solvation dynamics: fundamentals and a survey of results

43
Solvation Dynamics: Solvation Dynamics: f Fundamentals and A Survey of Fundamentals and A Survey of Results in Simple and Complex Results in Simple and Complex Environments Environments I. Background and Fundamentals II Polar Solvation Dynamics CAS Search II. Polar Solvation Dynamics III. Other “Simple” Environments IV C l E i t CAS Search ations 100 1000 "Solvation Dynamics" Concept IV. Complex Environments, Biological and Otherwise 1900 1950 2000 # Cita 1 10 Phrase Concept 1 Publication Year 1900 1950 2000

Upload: others

Post on 29-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Solvation Dynamics: Solvation Dynamics: ffFundamentals and A Survey of Fundamentals and A Survey of

Results in Simple and Complex Results in Simple and Complex p pp pEnvironmentsEnvironments

I. Background and FundamentalsII Polar Solvation Dynamics CAS SearchII. Polar Solvation DynamicsIII. Other “Simple” EnvironmentsIV C l E i t

CAS Search

atio

ns 100

1000 "SolvationDynamics"

ConceptIV. Complex Environments, Biological and Otherwise

1900 1950 2000

# C

ita

1

10 PhraseConcept

1

Publication Year1900 1950 2000

I. Background & Fundamentals

Solvation Energies & SolvatochromismSolvatochromismThe Dynamic Stokes ShiftMeasurement TechniquesLinear Response (Interlude)p ( )3PEPS MeasurementsWhy Study?Why Study?

11/1/2005 Topic I - Fundamentals 2

Intermolecular Interactions

repulsive:exchange-repulsionexchange repulsion

attractive:ionicionicH-bondingdispersion typical

t thd spe s oelectrostaticinduction

strength

“solvation” describes the sum total of solute + solvent interactions usually a complicated mix

11/1/2005 Topic I - Fundamentals 3

interactions -- usually a complicated mix

Solvation Energies - ΔGsolv

gas-phase solvent solvated soluteThe Solvation Process:

+

gas-phasesolute

ΔGsolv

solvent solvated solute

+

cavity formation u-v attraction(di i t )

Interpretation:y

(repulsion) (dispersion, μ-μ, etc.)

11/1/2005 Topic I - Fundamentals 4

Solvatochromism - hν = ΔΔGsolv

spectral shifts are differential solvation energies ΔΔG

SSS1S1

gasphase weakly

interacting l

gasphase weakly

interacting linteractingsolvent strongly

interactingsolvent

interactingsolvent strongly

interactingsolvent

S0S0

11/1/2005 Topic I - Fundamentals 5

Example Data - DCS Probe

AbsorptionN

N

DCS

n-hexaneCF Cl CFCl THF

N

π

20 22 24 26 28 30 32

Emission

CF2Cl-CFCl2dioxane DMSO

26

Emission

ν / 1

03 cm

-1

22

24abs

emπ

14 16 18 20 22 24 26Fr

eque

ncy

20

11/1/2005 Topic I - Fundamentals 6

Frequency ν / 103 cm-114 16 18 20 22 24 26

"Polarity" dc(ε)-dc(n2)

0.0 0.1 0.2 0.3 0.4 0.518

Solvatochromic Polarity Scalesπ

“From the total of 78 solvatochromic and solvatofluorchromic compounds in Table 1 which have

πaz

oReichardt, Chem. Rev. 94, 2319 (1994).

solvatofluorchromic compounds in Table 1, which have been proposed and used as potential empirical solvent polarity indicators, up to now only ca. 18 of them have been really used to establish definite UV/vis/near-IR

ET(30)

been really used to establish definite, UV/vis/near-IR spectroscopically derived scales of solvent polarity…” RPM Z S

LMCTχR

π*χB

Py

11/1/2005 Topic I - Fundamentals 7

Solvatochromic Polarity Scales

“…Most of these scales are based on th t l d t f i l t d d

Reichardt (cont.) Z vs ET(30) - a favorable case

Zthe spectral data of a single standard probe (or reporter) molecule. They are, therefore, of somewhat limited

l i h l i l i f

Z

value in the correlation analysis of other solvent-dependent processes because they respond to a combination

E (30)of nonspecific and specific solute/solvent interactions, which are typical for the chemical structure of

ET(30)

the probe molecule, i.e. its ability to register dispersion, dipole/dipole, hydrogen-bond, and other possible

11/1/2005 Topic I - Fundamentals 8

intermolecular interactions.”

