solution set for homework #2 on fourier...

8
EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #2 on Fourier Series By: Mr. Houshang Salimian and Prof. Brian L. Evans 1. Prologue: This problem asks to generate the signal in the time domain by using the signal’s spectrum. The spectral and time representations give complementary views into the signal. Solution: The spectrum indicates that the signal has frequency components of -175 Hz, -50 Hz, 0 Hz, 50 Hz and 175 Hz. The strongest frequency component is at 0 Hz because its magnitude (11) is the largest. The second strongest frequency components are at -50 Hz and 50 Hz. The weakest frequency components are at -175 Hz and 175 Hz. Part (a): We can directly read off the spectral components to create the time domain representation of the signal /2 2 (175) /3 2 (50) 0 /3 2 (50) /2 2 (175) /3 2 (50) /3 2 (50) /2 2 (175) /2 2 (175) () 4 7 11 7 4 14 14 8 8 11 2 2 11 14cos(2 (50) / 3) 8cos(2 (175) / 2) j j t j j t jt j j t j j t j j t j j t j j t j j t xt e e e e e e e e e e e e e e e e e t t π π π π π π π π π π π π π π π π π π π π = + + + + + + = + + = + + Part (b): The signal x(t) is periodic with period T, if x(t + T)= x(t) for all values of t: x(t) = 11 + 14 cos(2 π (50) t - π/3) + 8 cos(2 π (175) t – π/2) x(t+T) = 11 + 14 cos(2 π (50) (t+T)- π/3) + 8 cos(2 π (175) (t+T) – π/2 = 11 + 14 cos (2 π (50) t+ 2 π (50) T - π/3) + 8 cos (2 π (175) t+ 2 π (175) T – π/2) In order for x(t + T)= x(t) for all values of t, we can equate the first terms in x(t + T) and x(t), equate the second terms in x(t + T) and x(t), and equate the third terms in x(t + T) and x(t), and find values of T that work for all three terms. The first terms are already equal to each other (11). The second terms are equal when 2π(50)T = 2πm where m is an integer, i.e. when T is 1/50, 2/50, 3/50, 4/50, etc. The third terms are equal when 2π(175)T = 2πk where k is an integer; i.e., when T is 1/175, 2/175, 3/175, 4/175, etc. The common values for the period T in seconds among all three terms are 1/25, 2/25, 3/25, 4/25, etc., which means that the fundamental period is 0.04 s, and the fundamental frequency is 25 Hz. Alternately, the fundamental frequency can be found from the spectrum as the greatest common divisor (gcd) of (50 , 175): f 0 = gcd (50 , 175) = 25 Hz and T 0 = 1/f 0 = 1/25 = 0.04 s Part (c): cos(ϴ) = Re{e }. From the inverse Euler’s formula, cos(ϴ) = ½ e +½e -jϴ . Therefore sinusoids should be shown by both frequencies. Epilog: Sometimes, it’s easier to answer a question in the time domain, and sometimes, using the frequency domain is easier. In part (b), it was much easier to find the fundamental frequency from the spectrum than the time-domain representation. And, sometimes, a time-frequency representation is the right tool for the problem, as we’ll see in problem 3.

Upload: others

Post on 21-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

EE313LinearSignals&Systems(Fall2018)

SolutionSetforHomework#2onFourierSeries

By:Mr.HoushangSalimianandProf.BrianL.Evans

1. Prologue:Thisproblemaskstogeneratethesignalinthetimedomainbyusingthesignal’sspectrum.Thespectralandtimerepresentationsgivecomplementaryviewsintothesignal.

Solution:Thespectrumindicatesthatthesignalhasfrequencycomponentsof-175Hz,-50Hz, 0 Hz, 50 Hz and 175 Hz. The strongest frequency component is at 0 Hz because itsmagnitude (11) is the largest. The second strongest frequency components are at -50Hzand50Hz.Theweakestfrequencycomponentsareat-175Hzand175Hz.

