re_ uJ v-, Tit ; 2 -f .e t-t. -2 TT e

A lA..Q -==- 6o V\4~ (_ 'L

~J t,,d

2 rr(1.ttJ}(16-Jt:t) '- ·-·--~. __ _ -- <ef, ~)X 10-1'- et, / X/()-il ] XID ~

-::::: {o, fo~ 'X ID -~

/D - Lj

--/, ~

Page 13: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

t. H '-/ 12. The first nine levels of atomic calcium are tabulated as follows.

4s4p lpo 1 2.3652 x 106 m-1

1D2 2.1850 x 106 m-1

3D3 2.0370 x 106 m-1

3D2 2.0349 x 106 m-1 4s3d

3D1 2.0335 x 106 m-1

3p o 2 1.5316 x 106 m-1

4s4p 3po 1 1.5210 x 106 m- 1

3po 0 1.5158 x 106 m-1

4s2 150 0.00

Determine which transitions are most likely to occur based upon the selection n1les given in this chapter. Also determine the wavelengths of those transitions. The en­ergy value for a specific level i above the ground level 1 is given on the right-hand side in wavenumbers ail. The wavenumber aij of the transition from level i to level j is determined from the equation for the energy difference between the two levels involved in the transition: b.Eij = Ei - Ej = hvij = hcaij = he( ail - aj1).

Therefore, the wavelength of the transition would be Aij = l/aij = l/(ai1 - aj1).

~e 1.-e.c.-ft"if.... Y'tA.. ~ ~ A .R -= ±' A s ::: 0 ~ L = o, t l Ll r = () j ± I tt I/ o wetJ. TY'ct ks ~ T/c it;

'P.o -7 ID-;.. 'P. 0 I

1.(22.~n~ r,S'rµ~ I ..,:Y .So I

>01~ Jpe;> /, 171 ;"'"11\ JD --;;. 1p_D /, 9 f7 )'.-!M. 2.. "2

l.

'"S 1)2--)> ?;, P.Q / . '"' /Afl\

!. '1-? 1 p_fJ I. ?qi ;t~ '-I

;; D, --7 11'".)o /.Cf ~lp'* ;D --7 1 ? c J, 13lfA* I o ' I

4S4p '1~ 0

~s>4l -so} ">o"-

4s )J. •I 'pl. ' o,

~pl-o

L( s'- ' I ')o '($ 'f;f> l 'Po I

3~°' 0

Page 14: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

u

fov

I S'l.. 2 ~ J -+- .J-:> 1 Y"'() U... ""- ~ '5 I tt I e

A -V11~ ::: ~11 [ 1 A~; t- i A1ij

, ' £ .A· - o ~ . fi,1 -.... ~

----·----~

£:.,. /)ji ~ ~ [/,/lo )(/o7 + Mh tu7 + I, 2. 'I K 1'1,7]

7 ~ ::: L/, 7.. 3 :~ ::: ""}, $"' 3 X I 0 . 11 ~

21t·

Page 15: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

c /-1 '-/

13. Shown in the first figure on page 134 are the first six energy levels of neutral lithium . : (Li) . Determine the natural linewidth for the following transitions:

3p 2Pf12 -+ 2s 251;2 ; 7 2 3s -s1; 2 -+ 2p Pf12.

Explain why there is no transition shown for

3s 251; 2 -+ 2s 251; 2.

'

() Q)

1\,-..f! ~

-\-

~ ....... //

~

(2s) ___ __,_____,__ _ _ __,_ __ ----f. __

(3p)

(2p)

Page 16: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

cH i.f 14. Consider the set of energy levels and related transitions shown in the second figure

on page 134. What is the natural emission linewidth of the 2D3; 2 ---+ 2Pf12 transi­tion? If the species associated with these transitions is active within an electrically excited gaseous medium and if the emission shown in the diagram is produced at a gas pressure of 4 Torr, what would the pressure-broadening coefficient have to be (in MHz I Torr) in order for it to equal the natural emission linewidth?

--,..----- 3d 2D 5/2

·.,.-----~- 3d 2D 3/2

2rr

f ..,H, 2 X lo . -:: -5. It? X 10 · ·2-

21/

L:::. J.)Jil.t. ·f- C:. vJ-=: ~,s7 YIO(p f.. J,lf6 XI07

;,. i 2.. x 10 7 1-lt--

Page 17: SOLUTION SET Chapter 4 RADIATIVE TRANSITIONS …silfvast.creol.ucf.edu/LaserFundamentals/SolutionSet/Chapter4.pdf · SOLUTION SET Chapter 4 RADIATIVE ' TRANSITIONS AND EMISSION LINEWIDTH

15. A new solid-state laser crystal is instantaneously pumped to its upper laser lev.el. Emission is subsequently observed to occur over a FWHNI emission linewidth of 100 nm at a peak emission wavelength of 700 nm. The emission is observed to decay with a measured lifetime of 200 µ,sup to a temperature of 200 K. As the temperature is increased above 200 K, the decay time decreases to a value of 150 µ,sat 300 K. The lower laser level decays only via collisions at a rate of1013/s. Determine the portion of the linewidth associated with each of the possible broad­ening mechanisms, and indicate which mechanism is the dominant mechanism.

/

' I

' ' ,

A\ = /()0 VIK-\ ~/\FWll"flt

b V11 =+7T~ {Ai.; +- ~ A~~D+ t~ +-?, f ~;]

~ A i-t.i +- _Lt-< A T,

l ------ +-Li>C~/r)-lfJ

- - I' '4 '4 7 x !OJ ~~J T,"' :: ~ x I 0- ,,., s T,"" -

{~ =- [2 rr A 7JH - 2 1)~ ~,b-"' - 1011

- /, ~~ ?x.101.}

2 rr ~r 12 x I() I 3 -- ) x 101 - I() I ':3 - /, (,_ ' 7x10 J

do~• ·~a.."::! -

-