More Typical: ET(30) & H-Bonding

53)/1

03 cm

-1

0.5

1.0

N+O–OET(30) π*νabs

N1.0

λ (C

15

0.0λ C153

O

νabs νabs

O

π *

0.20.40.60.8

π∗

O

0.0

405060

π

C153ANδNMR

ON O

CF3 P AN

010203040

AcceptorNumber

νabs-νem

11/1/2005 Topic I - Fundamentals 9

ON O

ETN(30)

0.0 0.2 0.4 0.6 0.8 1.0

A Refinement

S1S1

What’s wrong with this picture? Absorption and EmissionS1

gaskl

S1

gaskl

26

Absorption and EmissionShifts are Different

gphase weakly

interactingsolvent strongly

interactingsolvent

gphase weakly

interactingsolvent strongly

interactingsolvent / 1

03 cm

-1

24abs

emS0S0

eque

ncy

ν

20

22

"Polarity" d (ε) d (n2)0.0 0.1 0.2 0.3 0.4 0.5

Fre

18

11/1/2005 Topic I - Fundamentals 10

Polarity dc(ε)-dc(n )

The Stokes Shift (DCS)

S1S1hexane~ gas

absem

solv

THF

solvΔν∼0

Ener

gy

SEner

gy

Sνabs νem

THF

Δν

S0S0

DMSO

ΔΔν

11/1/2005 Topic I - Fundamentals 11

Solvation CoordinateSolvation CoordinateFrequency ν / 103 cm-1

16 18 20 22 24 26 28 30

Shift Energetics

eqFCabs FFh 01 −=ν

nuclear+

Abs. & Em. Frequencies:S1

FCeqem FFh 01 −=ν

+electronic

Stokes ShiftF eqF1

FCF1

1

λ

)()( eqFCeqFCemabs

FFFF

hhh

=

−=Δ νννStokes Shift:

Ener

gy F

νabs νem

F1

S

λ

)()( 0011 FFFF −−−=

Free

FC

0 = 2λ“nuclear reorganization energy”

eqF0

FCF0λnuclear reorganization energy

Δν is not sensitive to solvent electronic polarizability, only its

11/1/2005 Topic I - Fundamentals 12

F0 electronic polarizability, only its “nuclear polarizability”

For Example, Dielectric Models

)}()({)( 220 nddCndAhvh ccabscabsabsabs −++= ενε0,n α,μ

)}()({)( 220 nddCndAhvh ccemcememem −++= εν2agas electronic nuclear

)}()(]{)(2[ 23201

0 nddahh cc −−+Δ=Δ − εμμνν rrgas electronic nuclear

322 3 3rrr

3/ ac α≡

solvent nuclearresponse

solute properties

solute factors: 32

021 )( −−−== aAA emabs μμ 3

010 )(2 −−⋅−= aCabs μμμ rrr 3011 )(2 −−⋅−= aCem μμμ rrr

)()( 0 xdxd ≡ 1)(0−

≡xxdsolvent dielectric

f ti

11/1/2005 Topic I - Fundamentals 13

)(21)(

0 xcdxdc − 12

)(0 +≡

xxdfunctions:

C153 Δν and π*

CF3N+O–O

cm-1

2 0

2.5r2=0.52

dipolarON O

O

ν / 1

03 c

1.5

2.0 dipolarmultipolarH-bonding

Shift

Δν

1.0• Δν (or λ) of C153

provides excellent measure of non-specific

Stok

es

0.5

CS2

pfhx.

measure of non specific solvent nuclear polarity

• correlation with π* scale is quite poor because the

π* Polarity-0.5 0.0 0.5 1.0

0.0 2is quite poor because the latter is strongly affected by electronic polarizability

11/1/2005 Topic I - Fundamentals 14

Reynolds, Maroncelli, J. Phys. Chem. 100, 10337 (1996)π Polarity

Key Points:

solvation energies reflect a complex mix of interactions (attractive & repulsive)te act o s (att act e & epu s e)solvatochromism is a differential measurement; what is measured are those ;interactions that change between S0 and S1

many scales of solvatochromic polarity exist each emphasizing a certain mixνabs & νem depend on both the electronic and nuclear solvent polarizabilities; Δν depends only on the nuclear part (i.e. the polarization requiring nuclear solvent motions)