Part(a):Wecandirectlyreadoffthespectralcomponentstocreatethetimedomainrepresentationofthesignal

/2 2 (175) /3 2 (50) 0 /3 2 (50) /2 2 (175)

/3 2 (50) /3 2 (50) /2 2 (175) /2 2 (175)

( ) 4 7 11 7 414 14 8 811

2 211 14cos(2 (50) / 3) 8cos(2 (175) / 2)

j j t j j t j t j j t j j t

j j t j j t j j t j j t

x t e e e e e e e e ee e e e e e e e

t t

π π π π π π π π

π π π π π π π π

π π π π

− − − −

− − − −

= + + + +

+ += + +

= + − + −

Part(b):Thesignalx(t)isperiodicwithperiodT,ifx(t+T)=x(t)forallvaluesoft:x(t)=11+14cos(2π(50)t-π/3)+8cos(2π(175)t–π/2)x(t+T)=11+14cos(2π(50)(t+T)-π/3)+8cos(2π(175)(t+T)–π/2=11+14cos(2π(50)t+2π(50)T-π/3)+8cos(2π(175)t+2π(175)T–π/2)

Inorderforx(t+T)=x(t)forallvaluesoft,wecanequatethefirsttermsinx(t+T)andx(t),equatethesecondtermsinx(t+T)andx(t),andequatethethirdtermsinx(t+T)andx(t),andfindvaluesofTthatworkforallthreeterms.

The first terms are already equal to each other (11). The second terms are equal when2π(50)T=2πmwherem isan integer, i.e.whenT is1/50,2/50,3/50,4/50,etc. Thethirdtermsareequalwhen2π(175)T=2πkwherek is an integer; i.e.,whenT is 1/175, 2/175,3/175,4/175,etc.ThecommonvaluesfortheperiodTinsecondsamongallthreetermsare1/25, 2/25, 3/25, 4/25, etc.,whichmeans that the fundamental period is 0.04 s, and thefundamentalfrequencyis25Hz.

Alternately,thefundamentalfrequencycanbefoundfromthespectrumasthegreatestcommondivisor(gcd)of(50,175):f0=gcd(50,175)=25HzandT0=1/f0=1/25=0.04s

Part(c):cos(ϴ)=Re{ejϴ}.FromtheinverseEuler’sformula,cos(ϴ)=½ejϴ+½e-jϴ.Thereforesinusoidsshouldbeshownbybothfrequencies.

Epilog:Sometimes,it’seasiertoansweraquestioninthetimedomain,andsometimes,usingthefrequencydomainiseasier.Inpart(b),itwasmucheasiertofindthefundamentalfrequencyfromthespectrumthanthetime-domainrepresentation.And,sometimes,atime-frequencyrepresentationistherighttoolfortheproblem,aswe’llseeinproblem3.

Page 2: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

2. Prologue:Amplitudemodulationisapowerfulidea.Itisusedtotransmitamessagebyshiftingthefrequencycontentinthemessagetoahigherfrequencytomakeiteasiertotransmit.Considerthetransmissionofanaudiosignal30miles(48km),e.g.fromAustin,TX,toSanMarcos,TX.CrankingupthevolumeontheaudiosignalusingthelargestbankofspeakerspossibleinAustinwouldnotmaketheaudiosignalaudibleinSanMarcos.However,wecoulduseamplitudemodulationtoshifttheaudiosignalby1300kHzandtransmititasanelectromagneticwaveovertheair,whichwouldbeusinganAMRadioStationat1300kHz.AreceiverinSanMarcoswouldreceivetheAMtransmissionandshiftthefrequenciesfrom1300kHzto0Hz,whichisknownasdemodulation.Long-rangepropagationispossibleinAMradiobands.Theideaofamplitudemodulationisusedinlightcommunicationsoveropticalfiber(a.k.a.opticalcommunications)aswellasincellularandWi-Ficommunications.Amplitudemodulationcanalsocreateaudioeffects.ThisparticularproblemlooksatamplitudemodulationusedinAMradio,whichaddsalargeDCoffsettothemessagesignalbeforethefrequencycontentisshifted.

Part(a):Themessagesignalis12+7sin(πt–pi/3)whichhasfrequencycomponentsof-0.5Hz,0and0.5Hz.Themodulating(carrier)signaliscos(13πt),whosefrequencyisat6.5Hz.

13 135 /6 5 /6

13 13 5 /6 14 5 /6 12 5 /6 12 5 /6 14

13

( ) [12 7sin( / 3)]cos(13 ) [12 7cos( / 3 / 2)]cos(13 )7[12 ( )]2 2

76 6 [ ]4

(6 6

j t j tj j t j j t

j t j t j j t j j t j j t j j t

j t

x t t t t te ee e e e

e e e e e e e e e e

e e

π ππ π π π

π π π π π π π π π π

π

π π π π π π π−

− −

− − − − −

= + − = + − −

+= + +

= + + + + +

= + 13 5 /6 14 5 /6 14 5 /6 12 5 /6 127 7 7 7) ( ) ( )4 4 4 4

7 5 7 5cos(12 ) 12cos(13 ) cos(14 )2 6 2 6

j t j j t j j t j j t j j te e e e e e e e

t t t

π π π π π π π π π

π ππ π π

− − − −+ + + +

= + + + −

A1=7/2=3.5 ω1=12π(rad/s) φ1=5π/6(rad) A2=12 ω2=13π(rad/s) φ2=0(rad)A3=7/2=3.5 ω3=14π(rad/s) φ3=-5π/6(rad)

Part(b):Notethatthemessagesignalhasbeenshiftedtotherightby6.5Hz.Asimilarshiftinfrequencyalsooccurstotheleft,whichmakessensebecauex(t)isreal-valued.

Page 3: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

3. Prologue: In a chirp signal, as mentioned in Section 3-8 of Signal Processing First, theprincipalfrequencyincreases(ordecreases)withtime.

Inactivesonarsystems,thetransmitterplaysouta“ping”assound informofachirpandthenreceivessound.Thetimeelapsedbetweenthetransmissionandreceptionofthechirpindicates theroundtrip timeexperiencedby thesignalafterbouncingoffanobject in thewater and returning to the receiver. By receiving sounds in different directions usingmultiplemicrophones,thesonarcanbuildamapoftheobjectsinthewater.

This kind of ranging approach can also be used for positioning and navigation. Bats usechirps for echolocation. Pipestrelle bats uses chirps that sweep down from 70 to 45 kHz.https://www.wildlife-sound.org/resources/equipment/2-uncategorised/233-recordings-of-ultrasonic-vocalisations-of-bats

Whenonemeasures the responseof a system todifferent frequencies, a time-consumingapproachistoinputasinglesinusoid,measuretheoutput,andrepeatusingmanydifferentfrequencies.Instead,inputtingachirpcanallowthemeasurementtoperformedinonetake.

4G cellular communication systemsperiodically send a Zadoff-Chu chirp sequence to helpmeasurethedistortionintheelectromagneticpropagationfromtransmittertoreceiver.

Part(a):MATLABcodetogeneratethechirpsignal:

Partb:ThechirpsignalcanbeplayedasanaudiosignalinMATLAB:

Thechirplinearlysweepsfrequenciesfrom20to4220Hz,andsoundslikeanoteincreasingin“pitch”overtime.Thesweepspans8octavesofAnotesonaWesternscale:27.5,55,110,220,440,880,1760,3520Hz.Seehttps://en.wikipedia.org/wiki/Piano_key_frequencies.

Part(c):Wecanvisualizethevariationoftheprincipalfrequencyovertimebyusingatime-frequencyrepresentation.Thetime-frequencyrepresentationbelowiscalledaspectrogram.

The spectrogram for the chirp signal (next page) shows the principal frequency changingover time with a linear slope. At the beginning, the principal frequency is at 20 Hz andincreases linearly to 4220Hz. Theprincipal frequencyhas thehighestmagnitude at everyinstantoftimethroughouttheentiredurationofthechirpsignal,whichisshowninyellow.