11/1/2005 Topic I - Fundamentals 15

requiring nuclear solvent motions)

The Dynamic Stokes Shift

S1hexane~ gas

yEn

ergy

S0 DMSO

t

Solvation Coordinate 16 18 20 22 24 26 28 30

11/1/2005 Topic I - Fundamentals 16

Solvation Coordinate

Frequency ν / 103 cm-116 18 20 22 24 26 28 30

First Observations: T-dep.• before time-resolved spectra, solvation dynamics detected via

time-temperature connection first expressed by Bakhshiev ~1961

C102 / n-PropanolT/K88120140 3 c

m-1

24 0

24.5

abs140160175190233 ν 00

/ 10

3

23.5

24.0

em233295

eque

ncy

23.0

emT

absem Fre

22.5

11/1/2005 Topic I - Fundamentals 17

Frequency ν / 103 cm-118 20 22 24 26 28

Temperature / K100 150 200 250 300

Time-Resolved Experiments1 P l 298 K

NN

R

O4-AP probe

1-Propanol 298 K

N R

O

1-Propanol 203 Kt/ns48

stroboscopic fluorimetert

81523

t

11/1/2005 Topic I - Fundamentals 18

Ware & Co: Chem. Phys. Lett. 2, 356 (1968); J. Chem. Phys. 54, 4729 (1971).

Early Protein DynamicsTNS probe adsorbed to bovine serum albumin protein @ 273 KTNS

time resolved spectra λ(t) dataHN

TCSPC decays

-O3S

0.42 ns/cht=2,6,20 ns

1 − EtOH 273K2 - protein 273 K3 - protein 323 K4 l l 273 K

11/1/2005 Topic I - Fundamentals 19

Brand & Gohlke, J. Biol. Chem. 246, 2317 (1971).4 - glycerol 273 K5 - glycerol 323 K

Modern Measurement Techniques

Spontaneous Emission Methods:• phase fluorimetry• time-correlated single-photon counting• streak-camera• fluorescence upconversion

IRF>20 ps

• fluorescence upconversion• Kerr-gating

Stimulated Emission:• transient absorption /stimulated emission

or hole burning

Other:

<1 ps

Other:• photon echo (3PEPS) measurements• THz & RAPTORS (solvent’s perspective)

11/1/2005 Topic I - Fundamentals 20

TCSPC• timing is electronic

• δt >20 ps• inherently single λ

http://www.chem.rochester.e

11/1/2005 Topic I - Fundamentals 21

du/~stc/tcspc.htm

Fluorescence Upconversion

Nonlinear upconvertedi icrystal emission

ω1+ω2

•better than 100 fs IRF possible (but hard)

11/1/2005 Topic I - Fundamentals 22

better than 100 fs IRF possible (but hard)

A. Single Wavelength Versionunamplified Ti:saphunamplified Ti:saph390 nm pump440-700 em.IRF 120 fs fwhmIRF 120 fs fwhm

11/1/2005 Topic I - Fundamentals 23

Horng et al., J. Phys. Chem. 99, 17311 (1995); after Fleming & co.

Representative Data - 1λ upcv

Single λ Decay & Fit Decays Across Spectrum4 exp

02

4 exp

λ.02 .2

2 ps/ch

IRF

Frauchiger Castner J Phys Chem

11/1/2005 Topic I - Fundamentals 24

Horng et al., J. Phys. Chem. 99, 17311 (1995)Frauchiger, Castner, J. Phys. Chem. B, 106 (30), 7463

“Spectral Reconstruction” & Fitting

),(),(

)(),(0

tIdI

FtF i

i

iSSi λ

ττλ

λλ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

∝∫

Log-Normal FitsNormalization

tens

ity t/ps005

C153/FA

)(0 i ⎭⎩∫

ssio

n In

t .05.1.25

ive

Emis .5

125

Rel

ati

50

11/1/2005 Topic I - Fundamentals 25Wavelength / nm

450 500 550 600

Broadband Upconversion

ss50 ps

• thin, low dispersion crystal (100μ KDP)

l 1300 (C•gate at long λ = 1300 nm (Cr: Forsterite laser)

•amplified pulses requiredp p q

11/1/2005 Topic I - Fundamentals 26

Schanz,… Ernsting, Appl. Phys. Lett. 79, 566 (2001).