Asdescribedonlectureslides4-8and4-9,aspectrogramtakesthefirstNwinsamplesofthesignal,weightsthevalues(usingarectangularpulsebydefault),computestheFourierseriescoefficients, and plots the magnitude of the Fourier series coefficients vertically. ThespectrogramthenshiftsthetimesignaltotherightandrepeatsthepreviousstepsusingablockofthenextNwinsamples.Thefrequencyresolutionofthespectrogramisfs/Nwin.

time = 10; % length of time in seconds f0 = 20; % specify starting principal frequency fstep = 420; % specify frequency slope fs = 44100; % sampling rate Ts = 1/fs; % sampling time: time interval between samples t = 0 : Ts : time; % create a time vector theta = 2*pi*(f0+0.5*fstep*t).*t; y = cos(theta); % create chirp waveform

sound(y, fs); % play back chirp signal

Page 4: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

Inthecodebelow,aHammingwindowisusedtoweightthevaluesineachblockofsamples.

Althoughnotasked,wecanincreasethefrequencyresolutionbyincreasingtheblocksize:

figure; spectrogram(y, hamming(256), 128, 256, fs, 'yaxis') ylim([0,5]); title('Spectrogram of the signal'); ylabel('Frequency(kHz)'); xlabel('Time(s)');

figure; spectrogram(y, hamming(1024), 512, 1024, fs, 'yaxis') ylim([0,5]); title('Spectrogram of the signal'); ylabel('Frequency(kHz)'); xlabel('Time(s)');

Page 5: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

4. Prologue:Thisproblemexploresvariousaudioeffectsbyapplyingnonlinearoperationstoasinusoidalsignal.Italsoexploreswhathappenstothefrequencycomponentofasinusoidalsignalduetononlinearoperations.Thisisacommonapproachinanalyzinghowanonlinearsystem(e.g.adiodeortransistor)respondstodifferentfrequencies.Amongthenonlinearoperations,parts(a),(b)and(c)canbeusedinamplitudedemodulation(seethePrologueforProblem2).Thenonlinearoperationinpart(d)isatypeoffrequencymodulation.

Solution:MATLABcodeforgeneratingandplayingx(t)andoutputsignalsforparts(a)-(d):

x(t)onlycontainsthefrequencies±440Hz,andthespectrogramshowsthis.

f0 = 440; fs = 8000; Ts = 1/fs; t = 0:Ts:5; x = cos(2*pi*f0*t); y_a = abs(x); y_b = x.^2; y_c = x.^4; y_d = cos(pi*x); figure(1) spectrogram(x, hamming(256), 128, 256, fs, 'yaxis') sound(x,fs) pause(8); figure(2) spectrogram(y_a, hamming(256), 128, 256, fs, 'yaxis') soundsc(y_a,fs) pause(8); figure(3) spectrogram(y_b, hamming(256), 128, 256, fs, 'yaxis') soundsc(y_b,fs) pause(8); figure(4) spectrogram(y_c, hamming(256), 128, 256, fs, 'yaxis') soundsc(y_c,fs) pause(8); figure(5) spectrogram(y_d, hamming(256), 128, 256, fs, 'yaxis') soundsc(y_d,fs)

Page 6: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

Part(a):Thefundamentalperiodofy(t)isdifferentfromfundamentalperiodofx(t).Inordertobeperiodicy(t)=y(t+T0)andT0isthefundamentalperiodwhereT0=1/880(s)

0

2

( )kj

Tk

ky t a e

π∞

=−∞

= ∑

00

0 0

0

2 22

0 002

1 1( ) ( )

Tk kT j j

T Tk

Tt

a y t e dt y t e dtT T

π π− −

= −

= =∫ ∫

11760101760

880 2880 cos(2 (440)) (sin( ) sin( ))2 (440) 2 2

a dt π ππ

π π−= = − − =∫

And

0

0

0

1117602

2 2 (880) 2 (880)17601

10 176017602

1 2 (440) 2 (440) 2 (880 440) 2 (8802 (880)1760

11760

1 ( ) 880 cos(2 (440) ) 880 cos(2 (440) )

880 8802

T

j kf t j k t j k tk

T

j t j t j k t j kj k t

a y t e dt t e dt t e dtT

e e e ee dt

π π π

π π π ππ

π π− − −−

−−

− − − −−

= = = =

+ += =

∫ ∫ ∫

∫1 440)

17601

1760

2 (0.5 0.25) 2 (0.5 0.25) 2 (0.5 0.25) 2 (0.5 0.25)

2

880 1 1( ) ( )2 2 (880 440) 2 (880 440)

1 1 1 1 2cos(2 (2 1) 2 (2 1) 2 (2 1) 2 (2 1)

t

j k j k j k j k

j k j k

dt

e e e ej k j k

e ek k k k

π π π π

π π

π π

ππ π π π

+

− − − − + +

⎡ ⎤= − − − −⎢ ⎥− +⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + + − + =⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦

2

)(1 4 )

kkπ −

So,y(t)containsaninfinitenumberofevenharmonicsof440Hz,whichcorrespondtofrequenciesof±880kwherekisanintegervalue.Asexpected,wecanhearahigherfrequencysound.Thesoundfeelsashighernumberoffrequenciesarepresent(less‘thin’thanapurecosine).TheSamplingTheoremsaystochoosethesamplingratesothatfs>2fmax.Afterdividingbothsidesby2,fmax<½fs.Samplingat8kHzwillonlycaptureharmonicfrequenciesbelow4kHz.

Page 7: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

Part(b):

𝑦 𝑡 = 𝑐𝑜𝑠!(2𝜋440𝑡)

𝑦 𝑡 =12+12cos (2𝜋880𝑡)

(Usingthetrig.identitycos(2θ)=2cos2(θ)-1)

y(t)contains0Hzand±880Hz,whichareevenharmonicsof440Hzuptothe2ndharmonic.

Alternatively,

𝑦 𝑡 = cos!(2𝜋440𝑡)

𝑦 𝑡 = (𝑒!!!!!"! + 𝑒!!!!!!"!)!/4

=𝑒!!!!!"! + 𝑒!!!!!!"! + 2

4=12+cos 2𝜋880𝑡

2

(Usingthebinomialexpansionfor(a+b)2=a2+b2+2ab)

Itsounds‘thin’,whichisbecausejustonefrequencyispresentinthewaveform,whileinparta,higherfrequenciescouldbeheard.

Part(c):

y(t) = x4 (t) = cos4(2π f0t) = (e j2π f0t + e− j2π f0t

2)4 = e

j8π f0t + e− j8π f0t + 4e j4π f0t + 4e− j4π f0t +616

= 0.375+0.5cos(4π f0t)+0.125cos(8π f0t) = 0.375+0.5cos(2π (880)t)+0.125cos(2π (1760)t)

(Usingthebinomialexpansionfor(a+b)4=a4+b4+4a3b+4ab3+6a2b2)

So,y(t)containsthefrequencies0Hz,±880Hzand±1760Hz,whicharetheevenharmonicsof440Hzuptothe4thharmonic.

Thissoundsasifithasafrequencybetweenthesignalsinparts(a)&(b).Thesoundismore‘thin’thanpart(a),whileitisnotpureasaudioinpartb,andtheotherfrequency(±1760Hz)canbeheard.

Page 8: Solution Set for Homework #2 on Fourier Seriesusers.ece.utexas.edu/~bevans/courses/signals/homework/solution2.… · Fall 2018 EE 313 Homework 2 solution | The University of Texas

Fall2018EE313Homework2solution|TheUniversityofTexasatAustin

Part(d):UsingTaylorseriesexpansion:

2 42

0

( 1)cos( ) 1(2 )! 2! 4!

nn

n

x xx xn

=

−= = − + −∑ L

2 4 6 80 0 0 0

0(cos(2 )) (cos(2 )) (cos(2 )) (cos(2 ))cos( cos(2 )) 1

2! 4! 6! 8!f t f t f t f tf t π π π π

π π = − + − + −L

Asshownintheaboveformula,y(t)includes(cos(πcos(2πf0t))2,andasshowninpart(b)and(c),y(t)=cosn(2pif0t)willhaveoddharmonicsuptothenthharmonicifnisodd,andevenharmonicsuptothenthharmonicifnisevenincludingazero-frequencycomponent.

Comparedtoparts(b)and(c),theaudiosignalhasadditionalharmonics.