“FLUPS” (FLuorescence UPconversion Spectroscopy)

• pulse tiltingp g• nearly dispersion-free collection• prism based spectrograph• 80 fs IRF 10 000 cm-1 range

11/1/2005 Topic I - Fundamentals 27

Zhao, …Ernsting, Phys. Chem. Chem. Phys. 7, 1716 (2005)• 80 fs IRF, 10,000 cm range

Kerr-Gated Emission Spectroscopy

0º 90ºKerrmedium

emission gatedemission

1969 D & H• 1969 Duguay & Hansen1970 Rentzepis & Co. 1st reports

• 1987 Rulliere & Co.

• 2000 Kanematsu & Co.

“ps fluorimeter” (δt ~ 25 ps)

t i i ti l2000 Kanematsu & Co.• 2000 Takeda et al.• 2003 Schmidt et al.

recent versions using opticalglasses & crystals; δt < 200 fs

11/1/2005 Topic I - Fundamentals 28

• 2002 Matousek et al. Raman spectroscopy

KGE Spectrometer

CoherentRegA

delay

BBO

770-850 nm250 kHz160 fs, 3-4μJ

P2F

mono-chromator

P1

Kerrcell

PMTF

CCD

samplecell to ADC

sync signal

AmplifierReferenceChannel

Arzhantsev & Maroncelli, Appl.• tuned for ns lifetime solutes•1 mm benzene Kerr medium

11/1/2005 Topic I - Fundamentals 29

Arzhantsev & Maroncelli, Appl. Spectroscop. 59, 206 (2005).

1 mm benzene Kerr medium

Limitations of KGE

fusedili 15

20C153

6

IRF limited ~200 fs Long τfl Challenging

< 300 fs

sity

silica

sity

10

15 τfl=6 ns

t>0 t<0

ve In

tens

b ve In

tens

0

5

DCS

signal

450 fs

Rel

ativ benzene

Rel

ativ

2

3 DCS0.6 ns

0

1

11/1/2005 Topic I - Fundamentals 30Time / ps

-1.5 -1.0 -0.5 0.0 0.5 1.0Wavelength / nm

400 450 500 550 600 6500

Performance Comparisonst / ps

-1-.5- 2

"Raw"

m-1

21C153/acetone KGE vs Upcv

ity

-.20.1.2.51

Spectra

p / 1

03 cm

20

ve In

tens

i 125

50

quen

cy ν

p

19

acetone

Rel

ativ .05

.1

.2

.51

AfterFitting

Peak

Fre

q 19CH3CN

125

50P

18 (ν shifted)

DMSO

11/1/2005 Topic I - Fundamentals 31

Frequency / 103 cm-116 17 18 19 20 21 22 23

Time / ps0.0 0.5 1.0 1.5 2.0

KGE current status

1500 Current Performance:DCS in SC CHF3 1.6ρc

t / ps0.1

+ 400-675 nm range+ sample OD << 1

Cou

nts

1000 .2.512

- IRF limited (450 fs)- spectral correction

l (6 f ld)C

5005

50large (6-fold)

- hard for τ>2 ns

400 450 500 550 6000

11/1/2005 Topic I - Fundamentals 32

Time / ps

Stimulated Emission (TA)

540 nm50 fs50 fs

400 nm10 μJ

800 nm, 35 fs180 Hz 6mJ

10 μJ

180 Hz, .6mJdual spectrographs512 diode arrays

• 20 fs effective resolution

11/1/2005 Topic I - Fundamentals 33

Lustres, Ernsting, Angew. Chem. 44, 5635 (2005)

Sample data: MQ/MeOH

N+

• easier than upconversion but signal is GSB+ESA+SE

SnSnMQ in CH3OH

O-

S1 ESAS1 ESA

S0GSB SES0GSB SE

11/1/2005 Topic I - Fundamentals 34

Lustres, Ernsting, Angew. Chem. 44, 5635 (2005)

Sample data: MQ/MeOH ν(t)

m-1 H2O

• with care SE component can be extracted

N+

E /

103

cm

O-

ncy

of S

Eak

fre

que

CH3OH

pea

11/1/2005 Topic I - Fundamentals 35

time /ps

Response and Fluctuations• ν(t) measures the non-equilibrium response of the solute +

solvent system to perturbation caused by solute excitation linear response theory relates this non equilibrium response• linear response theory relates this non-equilibrium response to time-dependent fluctuations in the unperturbed system

)(ˆ)(ˆ tVHtH += )"(")( tFtV μrr

Δ⋅= linear solute-)()( 0 tVHtH += )()( tFtV μΔ⋅=pert. due to

S0→S1 changesolvent“field”

solutechange

solvent coupling

μ(t)μ1 ν0

ν(t)

• use time-dependent perturbation theory to expand response

tμ0

tν∞

11/1/2005 Topic I - Fundamentals 36

• use time dependent perturbation theory to expand response (ν(t)) to first order in V(t)

Linear Response Predictions

Non-Equilibrium Response Equilibrium Fluctuations

tEth )()( Δ=ν eqEtEth Δ−Δ= )()(δν

ne)()( eq

)()(

)()0( ∞−=Δ ννν TkBeq/δνmagni-

tude

νννν Δ∞−= )}()({)( ttS eqeqttC δνδνδνν )()0()( =time

dep.

11/1/2005 Topic I - Fundamentals 37

A Simulation Example

0.8

1.0CH3CN CH3OH

ν(t) 0.6 Δq/e

03/

Δq=1eS ν

0 2

0.4 3/41

Δq=0

Δq 1e

0 1 20.0

0.2

0 1 2 3 4

Δq=0is eq tcf

11/1/2005 Topic I - Fundamentals 38

Time / ps0 1 2

Time / ps0 1 2 3 4

3PEPS: The Echo IdeaFig. 1. Ray optics analogy for the three-pulse stimulated photon echo experiment. The rays represent the phase evolution of the quantum system. (a) After the initial pulse (τ = 0) the rays fan out with slopesthe initial pulse (τ = 0), the rays fan out with slopes determined by the value of the offset from the mean frequency of individual members of the inhomogeneous distribution. The second pulse (first lens) collimates the rays by converting the superposition into a population t t Th thi d l ( d l ) f thstate. The third pulse (second lens) refocuses the rays

by converting the population state to the Hermitian conjugate of the first superposition state. The echo intensity is proportional to the square of the field amplitude and thus depends on the amount of constructive interference generated by the third (rephasing) pulse. For a wide inhomogeneous distribution, the constructive interference is restricted to a very short time interval at around t = τ depicted by the sharpness of focus produced by the second lens. (b) p p y ( )The disruption of the smooth phase evolution during the population period, T, and during the two coherence periods (τ and t) leads to a loss of refocusing ability. Thus, by recording the photon echo as a function of the population period, the fluctuations in the

11/1/2005 Topic I - Fundamentals 39

Fleming, Proc. Natl. Acad. Sci. USA 95, 15161 (1998).

population period, the fluctuations in the inhomogeneous distribution ("spectral diffusion") can be followed.

3PEPS - The Experimentpeak shift

cavity dumped Ti:Sa 250 kHz, <1 nJ 20 fs

T=0

B B’<1 nJ, 20 fs

1 ps1 ps

50 ps

11/1/2005 Topic I - Fundamentals 40

Passino,… Fleming, J. Phys. Chem. A 101, 725 (1997); Larsen,…Fleming, J. Chem. Phys. 111, 8970 (1999).

τ

3PEPS - Interpretation•peak shift τ*(T) qualitatively like frequency tcf M(t), but complex analysis required for quantitative results

Input model M(t)solvent + intra vib

absorption spectrum

Fit to:

absorption spectrum

3PEPS

with

11/1/2005 Topic I - Fundamentals 41

Joo,…Fleming, J. Chem. Phys. 104, 6089 (1996).

Summary

many measurement options available for both single channel and complete spectral s g e c a e a d co p ete spect acoveragemeasuring spontaneous emission gets more g p gdifficult as IRF gets shortertransient absorption and 3PEPS measurements offer alternatives with very high time resolution but at the cost of added

l it f i t t ticomplexity of interpretation

11/1/2005 Topic I - Fundamentals 42

Why Solvation Dynamics?δ - δ -

dina

te”

P

on C

oord P

Solv

atio R

“Chemical Coordinate”

11/1/2005 Topic I - Fundamentals 43

Like it or not, solvent is part of the reaction coordinate!